DOE Office of Electricity TRAC

Peer Review

PROJECT SUMMARY

Modular Hybrid Solid State Transformer for **Next Generation Flexible and Adaptable** Large Power Transformer

- Develop and demonstrate a modular Hybrid Solid State Transformer (HSST) for next generation Flexible and Adaptable large power transformer (LPT)
- Demonstrate advanced control functions of the H-SST that is currently not available in traditional transformers

PRINCIPAL INVESTIGATORS Alex Qin Huang, Professor, Semiconductor Power Electronics Center The University of Texas at Austin

website https://spec.ece.utexas.**edu**

Project Participants

Project Advisors

The Numbers

DOE PROGRAM OFFICE: OE – Transformer Resilience and Advanced Components (TRAC)

FUNDING OPPORTUNITY: **DE-FOA0001876**

LOCATION: Austin, Texas

PROJECT TERM: 03/18/2019 to 5/31/2022 (With NCE) PROJECT STATUS:

Incomplete, No Cost Extension

AWARD AMOUNT (DOE CONTRIBUTION): \$1,730,000

AWARDEE CONTRIBUTION (COST SHARE): \$433,000

t Extension NTRIBUTION):

Motivation

- Transformers have been a mainstay of power grids for over a century, utilizing large amount of materials (iron/copper etc). Very reliable, efficient and cost effective.
- However, they are passive, offering no controllability such as voltage regulation or power flow control, or protection against harmonics and other grid disturbances
- Integration of renewables is also a challenge
- Large Power Transformers further have several logistical issues – large, heavy and bespoke – requiring large turn around time. Not easily transportable or replaceable

Motivation

- Solid State Transformers (SSTs) have been touted as a respite, offering not only a whole array of controllability, but also smaller in size and weight
- With advent of wide band gap devices, SSTs are approaching LFT efficiencies while offering broad range of control and flexibility
- However, large costs and issues at scaling to higher voltages and powers have resulted in slow adoption of the SST in T&D applications. Adoption in distribution system is expected first

60Hz Transformer Gen- 2 SST: SiC-based (15 kV SiC MOSFET 10 kHz)

Thus presenting

The Hybrid Solid State Transformer

Primary Innovation

The suitable HSST configuration

The MV AC-AC SST

- A single stage Dual Active Bridge based AC-AC SST
- Inherent ZVS operation to keep efficiency high
- High power density due to lack of bulky DC Link capacitors
- Direct MV to LV AC conversion avoids the need for 60Hz transformers or auxiliary windings

The 7.2kV SiC Austin SuperMOS

- UT Austin developed low cost and high performance medium voltage switch serves as a key enabler for medium voltage SST applications
- Integrated gate driver with overcurrent protection and highly isolated power supply
- High blocking voltage with low on-resistance (7.2kV / 60A / 0.18Ω)
 - Future developments (leveraging other funding) underway for even higher voltage and current devices

The High Frequency and High Isolation Transformer

- Designed for 100 kVA/20 KHz operation with a turns ratio of 7:1
- A novel 3D printed bobbin design that offers an impressive 14kV isolation (tested for partial discharge)
- Intricate cooling channels in bobbin help keep thermals at bay

Primary Winding

Secondary Winding

The MV AC-AC SST

The MV AC-AC SST Tested

DABSST Efficiency vs Output Power * Calculated using back-to-back circulation test bed operating in DC-DC mode

HSST efficiency is "LFT efficiency – 0.3%"

The 500kVA HSST developed and assembled

- DABSST coupled with a standard dry type 500kVA 20kV/4kV single phase transformer
- Total system dimensions : 60" x 62" x 94"
- DABSST is very small compared to the LFT

The 500kVA HSST - Voltage Regulation Capability

- HSST demonstrating voltage regulation capability (voltage sag of ~6%)
- this is a lower power operation at 14kVA @ 0.93pf leading power factor

The 500kVA HSST - High Power Circulation Test

HSST Circulation Test Circuit

- HSST tested at rated voltage and high power through a novel circulation test setup
- Power flow controlled remotely through optical communication interface (video demonstration at end)

HF Transformer Current Output Current Input Voltage Output Voltage System PLL

HSST Phasor-Domain Modeling

- Secondary side grid voltage is present ٠
- Secondary side current phasor is set in the control ٠ diagram

- Secondary side load is present (w/ load amplitude and phase angle)
- Secondary side voltage phasor is set in the control diagram

A generic representation with V_2 , I_2 , and θ_2 is used for both operation modes

HSST Dynamic Modeling w/ Model Predictive Control (MPC)

- A model predictive control developed for the HSST is also developed
- MPC model tasked for two modes of control Voltage mode control for output voltage regulation i.e., distribution applications, and Current mode control for Output power control i.e., transmission applications

HSST Dynamic Modeling w/ Model Predictive Control (MPC) – Simulation Results

-20 5000 -500 20 $\begin{pmatrix} 0 \\ 0 \\ 0 \\ -200 \end{pmatrix}$ 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 *t* (s) 200-500r -500 $(V) = \frac{1}{200}$ 0.85 0.86 0.87 0.88 *t* (s)

200-

HSST – Online/Offline Monitoring and Fault Detection

- A comprehensive fault monitoring system has been envisioned to monitor the health of the high frequency transformer.
- Algorithm computes real time impedance of the transformer to detect any anomalies.

HSST – Online/Offline Monitoring and Fault Detection

•	Algorith	m has	been	tested	wit
	(having	altered	d the	HFT	imp
	hardware)				

Proposed method has been proven to identify the system deformation and internal faults measurement bias and noise.

	L _{LX} (uH)	Z _{sc} [%]
Healthy unit (case A0)	960	0
Case B0	960+20	2.1
Case C0	960+95	9.9

th actual test conditions pedances in the actual

considering the

HSST – Proactive Protection Tool

- A. Input voltage and current sensing based fast protection switch (optional)
- SST input/output voltage sensing based reference reset (very fast) Β.
- Output voltage and current sensing-based bypass switch (the faster as better)

- A proactive protection tool has been envisioned to form a comprehensive protection concept for the HSST unit against grid faults and disturbances
- Several fault scenarios have been studied i.e.,
 - single module faults
 - multiple module faults
- Simulation results have demonstrated ability the protection system to safely contain the issues and prevent SST damage.

inter phase faults under both wye and delta configuration

Acronyms

HSST – Hybrid Solid State Transformer

- *SST Solid State Transformer*
- DAB Dual Active Bridge
- HF High Frequency
- LPT Large Power Transformer
- MPC- Model Predictive Control
- ZVS Zero Voltage Switching
- *MV Medium Voltage*
- LV Low Voltage

THANK YOU

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY