

DOE Office of Electricity TRAC Peer Review

PROJECT SUMMARY

MASTERRI

Merging power flow simulations, probabilistic risk assessment, and resilience metrics

PRINCIPAL INVESTIGATORS Dr. Bjorn Vaagensmith, Power Systems Researcher, INL Shawn West, Senior Power Systems Researcher, INL

WEBSITE www.INL.gov

The Numbers

DOE PROGRAM OFFICE: **OE** – Transformer Resilience and **Advanced Components (TRAC)**

FUNDING OPPORTUNITY: XXX

LOCATION: Idaho Falls, Idaho

PROJECT TERM: 01/20/2020 to 09/30/2021

PROJECT STATUS: Completed

AWARD AMOUNT (DOE CONTRIBUTION): \$390,000

AWARDEE CONTRIBUTION (COST SHARE): **INL - \$0**

Duke Energy Collaboration Partners: **Engineering Analysis In Kind**

Primary Innovation

- Combining power flow simulations with probabilistic risk assessment
 - quantify event severity and likelihood of occurrence

Impact/Commercialization

Impact

- Identified issues on the power grid and their likelihood of occurrence
 - Results validated by utility power engineers lacksquare
- Aids engineers in deciding what system upgrades are most impactful or the best reconfiguration to avoid negative consequences
- Aids engineers in communicating to non-engineering management

IP STATUS/Commercialization Patent App. PCT/US19/4253

6

Innovation Update

- Adaptive capacity resilience metrics did not provide clear actionable results
 - Grouped components by bus resulted in little to no changes in adaptive capacity
 - New grouping mechanisms or new metrics are needed
- A technology commercialization funding project was awarded to improve the interface between the different analysis tools used in MASTERRI.
- Working with cyber capital partners to help with customer discovery

Component likelihood of violation contribution

Name	F-V Point	% of Top	Description
	EST.	Event	
Line 1	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 2	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 3	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 5	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 6	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 1000000	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 1.5	1.27E-01	61.65%	##.## MILE 230 KV LINE
Line 4	1.27E-01	61.65%	##.## MILE 230 KV LINE
Line 23	9.08E-02	44.08%	##.## MILE 230 KV LINE
Line 25	9.08E-02	44.08%	##.## MILE 230 KV LINE
Line 26	8.08E-02	39.22%	AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 27	6.88E-02	33.40%	AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 28	6.88E-02	33.40%	AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 29	4.04E-02	19.61%	##.## MILE 230 KV LINE
Line 30	4.04E-02	19.61%	##.## MILE 230 KV LINE
Line 31	1.36E-02	6.60%	8.44 MILE 230 KV LINE
Line 32	1.36E-02	6.60%	8.44 MILE 230 KV LINE
Transformer 1	1.91E-04	0.09%	TRANSFORMER XXXX FAILURE

Component combination violation likelihood

#	Prob/Freq	Total %	Cut Set	
Total	XXXXXXX	100	Displaying ###### Cut Sets.	
1	1.06E-07	0.76	Line 56, Line 42	
2	6.38E-08	0.46	Line 32, Line 52	
3	6.38E-08	0.46	Line 45, Line 41	
4	5.56E-08	0.4	Line 6, Line 2	
5	5.38E-08	0.38	Line 5, Line 4	
6	5.38E-08	0.38	Line 5, Line 42	
7	5.38E-08	0.38	Line 6, Line 4	
8	5.38E-08	0.38	Line 6, Line 42	
9	5.38E-08	0.38	Line 156, Line 242	
10	5.38E-08	0.38	Line 56, Line 422	
11	5.38E-08	0.38	Line 566, Line 42	
12	5.38E-08	0.38	Line 546, Line 442	
13	5.38E-08	0.38	Line 563, transformer 42	
14	5.38E-08	0.38	Line 526, Line 2	
15	5.38E-08	0.38	Line 56, Line 3	

Ranks component combination failures in terms of likelihood that are most likely to result in a system violation

Probability of occurrences contingency ranking

TABLE INFORMATION: MASTERRI can rank

- Contingency scenarios
 - Under different grid configurations
- Contingency scenario pairs

10

Summery

MASTERRI provides the likelihood and impact of power grid violations

- <u>Components</u> most likely to contribute to a system violations
- Component <u>combinations</u> most likely to contribute to a system violation
- <u>Contingencies</u> most likely to contribute to a system violation

Future work

- Advance data visualization methods
- Frequency consequence curves
- Reevaluate resilience metrics
- Dynamic analysis

MASTERRI:

 Modeling And Simulation for Targeted Reliability and Resilience Improvement

12

THANK YOU

Acknowledgment to DOE-OE-TRAC program for supporting this work

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY