Techno-economic and Lifecycle Greenhouse Gas Assessments of H₂ Production from Coal, Coal/Biomass, and Biomass

Eric Lewis, P.E.

National Energy Technology Laboratory (NETL)

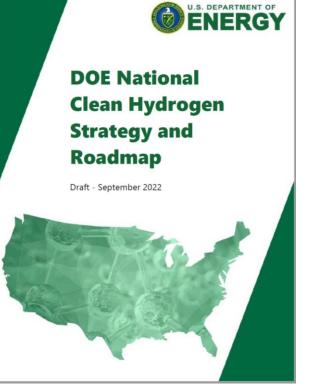
Gasification Technology Status and Pathways for Net-Zero Carbon Economy Workshop November 30, 2022

NETL has published a combined techno-economic (TEA) and life cycle analysis (LCA) of commercial, state-ofthe-art fossil-based H₂ production technologies^{1,2}

Today's Topics:

- Motivation
- Summary justification, objectives, & primary TEA/LCA findings
- Key Assumptions & Results
- Current Work

COMPARISON OF COMMERCIAL, STATE-OF-THE-ART, FOSSIL-BASED HYDROGEN PRODUCTION TECHNOLOGIES

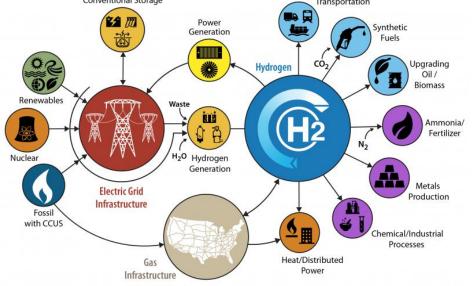

DOE/NETL-2022/3241

¹Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies, DOE/NETL-2022/3241, April 12, 2022 <u>https://netl.doe.gov/energy-analysis/details?id=ed4825aa-8f04-4df7-abef-60e564f636c9</u> ²Funding provided by the DOE Office of Fossil Energy and Carbon Management (FECM)

Study Motivation

- June 2021 DOE launched the first Energy Earthshot to reduce the cost of clean hydrogen production to \$1 per 1 kilogram in 1 decade ("1, 1, 1")
- November 2021 Infrastructure Investment and Jobs Act (IIJA) passed
- April 2022 NETL releases contemporary H₂ production study
- August 2022 Inflation Reduction Act (IRA) passed
- September 2022 DOE releases the draft initial Clean Hydrogen Production Standard (CHPS)
- September 2022 DOE releases the draft National Clean Hydrogen Strategy and Roadmap
- September 2022 DOE releases the Regional Clean Hydrogen Hubs Funding Opportunity Announcement (DE-FOA-0002779)

https://www.energy.gov/eere/fuelcells/hydrogen-shot



Justification

 This TEA/LCA of fossil-to-H₂ production routes using current, commercial technologies provides a basis for DOE FECM R&D program planning to reduce the levelized cost of hydrogen (LCOH) and greenhouse gas (GHG) footprint of future fossil-to-H₂ plants

Objectives

- Develop a reference study of H₂ production technologies using current, commercial technologies¹ with emphasis on coal gasification, co-gasification of coal with an alternative feedstock, and NG technologies using the LCOH (2018 \$/kg) as the figure of merit
- Identify areas of R&D to further improve the performance and cost of fossil fuel-based H_2 production, including follow-on analyses

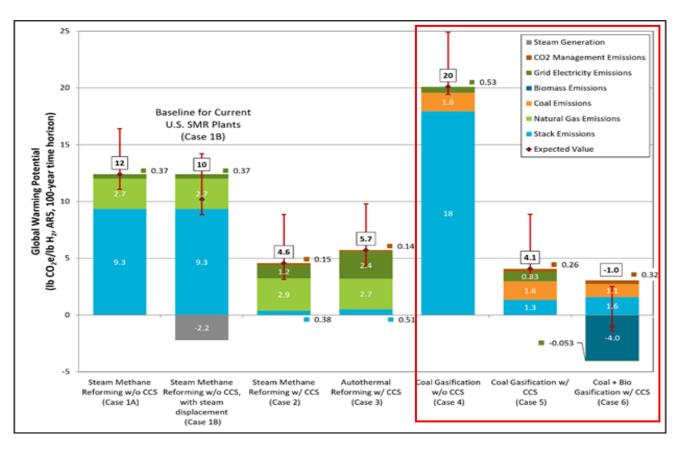
Source: DOE

¹ Commercial technologies are considered process systems that do not face fundamental R&D challenges within the plant flowsheets considered and at the scales studied

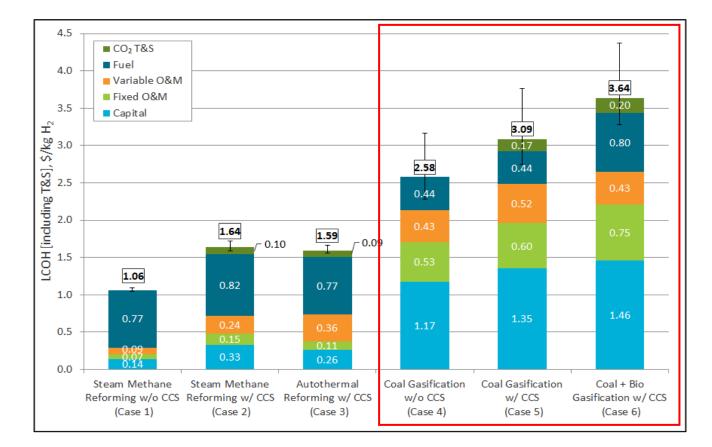
Case Selection

Case ^A	Plant Type	Feedstock(s)	Reformer Type	Gasifier Type	CO₂ Capture (%)	H ₂ Purification	H ₂ Production Capacity
1			SMR		0		200 MMSCFD 483,000 kg/day
2	Reforming	Natural Gas	3////	-	96.2		483,000 kg/ddy 44,400 lb/hr
3			ATR		94.5		
4					0	PSA	274 MMSCFD 660,000 kg/day
5	Gasification	Illinois No. 6 Coal	_	Shell ^B	92.5		60,600 lb/hr
6	Casileanon	Illinois No. 6 Coal/Torrefied Woody Biomass		510	92.6		55 MMSCFD 133,000 kg/day 12,200 lb/hr

^A Gasification plants are assumed to operate at 80 percent capacity factor and are located at a generic plant site in the midwestern United States.

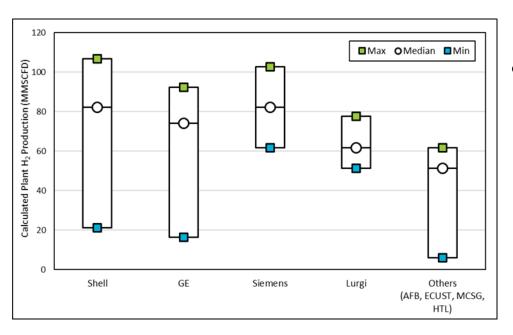

^B The Shell gasifier has been used in multiple prior NETL studies. As of May 2018, Air Products has acquired the coal gasification technology licensing business from Shell. To be consistent with prior NETL studies and avoid confusion, the gasifier is labeled the "Shell" gasifier.

NATIONAL ENERGY TECHNOLOGY LABORATORY


Primary Results - LCA GHG Emissions (Cradle-to-Gate)

- Co-gasification of 43.5 percent torrefied, woody biomass enables -1.0 lb CO₂e/lb H₂ of GHG emissions across the lifecycle
- Coal gasification w/ CCS has the lowest GHG emissions over the plant life-cycle of all 100% fossil feedstock cases (4.1 lb CO₂e/lb H₂)

- Coal/biomass co-gasification w/ CCS has the highest LCOH (\$3.64/kg H₂) of all cases. Primary cost drivers are:
 - Greater biomass feedstock cost
 - Smaller plant capacity
- Coal gasification w/o CCS achieves the lowest LCOH (\$2.58/kg H₂) of all gasification cases



¹LCOH error bars depict TOC uncertainty ranges of -15%/+25% (AACE Class 4) and -25%/+50% (AACE Class 5) for reforming and gasification cases, respectively

• High-purity H₂ from coal¹

- •Coal gasification predominantly in China for ammonia
- •Estimated to have a median H₂ production rate between 50 and 100 MMSCFD
- Engineering studies have been completed for such facilities up to 282 MMSCFD H_2 production

Primary Findings - Literature Review (cont'd.)

• H₂ from alternative feedstocks (e.g., biomass, MSW)

- $\,\circ\,$ No currently operating commercial alternative feedstock gasification facilities producing high-purity $\rm H_2$ as an end product
 - -A few are planned or on hold
 - -One produces H₂ as a precursor to ammonia (Showa Denko)
- Buggenum IGCC (coal/biomass co-gasification decommissioned) and Eastman Kingsport (coal/waste plastics) are the only examples of commercially operating facilities to co-gasify coal with an alternative feedstock

-Neither produces H_2 as an end-product

Key Assumptions

Solid Feedstock Characteristics

Rank	Bituminous ¹			
Seam	Illinois No. 6			
Source		-		
Proximate Analysis (weight %) ^A				
	As Received	Dry		
Moisture	11.12	0.00		
Ash	9.70	10.91		
Volatile Matter	34.99	39.37		
Fixed Carbon	44.19	49.72		
Total	100.00	100.00		
Sulfur	2.51	2.82		
HHV, kJ/kg (Btu/lb)	27,113 (11,666)	30,506 (13,126)		
LHV, kJ/kg (Btu/lb)	26,151 (11,252)	29,444 (12,712)		
Ultima	Ultimate Analysis (weight %)			
	As Received	Dry		
Moisture	11.12	0.00		
Carbon	63.75	71.72		
Hydrogen	4.50	5.06		
Nitrogen	1.25	1.41		
Chlorine	0.15	0.17		
Sulfur	2.51	2.82		
Ash	9.70	10.91		
Oxygen ^B	7.02	7.91		
Total	100.00	100.00		

 $^{\rm A}$ The proximate analysis assumes sulfur as volatile matter $^{\rm B}$ By difference

Torrefied Woody Biomass				
	As Received	Dry		
Ultimate Analysis (weight %)				
Moisture	5.72	0.00		
Carbon	59.89	63.52		
Hydrogen	5.11	5.42		
Nitrogen	0.41	0.44		
Chlorine	0.00	0.00		
Sulfur	0.00	0.00		
Ash	0.51	0.54		
Oxygen	28.36	30.08		
Total	100.00	100.00		
Heating Value				
HHV (Btu/lb)	9,749	10,340		
LHV (Btu/lb)	9,203	9,825		

Key Assumptions

H₂ Product Specifications

Characteristics	Concentration	
Hydrogen Purity (vol%)	99.90	
Max. CO ₂ (ppm)	А	
Max. CO (ppm)	А	
Max. H ₂ S (ppb)	10	
Max. H ₂ O (ppm)	A	
Max. O ₂ (ppm)	А	

^AThe maximum total concentration of all oxygen containing species is 10ppm

- The hydrogen product meets the purity specification shown, which results in a product suitable for several potential applications
- Contaminant levels are for ammonia-grade H₂ to avoid catalyst poisoning
- Additionally, the specification results in a product exceeding specifications for the following ISO 14687:2019 gaseous H₂ grades:
 - Grade A combustion applications
 - Internal combustion engines, residential/commercial heating appliances
 - Grade B industrial power and heat applications
 - Excluding PEM fuel cells
- H₂ product is compressed to 6.4 MPa (925 psig) for pipeline injection

Key Assumptions

Facility Air Emissions

- The primary air emission sources for the cases are:
 - SMR furnace
 - ATR fired heater
 - Auxiliary boiler gasification cases
- Plants are in an attainment area, thus the inclusion of Best Available Control Technologies will be required per New Source Review
- The tables below include the control technologies and achievable Imits
 BACT Environmental Design Basis for Coal Cases
 Environmental Design Basis

Pollutant	Environmental Design Basis			
Pollutant	Control Technology	Limit		
Sulfur Oxides	Zinc oxide guard bed	Negligible		
Nitrogen Oxides	Low NOx Burners	2.5 ppmv (dry) @ 15% O ₂		
Particulate Matter	N/A	Negligible		
Mercury	N/A	Negligible		

BACT Environmental Desian Basis for Natural Gas Cases

Pollutant	Environmental Design Basis			
Foliolatii	Control Technology	Limit		
Sulfur Oxides	AGR + Claus Plant or equivalent performing system	99+% or ≤ 0.050 lb/10 ⁶ Btu		
Nitrogen Oxides	Low NOx Burners	15 ppmv (dry) @ 15% O $_2$		
Particulate Matter	Cyclone/Barrier Filter/Wet Scrubber/AGR Absorber	0.015 lb/10 ⁶ Btu		
Mercury	Activated Carbon Bed or equivalent performing system	95% removal		

Key Assumptions

Life Cycle Emissions

- Overall data is representative of 2016-2017
- Natural gas
 - Model and methods documentation "Life Cycle Analysis of Natural Gas Extraction and Power Generation," NETL, April 19, 2019
 - Emissions and production data <u>"Industry Partnerships & Their Role In Reducing Natural Gas Supply Chain Greenhouse Gas Emissions Phase 2,"</u> <u>NETL, February 12, 2021</u>
- Electricity emissions: Assembled from publicly reported emissions and power generation datasets for 2016¹
- Coal:
 - Model and methods documentation "Life Cycle Analysis: Supercritical Pulverized Coal (SCPC) Power Plant," NETL, April 13, 2018
 - Coal mine methane emissions are from 2016 EPA GHGRP data
- Torrefied southern yellow pine:
 - Model and methods documentation "Comprehensive Analysis of Coal and Biomass Conversion to Jet Fuel: Oxygen Blown, Transport Reactor Integrated Gasifier (TRIG) and Fischer-Tropsch (F-T) Catalyst Configurations," NETL, September 8, 2015
 - Background data (e.g., electricity and fuel) from 2016
- Saline aquifer storage
 - Model and methods documentation "Life Cycle Analysis: Supercritical Pulverized Coal (SCPC) Power Plant," NETL, April 13, 2018

Solid Feedstock Costs

- Delivered coal and NG costs are consistent with current NETL QGESS methodology¹
 - Delivered Illinois No. 6 \$2.22/MMBtu
 - Delivered NG \$4.42/MMBtu
- A site-delivered cost of torrefied Southern yellow pine was calculated using an existing NETL cost model that considers centralized production of the design feedstock and distribution to the H₂ plant
- The modeled cost was levelized to be consistent with current NETL QGESS methodology
 - Delivered biomass \$5.43/MMBtu

Key Assumptions

Byproduct Revenues, Tax Credits, Emission Penalties

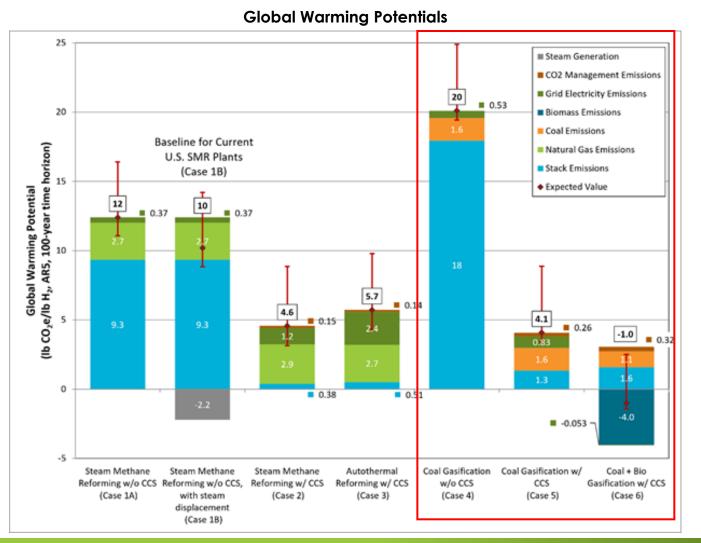
- No revenues generated from the sale of air gases (e.g., N₂, Ar), steam, or pipelined CO₂
- Export power is sold to the grid at \$71.7/MWh
- No CO₂ emissions penalty
- No tax credits for CCS (e.g., 45Q) or clean H₂ production (e.g., 45V) are included
- Sensitivity analyses quantify the economic impact from several of these factors

Plant and Environmental Performance

Efficiencies 100% Cold Gas Efficiency Effective Thermal Efficiency 90% __76.7%__75.4%_ 80% -75.7%-72.1% 68.4% -66.6%-64.1% 67.9% -66.6%-65.0%-70% (HHV Basis) % (HHV Basis) % 0.0% _57.7%_57.9%_ Efficiency, % 20% 10% 0% Steam Methane Steam Methane Autothermal Coal Gasification Coal Gasification Coal + Bio Reforming w/o CCS Reforming w/ CCS Reforming w/ CCS w/o CCS w/ CCS Gasification w/ CCS (Case 1) (Case 2) (Case 3) (Case 4) (Case 5) (Case 6)

^A Effective Thermal Efficiency (ETE) = (Hydrogen Heating Value + Net Power) / Fuel Heating Value ^B Cold Gas Efficiency (CGE) = Hydrogen Heating Value / Fuel Heating Value

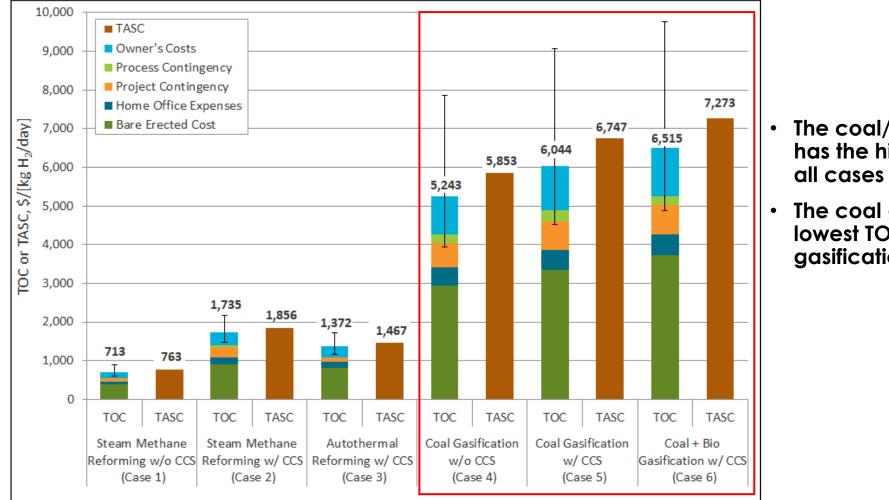
 Coal/biomass co-gasification w/ CCS has the lowest plant efficiency (CGE and ETE). A lower PSA H₂ recovery (75% vs. 85%) is used to avoid grid power import


Plant and Environmental Performance (cont'd.)

Variability and uncertainty

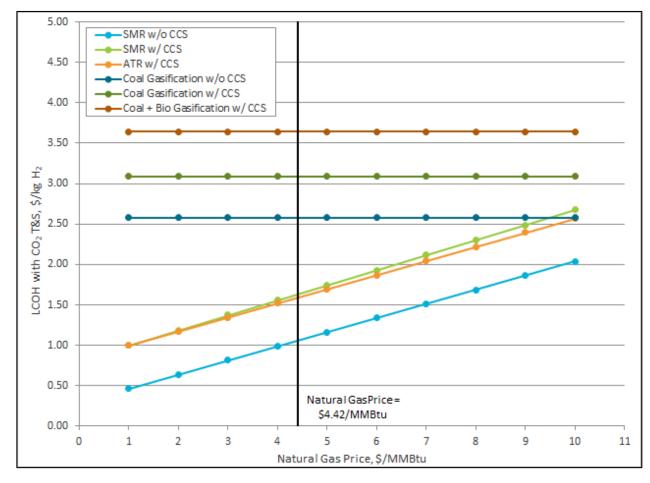
- Natural gas –variability throughout the life cycle and across the regional sources of natural gas
- Coal mostly from variability in reported coal mine methane emissions
- Southern yellow pine variability in yield and fertilization rates
- Electricity variability in reported emissions

Impact Assessment method


- Default values use IPCC AR5 global warming potentials with climate carbon feedback.
- 100-year time horizon
- Key here is the value of 36 kg CO₂equivalents per kg of fossil methane.
- Results based on other vintages of global warming potentials are provided in the report

Economic

Total Overnight Cost (TOC) and Total As-Spend Cost (TASC)¹



The coal/biomass co-gasification w/ CCS has the highest TOC (\$6,515/[kg H₂/day]) of all cases and gasification cases.

The coal gasification w/o CCS achieves the lowest TOC (\$5,243/[kg H₂/day]) of gasification cases

NG Price Sensitivity

- **NE NATIONAL ENERGY** TECHNOLOGY LABORATORY

- At an NG price above \$9/MMBtu, the SMR plant w/ CCS becomes onpar with the coal gasification plant w/o CCS
- Coal w/ CCS becomes competitive with NG w/ CCS above \$11/MMBtu

Current Work

Net-Zero H₂ from Alternative Feedstock Gasification

- Gasification-to-H₂ approaches are generally more costly than natural gas approaches
- However, 2035 net-zero GHG power sector and 2050 economy-wide Administration goals, and consideration of other socioeconomic benefits (e.g., energy justice), creates additional value propositions for gasification technologies; particularly, by using carbon neutral and waste feedstocks
- To address the cost challenge, NETL is developing analyses that will:
 - Characterize cost and performance of current, state-of-the art gasification pathways using various alternative, carbonaceous feedstocks (e.g., biomass, MSW, and waste plastics) capable of achieving net-zero GHG H₂ production
 - Characterize current market conditions for the utilization of such feedstocks as well as competing alternatives
 - Formulate strategies for reducing the levelized cost of net-zero H₂ through technology R&D (e.g., advanced CO₂ capture)

The presenter would like to thank Jadon Grove, Megan Henriksen, Matthew Jamieson, H. Scott Matthews, Shannon McNaul, Travis Shultz, Timothy Skone, Robert Stevens, Liam Walsh, and John White for their significant contributions this work.

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NETL Resources

VISIT US AT: www.NETL.DOE.gov

🥑 @NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Eric Lewis Robert Stevens Eric.Lewis@netl.doe.gov Robert.Stevens@netl.doe.gov

