

DOE Office of Electricity TRAC Peer Review

Multi-Port Modular Medium-Voltage (M3) Transactive Power Electronics Energy Hub

PRINCIPAL INVESTIGATOR Dr. Madhu Chinthavali, ORNL

PROJECT SUMMARY

The goal for this project is to design, develop, and demonstrate foundational technologies and capabilities for multiport power electronics energy hubs (a.k.a. HUB) that can serve as intelligent devices to coordinate and control several different sources and loads

Objective 1: Design and build a modular, gridtied integrated three-phase, minimum three port 480 V ac power electronic hardware prototype with open-source controls, communication, protection and intelligence to demonstrate the value of the HUB concept.

Objective 2: Develop **CHIL** interface connected with a **real-time feeder model** for the evaluation of a single M3PE-HUB suitable for multi-time scale CHIL simulations, and scaling efforts to include multiple HUBs.

Medium Voltage HUB

Objective 3: Develop medium voltage power stage building blocks with advanced device packages to address critical technology gaps for direct grid-tied medium voltage power electronic converter systems.

Medium Voltage H-Bridge Power Stage

The Numbers

DOE PROGRAM OFFICE: **OE** – Transformer Resilience and **Advanced Components (TRAC)**

FUNDING OPPORTUNITY: **GMLC Lab Call**

LOCATION: **Knoxville**, **Tennessee**

PROJECT TERM: 02/15/2020 to 2/15/2023 **PROJECT STATUS:** Incomplete

AWARD AMOUNT (DOE CONTRIBUTION): \$5.3 M

AWARDEE CONTRIBUTION (COST SHARE): \$1.3 M

PARTNERS: **Industry and University Partners**

University Partners

Semikron, Microchip, Power America, Flex

CURENT (UTK), NCSU

Southern Company,

Team - ORNL

Madhu Chinthavali Power Electronics Systems Architecture

Brian Rowden Hardware design and prototyping

Michael Starke, PhD Systems and Software Architect

Steven Campbell System Integration & Testing

Jonathan Harter Hardware development

Aswad Adib Topology simulation

Rafal Wojda Magnetics Design

Innovation: HUB Architecture

Features of the Modular Multiport Medium Voltage PE HUB (M3PE-HUB) platform

- Automation of energy flow between multiple sources and loads with on-line optimization
- Single transactive node that enables market participation or integration into large centralized systems
- **Grid services:** harmonic distortion management, unbalance management, voltage support, outage restoration support and ride-through etc. based on the HUB location on the feeder.
- Increase in grid reliability and resilience: enabling advanced de-centralized grid control architecture
- Interoperable/Vendor agnostic: minimizing the number of DER interfaces, single point of communication for utility management systems
- Modular and scalable agent-based software **platform** with real-time dynamic control of device systems to support the grid

Innovation : HUB Controller Architecture

Control and Optimization using Distributed Agent-based System (CODAS) Developed to support power electronic systems integration for both simulation and hardware projects **Optimization &** Resource Advanced Control Management Integration Utility System State Machine ISR Control ISR LOAD AGENT INTELLIGENCE Limit Checks AGENT Scaling Measurements Optimizatio PE Faul INTERFACE Device Variable Converter Integrator AGENT Closed Loop (Simulation or UDP Comm State Machine Control CONVERTER Receive Hardware) Variables MOTT Decision UDP Comm AGENT Switching Signals SOURCE Historian AGENT Resource Resource Converter Controller (CC) Integration Manaaement Controller (RIC) Controller (RMC) CENTRAL CONTROLLE Higher Level Interface Resource Integration INTERFACE Variables 🗖 🕁 Optimizer Controller AGENT Historian Device Integrator MQTT INTELLIGENCE AGENT SOURCE CONVERTER LOAD AGENT System 2 System 3 AGENT AGENT Raspberry Pi 3 SOURCE CONVERTER LOAD CONTROLLER CONTROLLER CONTROLLER SOURCE LOAD CONVERTER

- Devices support multiple levels of hierarchy.
- Physical control is performed by DSP/FPGA controllers interfacing an integration computation node.
- via communications and agent system.
- Central controller registers devices with • automatic configuration system
- System configuration is driven by converter (AUTOMATIC through Plug-and-Play **Communication Framework**)

Simulations represent full switching models of power electronic devices and auxiliary equip

Computer node integrates other components (sources and loads) with power electronic system

system capabilities and interconnected resources

Innovation Update: Simulation Framework for LV-HUB

- Multi port LV HUB: Grid inverter • with 3 50 kW DC-DC converters.
- Same controller hardware and communication framework as applied to hardware testing.
- Used in early development stages • to verify stability of optimization, controls, communications, and systems integration.
- All hardware systems are modeled • including pre-charge and contactor circuitry to ensure startup and shutdown sequences and protection systems are validated.

Innovation Update: Use Case Simulation in CHIL platform

Off I

stem	DSP Control Option		
guration	Input	Output	
onverter C/AC)	Vdcreg	Grid Following Q, Grid Forming (V/F)	
nverter C/DC)	MPPT		
nverter C/DC)		P, V dcr eg	
onverter C/DC)	Vdcreg		
	Price	Time	
Peak	\$0.122/kwh	3PM-8PM	
ulder	\$0.0625/kwh	1PM-3PM, 8PM- 10PM	
Peak	\$0.0235/kwh	10PM-1PM	

Innovation Update: Use Case Simulation in CHIL platform

480V AC

GRID CONVERTER

AC/DC

1kV Do

DS-1

DC/DC

DC/DC

DC/DC

em Iration	DSP Control Option		
	Input	Output	
nverter ′AC)	<u>Vdcreg</u>	G rid Followin g Q , Grid Forming (V/F)	
verter 'DC)	МРРТ		
verter 'DC)		- P , Vdcreg	
nverter 'DC)	Vdcreg		

Innovation Update : Hardware Prototypes

<u>PE Hardware baseline LV</u> <u>HUB Hardware:</u>

- 3 x 50kW DC/DC Converters (ORNL)
- 1 Grid Inverter 100 kW(ORNL)

Final LV HUB Hardware

- 2 x 50kW DC/DC Converters (ORNL)
- 1 x 50kW DC/DC(DAB) Converter (NCSU)
- 1x 250kW AC/DC Inverters (Semikron)

Innovation Update : Hardware Testbed in GRID-C @ ORNL

LV-HUB Test Bed Architecture

LV-HUB Controller Platform

Station 3

Innovation Update : Transient Operation of LV-HUB

Transient operation of the LV-HUB, 1 kV DC and 480 VAC: 3 DC-DC Converters, 1 DC-AC

Development and evaluation of 10 kV SiC DC-DC Converter

Specifications for 10 kV H-bridge:

- Input voltage (DC): 6 7 kV
- Current rating (DC): 10 A •
- Output voltage (DC): < 3 kV ٠
- Switching frequency region: 1 5 kHz •
- Test configuration: Buck mode •
- Cooling: forced convention
- Ambient temperature: up to 40 °C

3.3kV and 10kV Power module platform

- Evaluation of novel gate-source configuration for low inductance parallel device integration
- Can support 2 x 3.3-10kV (8mm devices) per switch position or 3 x 1.2-1.7kV devices (5mm devices)
- Configurable as Full bridge or Half Bridge Configuration internally

Device Packaging facility: clean room in GRID-C @ ORNL

Development and evaluation of 10 kV SiC H-bridge integrated module and power stage

- Medium Voltage Smart Gate Driver (ORNL)
- Design, manufacture, and test of initial single switch medium voltage prototype
 - Included fiber optic interfacing
 - Onboard device level sensing features
 - Two level soft turn-off
- Signal level testing completed
 - Test with Microchip 3.3kV TO-247-4 lead packaged devices for DPT board function
- Scale voltage to 10 kV for module level multi-position configuration to support full bridge module design

Smart gate driver : 3.3 kV rated module

Gate driver transient operation: Gate voltage and Desat protection

Auxiliary Power Supply: 20kV peak voltage, 14.14kV RMS voltage (UTK)

Auxiliary Power Supply upto 10 kV (UTK)

750 load resisto

Auxiliary Power Supply Transient Operation

Auxiliary Power Supply Topology

cal HoriziAcq Trig Display Cursors Measure Mask Math MyScope Analyze Ubilities Help 🔽	Tek - XeT
Output voltage with open circuit V1	ramps up
from 24V to 80V	
	oltago
Here a second and the	
	uuuuuu
Primary side curre	
United and a second second second	tion M
drops from 24V to 9V	tion v ₂
Kir Ψ _μ /250M Im d66.212µs Xem Yem 200.0 Stop Stop Im Stop Im	Dµs/div 20.0MS/s 50.0ns ped Single Seq qs RL:40.0k
Volume Man Man St Day Count lafe	July 20, 2021
-25.2V -25.199997 -25.2 -25.2 0.0 1.0	
7.7A 7.6999998 7.7 7.7 0.0 1.0	
-3.54 -3.5399995 -3.54 -3.54 0.0 1.0	
56.0V 56.0 56.0 56.0 0.0 1.0	
One output open circuit operation with 75Ω load re	sistor

Development and evaluation of 10 kV SiC H-bridge integrated module and power stage

D=0.5			
VI	3000	6500	10000
VO	1500	3250	5000
Imax	55	25.385	16.5
L (mH)	7.5	35.208	83.333
Ν	46	99	152
Acu	11	5.0769	3.3
d	3.7424	2.5425	2.0498

Magnetics Build and Test Setup in GRID-C @ ORNL

3.3 kV rated Inductor for DC-DC Converter built @ ORNL

Evaluation of Power Devices : Static Characterization in GRID-C @ORNL

Static Characterization Test Setup in GRID-C @ ORNL

Transfer Characteristics : 3.3 kV rated SiC MOSFET

Evaluation of Power Devices : Dynamic Characterization in GRID-C @ORNL

Dynamic Characterization Test Setup in GRID-C @ ORNL

Switching Characteristics : 3.3 kV rated SiC MOSFET, 30 A @ 1300 V

☆ 1300 V, 30A, 156 uJ (Eoff), 908 uJ (Eon) 🛆 1300 V, 40A, 221 uJ (Eoff), 1244 uJ (Eon) 🔿 1300 V, 50A, 312 uJ (Eoff), 1686 uJ (Eon) ☆ 1000 V, 30A, 121 uJ (Eoff), 619 uJ (Eon) ∧ 1000 V, 40A, 168 uJ (Eoff), 842 uJ (Eon) 1000 V, 50A, 254 uJ (Eoff), 1155 uJ (Eon) • 500 V, 50A, 187 uJ (Eoff), 311 uJ (Eon)

Development and evaluation of 10 kV SiC H-bridge integrated module and power stage

Design for the 10kV integration with scalability for power to support testing at 3.3kV transition from power modules and magnetics

HIL Validation of Multi-Port HUB

Block Diagram for multi-timestep single node CHIL for M3PE-HUB

- The CHIL system will be developed to host both the M3PE-HUB model and the interconnected feeder model on a digital real-time simulator (DRTS) platform
- Multi-timestep implementation, to capture the dynamics and steady-state operation accurately
- Assessment of single transactive node for grid services such as: harmonic distorsion management, un-balance management, voltage support, etc., based on location of the M3PE-HUB on the feeder

Back-to-back Configured MV-Energy Hub: Model Development

Controls and Optimization Integration

Operating Modes of the HUB- Controller

Controller validation using CHIL Setup – Voltage Regulation

- Input from DRTS scaled rms grid voltage •
- Voltage varied at constant frequency •
- P and Q setpoints governed by implemented VV and VW functions •
- Voltage variation was within normal operation range of ride-through settings

	1	
r		
	1	
1 2 5		
1.40		

Controller validation using CHIL Setup – Frequency Regulation

- Input from DRTS scaled grid frequency •
- Frequency varied at constant voltage •
- P setpoints governed by implemented FW function •
- Frequency variation was within normal operation range of ride-through settings ٠
- Functions will be used for Hub use-case assessments •

Innovation Update

Milestone Update

Milestone Description	Scheduled Due Date	% Completion	Completion Date
Year 1			
Design the smart interface and the agent-based software for the low voltage vendor hardware	1/15/2021	100%	1/10/2021
Duplicate, Test, and Integrate SuNLaMP Multi-Port PE Hardware and Controls [Go/No-Go]	1/15/2021	100%	10/30/2021
Development of the controller firmware and hardware	1/15/2021	100%	1/10/2021
Complete the simulation transactive control algorithms with multiple M3PE- HUB	1/15/2021	100%	1/10/2021
Year 2			
Complete the integration of LV multi-port HUB and demonstrate functionality [Go/No-Go]	2/15/2022	90%	
Complete the design and build of the evaluation of 3.3 kV H-bridge based power stage	2/15/2022	50%	
Validate and test the proposed control strategies for energy hubs	2/15/2022	80 %	
Development and testing of CHIL for the single M3PE-HUB in a real-time feeder model	2/15/2022	80%	

Innovation Update

Risks

- □ Anticipated delays in 3.3 kV H-bridge power stage
- Anticipated delays in the integration of prototypes from partners due to supply chain issues.

Future Work

- Complete the integration of prototypes for final LV-HUB demonstrations.
- Develop and evaluate the 10 kV dc-dc prototype in collaboration with the partners
- Complete the CHIL implementation of the medium voltage HUB and show the impact of the HUB concept with use cases.

Impact/Commercialization

Invention Disclosures Filed:

• M. Starke, B. Xiao, M. Chinthavali "A Low Voltage DC Power Electronic Hub to Support Buildings," IEEE International Conference on DC Microgrids (IDCM), July 2021

THANK YOU

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY

Insert any acronyms used and the associated definition here XXXX