

DOE Office of Electricity TRAC Peer Review

SSPS 1.0: Hardware Development

Smart Universal Power Electronics Regulators (SUPERs) & Intelligent Power Stages (IPSs) for SSPS 1.0

PRINCIPAL INVESTIGATOR

Dr. Madhu Chinthavali,

Leader – Power Electronics Systems Integration (PESI) Group, Distinguished R&D Staff Professional, ORNL

PROJECT SUMMARY

Demonstration of advanced and standardized power electronics interfaces (SUPER & IPS) for the grid

- □ Universal design for grid interfaces Interfaces that can be tied to assets or loads with changes only to the software layer
- □ Grid interfaces with advanced & intelligent features Autonomous operation, online health monitoring & decision-making capability
- Scalable and interoperable design with standardized interfaces
- □ IPSs with advanced sensing techniques, algorithms capable of estimating the health of at least 2 components

The Numbers

DOE PROGRAM OFFICE: **OE** – Transformer Resilience and **Advanced Components (TRAC)**

FUNDING OPPORTUNITY: AOP

LOCATION: **Knoxville**, **Tennessee**

PROJECT TERM: 07/01/2020 to 09/30/2022

PROJECT STATUS: Ongoing

AWARD AMOUNT (DOE CONTRIBUTION): \$9,000,000

AWARDEE CONTRIBUTION (COST SHARE): **\$0**

PARTNERS: **Consortium of University Partners**

Team - ORNL

ORNL - SUPER architecture, functionalities & advanced algorithms, IPS (developed by ORNL), integration of IPSs from partners

Madhu Chinthavali **Power Electronics System** Architecture

Brian Rowden Hardware design and prototyping

Steven Campbell System Integration & Testing

Jonathan Harter Hardware development

Radha Sree Krishna Moorthy Project Lead & Software framework development

Aswad Adib SUPER and IPS simulation

Rafal Wojda Magnetics Design

Jang Euk **Fiber Optic Interface Development**

University Partners – Library of IPSs

- The Ohio State University, Columbus, Ohio: Dr. Jin Wang
- Virginia Polytechnic Institute and State University (Vtech), Blacksburg, Virginia: Dr. Rolando Burgos
- Florida State University (FSU), Tallahassee, Florida: Dr. Helen Li
- The University of Texas at Austin, Texas: Dr. Alex Huang
- The University of Arkansas (UARK), Fayetteville, Arkansas: Dr. Yue Zhao
- The State University of New York (SUNY) at Stony Brook, New York: Dr. Fang Luo
- The University of North Carolina at Charlotte (UNCC), North Carolina: Dr. Babak Parkhideh

14 Professors/PIs, 6 Postdocs, 26 Students

UNCCHARLOTTE

Innovation: SSPS 1.0 Implementation

- □ SSPS Hubs & Nodes An autonomous grid entity capable of power and information exchange serving as an interface between the grid and end user.
- □ SSPS concept will enable hierarchical control, communication, optimization, protection and intelligence
- Architecture realized by fundamental building blocks – modular, interoperable, scalable, autonomous & intelligent grid tied systems

** "Solid state power substation Technology Roadmap", U. S DOE Office of Electricity, Transformer Resilience and Advanced Components (TRAC) Program, Jun. 2020.

Innovation: SUPER

State of the Art

SUPER

SUPER

System level impact

- Easy integration & reduction in BOS costs
- Improved voltage profile at the point of connection (POC)
- De-rated/continuous operation during failure events
- Allows maintenances to be pre- planned
- Can prevent the loss of the inverter from affecting the overall system
- Increases lifetime
- Data for offline learning algorithms
- Improved protection against cyber threats
- Decouples parasitics and noise loops
- Additional sensing & processor can be utilized for internal health monitoring of IPS

8

Innovation: Fundamental Building Blocks - SUPER

Smart Universal Power Electronics Regulators (SUPERs) – Modular, interoperable entities that are for fundamental blocks of SSPS

Innovation – Fundamental Building Blocks – IPS

Controller: More powerful computation and communication capability to handle data processing to enable diagnostics and prognostics

Auxiliary power supply:

Self-maintained power supply provides safe shut-down during system crash and minimize the Interconnection between SUPER and IPS

Integrated passives:

Ensure safe and reliable performance with the minimum required parameters, so the

Device: Advantage packaging to shrink overall SUPER and IPS form factor

IPS Critical Features Desired by SUPER:

- Interoperable plug-and-play power stage
- Provide sufficient component-level status information to enable accurate SUPER-level diagnostics and prognostics

Sensors: Several sensors can be integrated into gate drivers to improve the overall form factor and mitigate noise interference

Interconnectors between components within IPS: More optical interconnections involved to improve the noise immunity capability, especially at higher switching frequency of utilized WBG devices

Gate driver: Integrated and intelligent gate driver (i2GD) enables integrated sensing (e.g., dc link voltage, device or phase current), active gate driving, and initially enable diagnostics and prognostics features for SUPER

Innovation Update #1: Communication Validation

- Validation of SUPER & IPS control architecture with a high-speed communication link (6.25 Mbps)
- The communication architecture was validated by all partners

CHIL Setup for SUPER validation in Grid-C

Innovation Update #2: Baseline IPS Validation

Components of the baseline IPS including contactors, gate drivers, IPS controller, communication expansion board were tested extensively during integration

open loop configuration

Sync Src: 🖪 Element 6 U6 1000V |6 5A Sync_Src:16

2021/05/24 13:38:21

Innovation Update #3: Overall Architecture Validation

Validation of SUPER & IPS architecture with high-speed communication links, controls, protection and standardized interfaces for grid functions

Innovation Update #2: Overall Architecture Validation

□ Vdc regulation (GI): The SUPER maintained the dc-link at 1-kV & real power P (up to 15 kW), was injected/absorbed using battery test system

□ P/Q Compensation (DCSI): SUPER injected/absorbed P/Q from/to the grid (Tested up to 10 kW & -5 kVAR)

24 JUNE	2021		Peak [Over [U1 U2 U3 U4 U5 UE I1 I2 I3 I4 I5 IE) U7) [7	Update	18771 (50ms)	SP Integ:	Time	-::	202 Nor	1/07/01 12:21:45 CF:3 mal Mode		24 JUN	IE 2021	Peak U Over I	1 U2 U3 U4 U5 U6 1 I2 I3 I4 I5 I6	5 U7 5 17	Update	51288 (50ms)) SP
			_	_	Element 4	Element 5	Element 6	Element 7	ΣA (3P3W)]]_ E 1	lements Options	*			_	_	Element 4	Element 5	Element 6	Ele
Udc	[V]	']			0.99785k	0.252	1.231	0.922	1.076	1	-	11 200mA	Setup	Ude	: [V]			1.00002k	0.091	1.059	+
Urms	[V]	']			0.99811k	479.290	479.140	478.759	478.950	╡┝╹	- L	F 100kHz Sync I		Uri	ns [V]			1.00005k	479.561	479.536	47
Idc	[A	1			-13.681	0.004	9.659	-10.541	-0.441	•	2	FUFF <u>[Sc]</u> Hrm [1	1 Diantau	Ide	: [A]			8.688	-0.003	2.642	
lrms	[A]			14.520	0.000	22.284	21.919	22.102			12 200mA	UISPIAY	Iri	ns [A]			10.425	0.000	10.756	1
Р	[W]			-13.676k	0.000k	-7.590k	-7.217k	-14.807k	1 •	ப	F 100kHz Sync I	2 T	Р	[₩]			8.689k	-0.000k	2.957k	
fU	[H	lz]			Error	60.001	59.998	59.962		1 .	3	F UFF [SC] Hrm []	nange	fU	[Hz]			Error	60.001	60.062	5
Q	[v]	ar]			-4.796k	0.000k	7.510k	-7.618k	-0.108k	11	ľ	13 200mA	-	Q	[var]			-5.762k	0.000k	-4.227k	-
n 2	[%	5]	Error							9	<u> </u>	F 100kHz Sync 🛽		72	[%]	Error					-
 <i>η</i> 3	[%	5]	Error							│ │ ▼	4		UpdateKate Averaging	n 3	[%]	Error					-
T3 ΡΣΑ T6 Udc4		30.00	<						Gr	oup '	- - - - - - - - - - - - - - - - - - -	I4 200mA F 100kHz Sync F 0FF Sc U5 600V I5 200mA F 3kHz Sync F 100Hz Sc Hrm 1	Filten Store Data Save	U5 15 U6 16 U7 17	1.800kV 120.0 Å 1.800kV 120.0 Å 1.800kV 120.0 Å					\sum	
	••••	- - - - - - - - - - - - - - - - -		Node -	1: Vdc I	regulat	ion			· · · · · · · · · · · · · · · · · · ·	ΣA(3P3W) םידר	U6 600V 16 200mA F 3kHz Sync 1 F 0FF Sc Hrm 1 U7 600V 17 200mA	Integration	↓ 17 - 16 15 -	120.0 Å 1.800kV 120.0 Å 1.800kV 120.0 Å		Мс	ode -2:	P/Q Co	ompen	sat
T6 Udc4 T3 PΣA		-1.500 -30.00	kV : k₩	:	~ *	10sec/Div >>	:	÷				F 3kHz Sync I F 0FF ScHrm 1	6 Misc 1	U5 0.000s	1.800kV			<< 20	02 (p-p) >>	-	

Innovation Update #3: Standardized Interconnects & Enclosure

- Modular test cell configuration to show interoperability between IPSs from university partners
- Test cell designed to operate at 1kV, 480 V & 150 kVA and be agnostic to IPS design and non-idealities & support parallel operation. Fiber Optic

91	Farameters	
	POF Diameter (core)	
	Protective Covering Diameter	
	Insertion Loss	< 3d de
	Mating cycles	
	Parameters	AC Terminals
	Rated voltage	600 V ac
	Rated current/contact	150 A
	No. of poles	2
	Contact diameter	8 mm
	Contact resistance	< 150 μΩ
N Contraction	Mating cycles	100,000
	Type of termination	Screw

Innovation Update #4: Standardized SUPER Test Cell

□ Modular test cell configuration to show interoperability between IPSs from university partners

Power Routing

- DC Bus, Intermediate DC Bus, Precharge circuits
- DC Fusing, and DC Main Interconnects
- AC Routing, Filters, to LCL Interface

SUPER Auxiliary Supply Routing

- 480Vac to 24V Supply and Battery backup
- SUPER 15V and 5V Supply
- Wide range DC input to 24V supply
- Interconnect Switch

LCL Interface

- LCL (configurable for 1 or 2 IPS test positions) and Sensors
- AC Bus, Fusing and Grid Interconnect

Shielded Control Cabinet

- Houses the controller & the communication interfaces
- Receives the signals through the standardized signal interfaces from IPS

Engaging & Disengaging Mechanism for the Interconnects

Innovation Update #5: IPS Library & Features

Library of IPSs from university partners to validate **vendor agnostic design** of SUPER

IDC from University Dorthors	Торо		
IPS from University Partners	DC/DC	DC/AC	
Florida state university (FSU)	Interleaved buck boost converter with coupled inductor	3-ph 2-level voltage source inverter (VSI)	Interleaved co Input current r applications
Ohio State University (OSU)	Traditional boost converter	3-ph 2-level VSI with carrier frequency modulation	Capability to in the liquid meta
University of Arkansas (UARK)	Soft-switching CLLC Bidirectional dc/dc converter	3-ph 2-level VSI	Resonant cont transfer at high soft switching
University of New York, Stony Brook (NY-SB)	Interleaved boost converter	3-ph 2-level VSI with redundant half bridge legs & coupled ac inductors	Capitalizes on optimize switc
University of North Carolina, Charlotte (UNCC)	-	4-leg 3-ph 2-level VSI	4-leg configura harmonic filter
University of Texas, Austin (UT-Austin)	DC/DC stage with parallel devices	3-ph 2-level VSI with parallel devices	Parallel device capability
Virginia Polytechnic University (Vtech)	3-level dc/dc converter	3-ph 2-level VSI	3-level configu

*green color text highlights IPS with discrete devices

Features

onfiguration reduces the ipple. Ideal for BES

ntegrate the inductor with al cooling

figurations for power her frequencies and with

P & N cell layout to hing speeds

ation is suitable for ring applications

es for current handling

uration reduces the EMI

Innovation Update #5: IPS Library & Features

IPS Features	University Partner
 1. Interoperability Standardized electrical ports and communication interface Enclosure scalability and standardization Compliance to standards & protocols 	Execution by ORNL with al university partners
 2. Embedded intelligence & decision-making capability with a flexible platform Interoperable/scalable with different embedded controllers Monitors the point of connection continuously Easy transition between control mode required by SUPER Immediate response to IPS internal faults with least impact to the SUPER 	 Framework is developed by ORNL and will be university partners
 3. Embedded online health monitoring system – Diagnostics/Prognostics Embeds temperature sensors in IPS to enhance thermal monitoring for prognostics Monitors the health and degradation status of critical components in IPS Captures/maps faults to their corresponding signatures Robust/retrievable events recording and reporting system 	 In-situ on-state resistance measurement (Vtec In-situ junction temperature measurement (UA In-situ gate leakage current measurement (FS Estimation of passive components (UARK) DC-link capacitance health estimation (NY-SB
 4. Integrated minimum passive, intelligent gate driving, sensing and protection Standardized minimum integrated passives Intelligent and robust gate driving scheme Integrated sensing and protective device 	 Intelligent gate driver (Vtech & FSU) Advanced current sensors (UNCC) Fusion algorithms for sensed signals (OSU) Digital twin for prognostics/diagnostics (NY-SE)
 5. Cyber-physical security Hardware and software mechanisms to secure power electronics systems 	-
 6. Self-contained auxiliary power supply - Draws the required power from IPS itself and power all the contained components 	All universities

S	
communicated with all	
h, UT-Austin & UNCC) RK & UT-Austin) U)	
, UNCC, Vtech & UARK)	
3)	
	18

Milestone Update

Milestone Description (or Go/No-Go Decision Criteria)	Period	Status	Accomplish
1.1.1 - Validation of SUPER design, operation and controls through simulation and establishing the major IPS design requirements.	BP1 – Q1	Completed	Identified the hardware, interface requirements for considering the project of
1.2.1 - CHIL validation of the agent framework, the control modes & protection logic and strategy. 1.2.2 - 3D layout of the SUPER 1.0 with all its subcomponents.	BP1 – Q2	Completed	 The entire agent framew protection & communica CHIL. The passives for SUPEF validated through simula The 3D layout of the SU subcomponents has bee
1.3.1 - Preliminary results from open loop testing of SUPER 1.0	BP1 – Q3	Completed	 Magnetics prototyping a completed. Standardization details f constraints were articula partners. Open loop testing of SU
1.4.1 – Experimental results of autonomous operation of SUPER functioning as G with IPS 1.0.	BP1 – Q4	Completed	Closed loop operation of validated experimentally

ments/Notes

controls, communications, or SUPER & IPS objectives

vork with the control, ation were validated in

R have been designed and ations. IPER with all its <u>en developed.</u> Ind testing has been

for IPS including ated to the university

PER has been completed.

19

SUPER has been with the agent.

Milestone Update

Milestone Description (or Go/No-Go Decision Criteria)	Due	Status	Accomplishr
2.1.1 - Complete the development of testbed for experimentally validating IPS 2.0 and its subcomponents.	BP2 – Q1	Completed	The SUPER test cell dev completed
2.2.1 - Complete the performance evaluation and validation of IPS 2.0 power stage from university partners.	BP2 – Q2	In Progress	
 2.3.1 - Experimental results validating the response of IPS 2.0 for a grid function. 2.3.2 – Demonstration of advanced featured of IPS 2.0. 	BP2 – Q3	Not Started	
 2.4.1 - Demonstration of autonomous operation of SUPER 2.0 functioning as G with IPS 2.0s 2.4.2 - Demonstration of SUPER 2.0 operating as L 2.4.3 - Demonstration of scalability of SUPER 2.0 with two non-identical IPS 2.0s Complete the final report with the summary of the results. 	BP2 – Q4	Not Started	

Risks

□ Anticipated delays in validation of IPS in the SUPER test cell owing to the pandemic

□ Anticipated delays in the integration of IPS from university partners in the SUPER test cell

Future Work

- □ Validate advanced features like online health monitoring in SUPER with IPSs from partners
- □ Validate advanced algorithms in SUPER for grid support
- Demonstrate the grid support capabilities of SUPER

Impact/Commercialization

- Provides a pathway to develop power electronics interfaces with well defined hierarchy in controls, communication, protection, intelligence and optimization for scalability & modularity
- Provides a pathway to develop a library of power converters for SSPS 1.0
- Provides a pathway for interface, communication, protection standardization
- Provided a pathway to develop holistic systems with embed intelligence & advanced features systematically and strategically in fundamental blocks
- Helps emulate the different vendor scenario to access interoperability & standardization

Impact/Commercialization

Invention Disclosures Filed:

- □ M. Chinthavali and R. S. K. Moorthy, "Fundamental Building Block Concept and Architecture to Support Solid State Power Substations at the Consumer End".
- □ M. Chinthavali, M. Starke and R. S. K. Moorthy, "Solid State Power Substation (SSPS) Distribution and Consumer End Grid Infrastructure".

Publications:

□ M. Chinthavali, R. S. K. Moorthy and A. Adib, "Standard Modular Architecture for Consumer End Plug and Play Interfaces", in Proc. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Jun. 2021, Phoenix, AZ, USA.

THANK YOU

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY