

DOE Office of Electricity TRAC

Peer Review

PROJECT SUMMARY

Demonstration of Advanced Monitoring and Data Analytics of Power Transmission Lines

ORNL, LineVision, and Xcel Energy outfitted 3 transmission lines with advanced non-contact sensors (EMF and LiDAR) to monitor for 12 months and collect data from conductors to determine power market efficiencies gained from Dynamic Line Ratings (DLR) as well as planning efficiencies achieved from novel conductor health assessments.

PRINCIPAL INVESTIGATORS

Dr. Zhi Li, R&D Staff Member, Oak Ridge National Lab Jonathan Marmillo, VP Product, LineVision Inc. Kristine Engel, Applications Engineer, LineVision Inc.

WEBSITE

www.ornl.gov

www.linevisioninc.com

The Numbers

DOE PROGRAM OFFICE:

OE – Transformer Resilience and Advanced Components (TRAC)

FUNDING OPPORTUNITY:

AOP

LOCATIONS:

Minnesota, Wisconsin, Colorado

PROJECT TERM:

01/01/2021 to 06/30/2022

PROJECT STATUS:

Incomplete, Ongoing

AWARD AMOUNT (DOE CONTRIBUTION):

\$500,000

AWARDEE CONTRIBUTION (COST SHARE):

\$350,000 LineVision Subcontract

Executive Summary

- ORNL, Xcel Energy, and LineVision have been engaged in a project to demonstrate Dynamic Line Ratings (DLR) and Conductor Asset Health assessments with non-contact sensor technology.
- Sensors were installed on lines in MN, WI, and CO.
- Average DLR exceeded static reference ratings by 9-33% in winter months and 26-36% in summer months at the monitored sites; Available on monitored lines over 85% of the time.
- The impact to Xcel Energy, and utilities in general, is more transmission capacity
 available today to integrate renewable energy via a cost-effective technology.

 Utilizing DLR will provide a significant increase in capacity and greater flexibility in
 operations,
- Ongoing analysis to evaluate the impacts of Dynamic Line Rating with power flow simulations on Xcel lines in MISO.
- Conductor Asset Health reports show that monitored conductors have not experienced significant annealing and not lost tensile strength, but identified sag discrepancies warranting investigation.

Innovation Update

Non-Contact LiDAR & EMF Sensor Technologies

Patented Technology:

- > Electromagnetic Field (EMF)Power Flow Monitoring
- LiDAR Conductor PositionMonitoring

Scanning LiDAR:

- > Continuously measures conductor position
- > Full catenary shape determined and conductor sag & blowout calculated

Simplified Installations

- > No outages
- > No live-line work

Industry Best Accuracy & Analytics

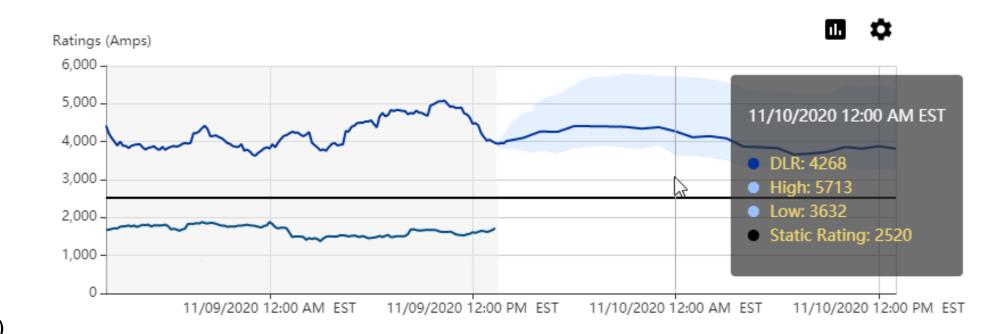
- > Data on all conductor phases
- > Any tower, any voltage, any conductor
- > IEEE & CIGRE standards based

LineAware

Real-time field verified information and alerts on conductor motion allows operators and risk managers to protect asset health, system reliability and public safety.

Output:

- > Each phase conductor sag
- > Each phase conductor blowout
- > Line loading, current
- > Icing & galloping alerts
- > Anomalous motion alerts
- > Local ambient weather conditions



LineRate

Increases the transfer capacity on existing transmission lines with Dynamic Line Ratings.

Output:

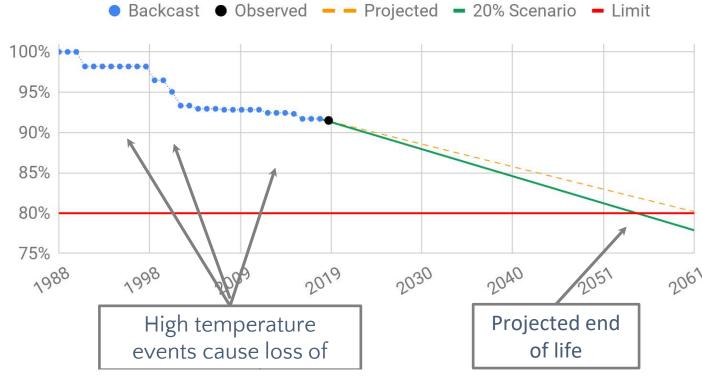
- > Dynamic Line Rating
- > Conductor temperature
- > Forecasted line ratings, time-configurable
- > Emergency ratings (STE, LTE, Load-Dump)

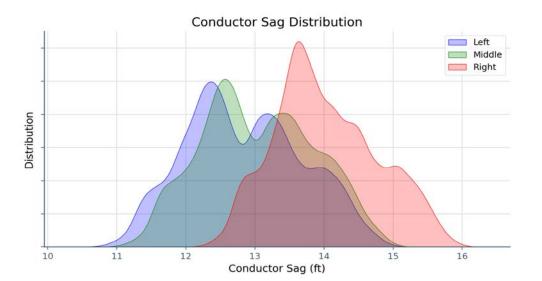
FERC Order No. 881 Requires:

- > Transmission providers implement ambient adjusted ratings on the transmission lines over which they provide transmission service that are impacted by air temperatures.
- > RTOs and ISOs are required to implement the systems and procedures necessary to allow electronically updated transmission line ratings least hourly.
- > FERC will continue to explore the implementation of Dynamic Line Ratings in a new docket AD22-5-000.

LineHealth

Create a conductor digital twin and prioritize the repair and replacement of lines that are most critical based on the module's estimation of remaining conductor life.


Inputs:


- > Historical SCADA
- > Historical weather data
- > Engineering design information
- > LineVision sensor measurements

Output:

- > Thermal aging analysis and loss of tensile strength from annealing
- > Projected conductor end of life
- > Conductor elongation damage evaluation: designed vs actual sag
- > Operating limit recharacterization
- > Rated breaking strength evaluation
- > Sag discrepancies
- > Galloping & icing event analysis

Dynamic Line Ratings - MN & WI

DLR to Static Line Rating Comparison

<u>Line</u>	Winter Static Rating	Average Winter Dynamic Rating	<u>% Increase</u>	Summer Static Rating	Average Summer Dynamic Rating	<u>% Increase</u>	
0817/3303 RPO-GMT	1460	1594	9.2%	1076	1451	34.8%	
3101 ASK-ECL*	2000	3661	83.0% *	1994	3358	68.4% *	

^{*} Line 3101 ASK-ECL is clearance-limited by other spans along the line which are not monitored by LineVision.

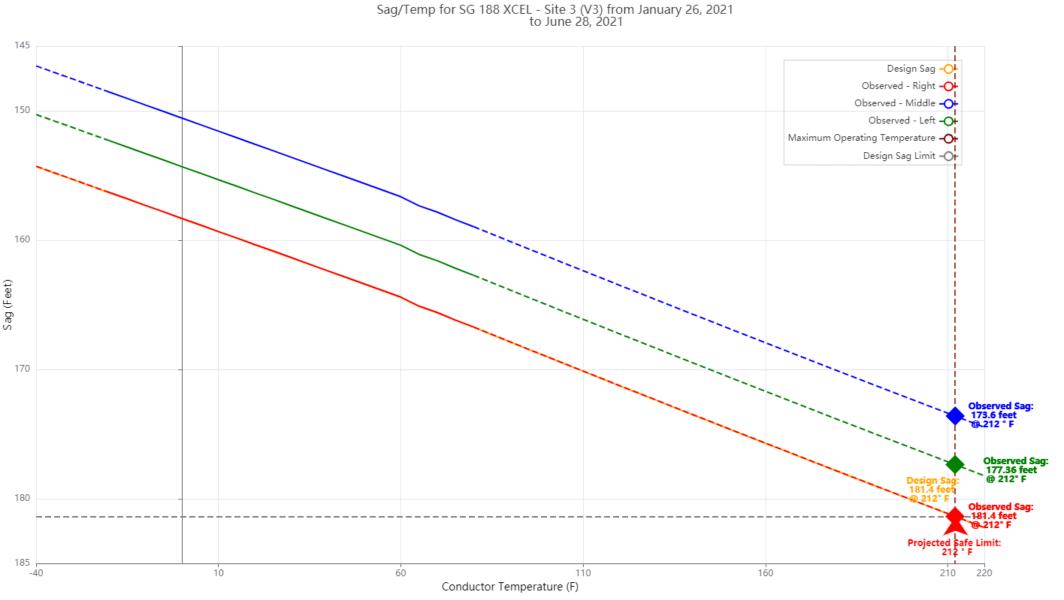
Dynamic Line Ratings - CO

DLR-Static Rating Comparison

<u>Line</u>	Winter Static Rating	Average Winter Dynamic Rating	<u>% Increase</u>	Summer Static Rating	Average Summer Dynamic Rating	% Increase
7109 DANI-MSST	3257	4081	25.3%	2868	3715	29.5%
5115 DANI-SRDG	2086	2562	22.8%	1849	2338	26.4%
5113 DANI-MSST	2112	2798	32.5%	1860	2536	36.3%

Asset Health Comparison - Colorado

	Line 5113			Line	e 5115	Line 7109			
	Site 9b	Site 11b	Site 9b	Site 10	Site 10	Site 11b	Site 8	Site 9a	Site 11a
Maximum Conductor Temperature Calculated	223 F	215 F	111 F	108 F	107 F	109 F	107 F	114 F	114 F
Strength Reduction due to Thermal Annealing	0%	0%	-	0%	0%	-	0%	0%	0%
Sag Increase Observed - Design	0.0 ft (0.0%)	-2.1 ft (- 4.2%)	-0.5 ft (- 0.4%)	0.7 ft (2.0%)	-2.1 ft (- 6.1%)	0.2 ft (0.4%)	0.9 ft (5.5%)	4.8 ft (4.3%)	0.2 ft (0.6%)
Revised Projected Max Operating Temperature	212 F (no change)	212 F (no change)	212 F (no change)	184 F	212 F (no change)	207 F	188 F	142 F	207 F

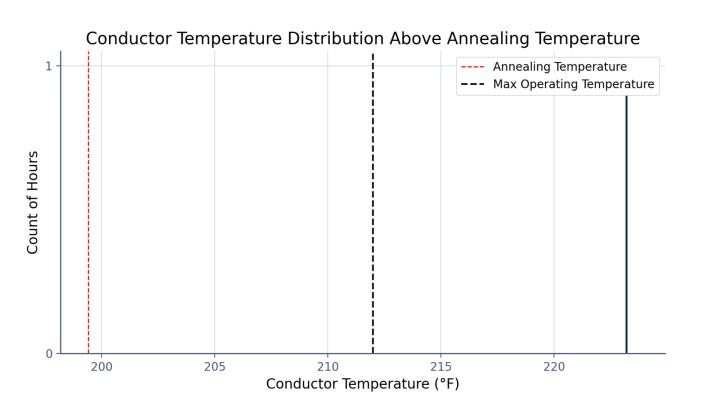

Phase by Phase Sag Discrepancy Observed

Site 3 has a difference in absolute sags


Left Phase -4.0 ft (-2.2%)

Middle Phase -7.8 ft (-4.3%)

Right Phase Oft (0.0%)



Max Sag Exceeds the Designed Value

Elevated Temperature Detected

Line 5113 conductor temperature has likely exceeded annealing

Annealing Temp 200 F (93 C) Max Calculated Conductor Temp 223 F (106 C)

50

DLR and Xcel's Carbon Commitment

Xcel will take a multi-pronged approach to achieving its carbon commitments. Increased transmission capacity in the form of new transmission lines and optimization of existing lines will allow for increased renewable generation and dynamic use of existing assets.

- A National Renewable Energy Laboratory study found that to reach 80% renewable electricity in the United States, a 56%–105% increase in long-distance transmission capacity would be required[1]. Grid enhancing technologies can double the capacity on existing power lines right now.[2] New transmission is needed, but DLR can be strategically leveraged and make immediate impacts.
- In areas where moderate or strong winds are common, the use of a DLR monitoring system can increase the achieved power flow capacity of overhead conductors by 5-25% when compared to an SLR for 80-90% of the time (results vary across different lines and geographic regions)[3].

Acronyms

DLR = Dynamic Line Rating

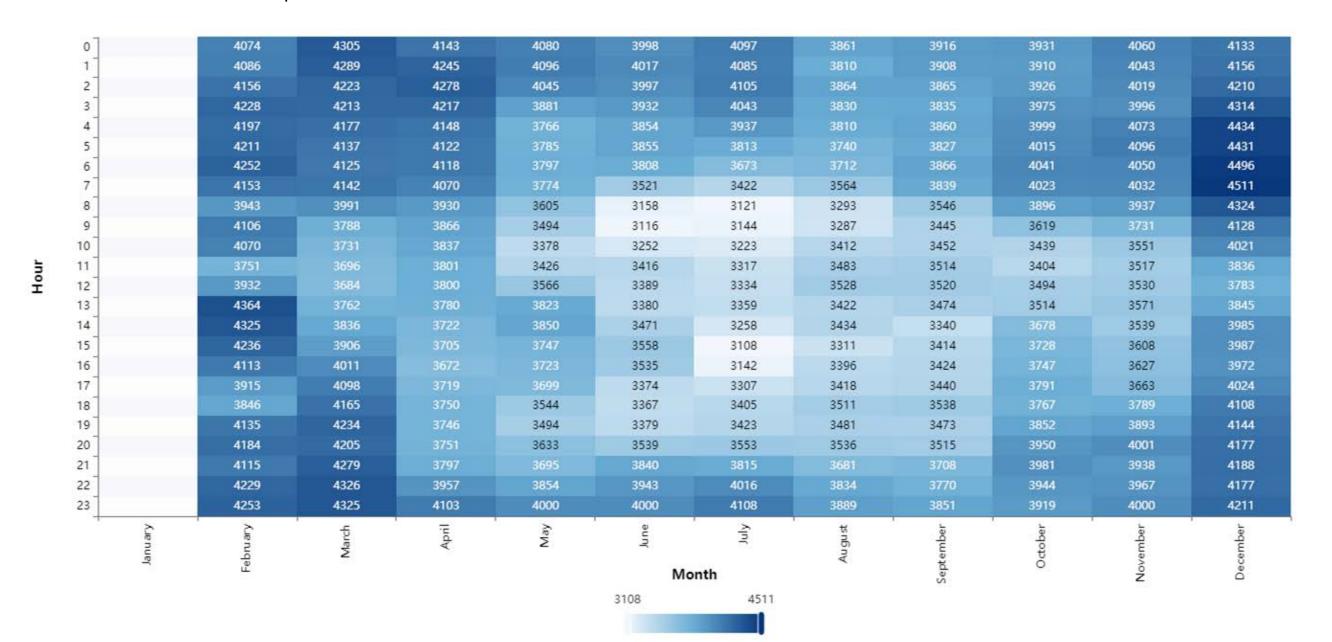
SLR = Static Line Rating

EMF = **Electromagnetic** Field

LiDAR = Light Detection and Ranging

MISO = Midcontinent Independent System Operator

THANK YOU


Field Data - Minnesota & Wisconsin

Line O817/33O3 RPO-RRK - DLR Heatmap

7	£				Mc	onth 1721		Sept	O	Š	Dec
January	February	March	April	May	June	ylut	August	September	October	November	December
1647	1619	1586	1531	1531	1449	1347	1356	1450	1477	1512	1544
1654	1606	1605	1521	1509	1436	1343	1342	1451	1457	1501	1542
1712	1566	1630	1530	1502	1424	1340	1334	1436	1431	1478	1571
1721	1528	1638	1522	1503	1388	1336	1278	1410	1421	1464	1567
1679	1529	1631	1492	1478	1331	1331	1298	1404	1407	1475	1573
1653	1536	1597	1481	1503	1348	1342	1340	1394	1401	1464	1521
1634	1543	1583	1519	1551	1389	1366	1389	1351	1400	1485	1485
1593	1507	1554	1561	1568	1389	1358	1354	1365	1413	1528	1476
1541	1518	1556	1554	1593	1395	1352	1334	1373	1402	1535	1449
1539	1556	1577	1540	1592	1388	1317	1322	1364	1399	1539	1457
1583	1568	1559	1564	1589	1365	1284	1303	1350	1384	1516	1514
1584	1553	1545	1591	1587	1362	1264	1321	1332	1361	1524	1522
1517	1560	1555	1602	1561	1337	1242	1303	1338	1370	1522	1531
1542	1554	1579	1592	1556	1339	1227	1292	1351	1363	1562	1550
1572	1550	1613	1571	1555	1358	1241	1299	1373	1373	1554	1573
1594	1580	1631	1549	1562	1344	1237	1317	1380	1370	1549	1573
1609	1590	1648	1532	1559	1365	1271	1314	1395	1357	1528	1587
1689 1648	1611 1598	1637 1665	1482 1497	1544 1563	1412 1394	1296 1271	1321	1454 1440	1369 1369	1489 1497	1590 1597
1679	1610	1621	1471	1525	1416	1323	1368	1450	1412	1506	1589
1658	1635	1627	1486	1510	1419	1322	1391	1427	1446	1508	1560
1657	1647	1609	1511	1519	1435	1330	1406	1425	1453	1483	1553
1660	1635	1604	1499	1548	1448	1328	1374	1464	1464	1490	1541
1648	1629	1587	1508	1547	1466	1336	1371	1468	1481	1499	1549

Field Data - Colorado

Line 7109 - DLR Heatmap

Field Data - Minnesota & Wisconsin

		Line 0817/3303								
	Site 1a	Site 1b	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7		
Maximum Conductor Temperature Calculated	166F	162F	164 F	147 F	163 F	164 F	170 F	170 F		
Strength Reduction due to Thermal Annealing	0%	0%	0%	_	0%	0%	0%	0%		
Sag Increase Observed - Design	1.8 ft (2.8%)	-1.1 ft (- 2.5%)	0.2 ft (1.3%)	0.0 ft (0.0%)	-0.4 ft (- 3.4%)	0.9 ft (6.6%)	2.3 ft (1.3%)	-1.6 ft (- 2.4%)		
Revised Projected Max Operating Temperature	149 F	198 F (no change)	185 F (from 198 F)	212 F (no change)	212 F (no change)	159 F	184 F	212 F (no change)		