

Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

Office of Indian Energy Annual Program Review November 2022 Conference

Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation Fort Peck Health and Wellness Center Energy Project Poplar, Montana

Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation

Fort Peck Indian Reservation

- **# NE Montana**
- # 2.1 Million Acres
- # Checkerboard Land Pattern

- # Assiniboine & Sioux
- # 11,000 members
- # 6700 live on Reservation

Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

Fort Peck Health and Wellness Center

- # Multi disciplinary Wellness/Activity
 Center
- # Initiated in 2012 by Health Promotion Disease Prevention Program
- # Established CAT (Construction Advisory Team) in October 2018, intratribal, multidisciplinary

Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation

CAT Team

- # Planning Office 2 Representatives
- **# Tribes' Secretary Accountant**
- # Environmental Office 1 Rep
- #Legal Representation 2 Reps
- # Health Prevention Staff 6 Reps
- #Road Department 1 Rep
- # Minerals 1 Rep

Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

CAT Deliverables

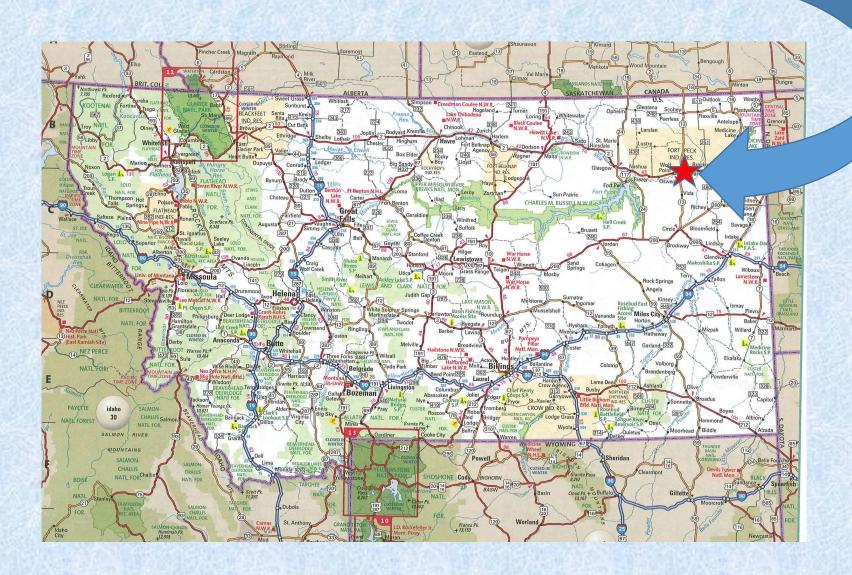
- Secured Civil Engineering services
- Advertised and selected Architectural Firm
- Reviewed funding options
- Established footprint of building
- Determined appropriate amenities
- Supported Green infrastructure options including DOE Grant
- Secures Tribal Executive Board support through information sharing including public outreach

Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

Past Related Activities

"Model Green Tribal Community" – FPT Strategic Plan

- # Ground source heat pumps (GSHP) Adult Correctional Facility & 8 tribal homes
- # Rehab Cultural Center for increased insulation and lighting efficiency
- # GSHP and EE lighting installed on Phase III
 Tribal HQs and new Community Center
- **# Sustainable Village**


Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation

Location

Poplar, Montana

Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation

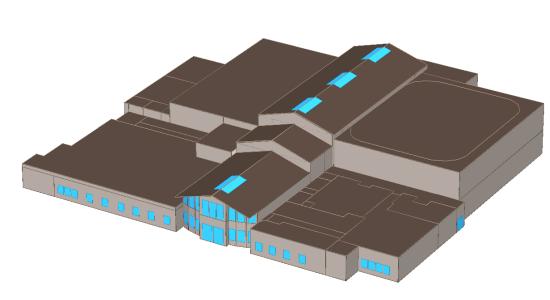
Project Objectives:

- Objective 1: Install 72-78 kW of roof mounted solar Photo Voltaic System by the end of the 21st month
- Objective 2: Reduce utility bills by approximately 23% per year through installing 8 Building Energy Efficiency Measures (EEM's) by the end of the 21st month

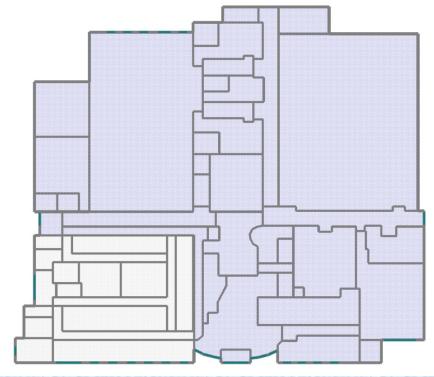
Baseline Assumptions, IECC 2012 compliant building:

- Electric Usage: Approximately 900,000 kWh per year
- Natural Gas Usage: 65,262 therms per year (based on package VAV system)
- Total expected utility cost \$108,690.00 per year

Energy Saving Expectations:


- Solar PV Arrays operating cost savings \$5,991.00
- 8 accepted building envelope, lighting, & VAV HVAC EEM's \$25,570.00 per year
- Total expected utility cost savings \$31,561.00 per year = 29% annual reduction

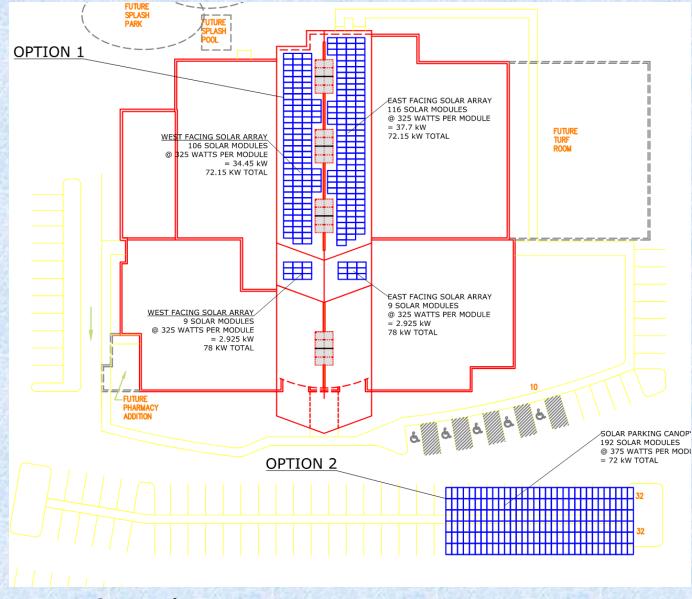
Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation



A detailed energy Simulation model was developed using eQuest (DOE 2.2) software.

Energy Savings:

- EEM's 15 options considered and modeled
- EEM's 8 options selected based on payback time frames

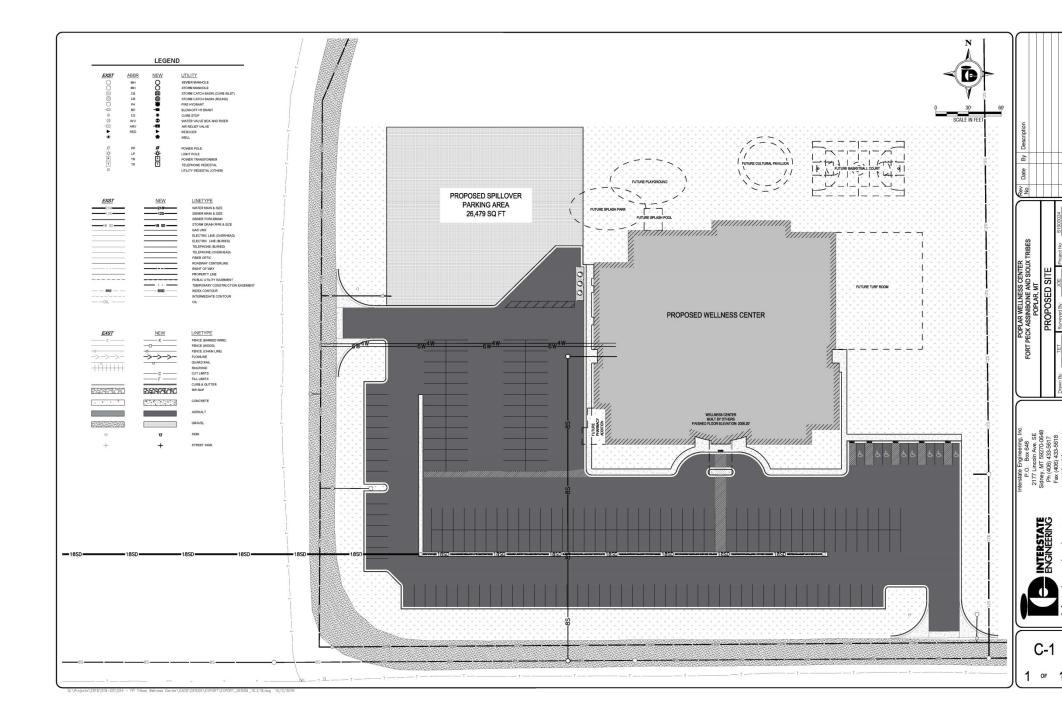

		Fort Dock Wallness Conta	•									
		Fort Peck Wellness Cente EEM List and Energy Cost Savings										
Item	Energy Efficiency Measure	Details	Energy Cost Savings per ye		Payback (Years)	EEM Accepted?	Reasoning for Acceptance or rejection					
	Building Envelope and Lighting Components EEM Analysis											
E2	Improved Wall R value	IECC 2012 Code minimum vs. architectural wall of R-31.6	\$ 1,009.00	\$ 134,555.00	133	No	Poor payback					
E4	Improved Roof R Value	IECC 2012 Code minimum vs. architectural roofof R-41.3	\$ 592.00	\$ 89,970.00	152	No	Poor payback					
E8	Improved Windows	IECC 2012 Code minimum vs. triple glaze, Low E Argon Glass	\$ 362.00	\$ 10,823.00	30	Yes	Longer Payback, but helps meet comfort of occupants					
E11	Improved Skylights	IECC 2012 baseline vs. High Performance U=0.16, SHG - 0.06	\$ 475.00	\$ 11,896.00	25	Yes	Fair Payback					
L1	Provide High Efficiency Lighting (LED) and controls	IECC 2012 minimum vs. 0.6w/sf overall goal	\$ 9,681.00	\$ 53,466.00	6	Yes	Excellent payback					
C1	Evaluate standard efficiency Geothermal Heat Pump vs standard VAV	Use standard efficiency comparison	\$ 1,353.00	\$ 100,000.00	74	No	Poor Payback					
CI	Staridard V/V	VAV System EEM Analysis		7 7 100,000.00	, , , ,	INO	1 ooi i ayback					
		The system 22m manyon										
VM1	Utilize High Efficiency DX AHU	Versus Chilled Water AHU	\$ 681.00	\$ -	-	Yes	Instant Payback					
VM2	Provide High Efficiency Chiller (if VAV)	Provide High Efficiency chiller vs. code minimum	\$ 1,726.00	\$ 54,000.00	31	No	Poor payback					
VM3	Provide High Efficiency Boiler (if VAV)	Use Condensing boiler vs. code minimum boiler	\$ 6,888.00	\$ 114,408.00	17	Yes	Fair Payback, Helps meet 27% efficiency Goal					
VM4	Provide Energy Recovery on AHU's	Provide heat wheel energy recovery between relief and fresh air	\$ 3,155.00	\$ 88,500.00	28	No	Will consume significant floor space in addition to moderate payback					
S1	Provide Transpired Solar Collector	Minimum outside air through "solar wall" type transpired solar collector	\$ 243.00	\$ 10,200.00	42	No	Poor payback					
		Pool Systems EEM Analysi	S									
VM5	Provide Pool HVAC Dehumidification Unit with heat recovery for pool heating	Use heat recovery on the Pool Dehumidification unit for pool heating. Cost includes HVAC unit upgrade and necessary piping and valves to pipe pool water to the heat recovery HX	\$ 5,838.00	\$ 10,000.00	2	Yes	Excellent payback					
P1	Use High Efficiency Condensing Boiler for pool heating	Provide condensing boiler vs. 80% boiler for pool heating	\$ 759.00	\$ 16,310.00	21	Yes	Fair Payback, Helps meet 24% efficiency Goal					
P2	Use Geothermal HP for pool heating vs. standard 80% boiler		\$ (328.00)	N/A	N/A	No	No payback					
P3	Utilize an Electric Pool cover	Use electrically operated pool cover (Pool Consultant)	\$ 886.00	\$ 24,270.00	27	Yes	Fair Payback, will also reduce dehumidification load					

Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation

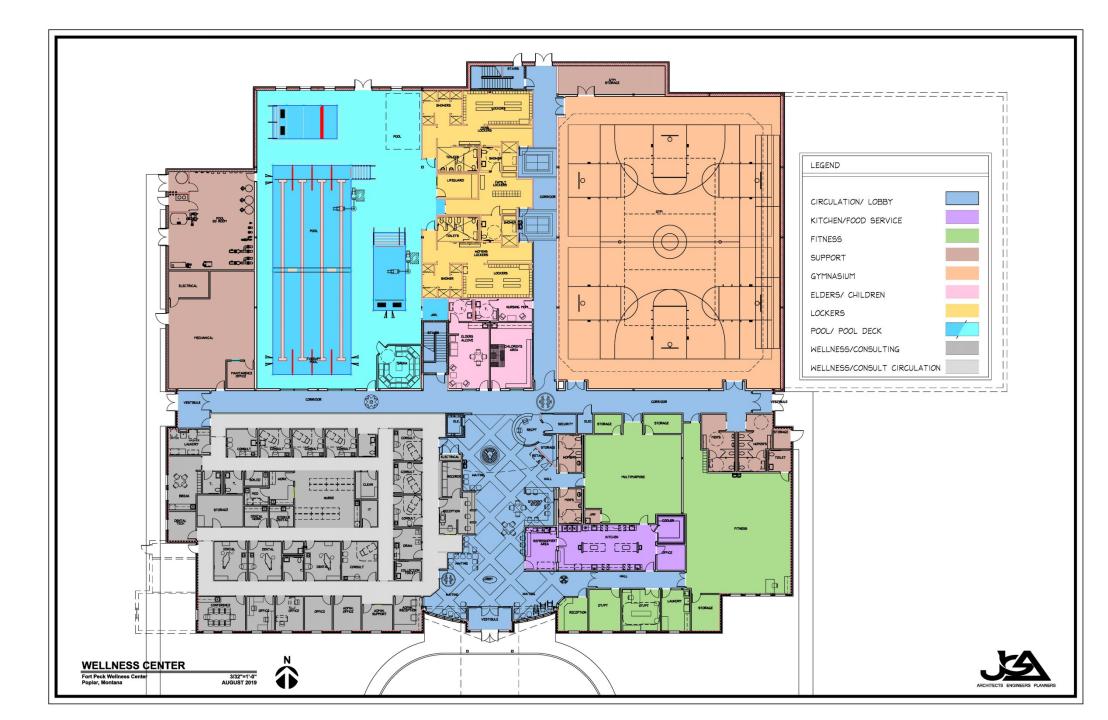
Energy Generation:

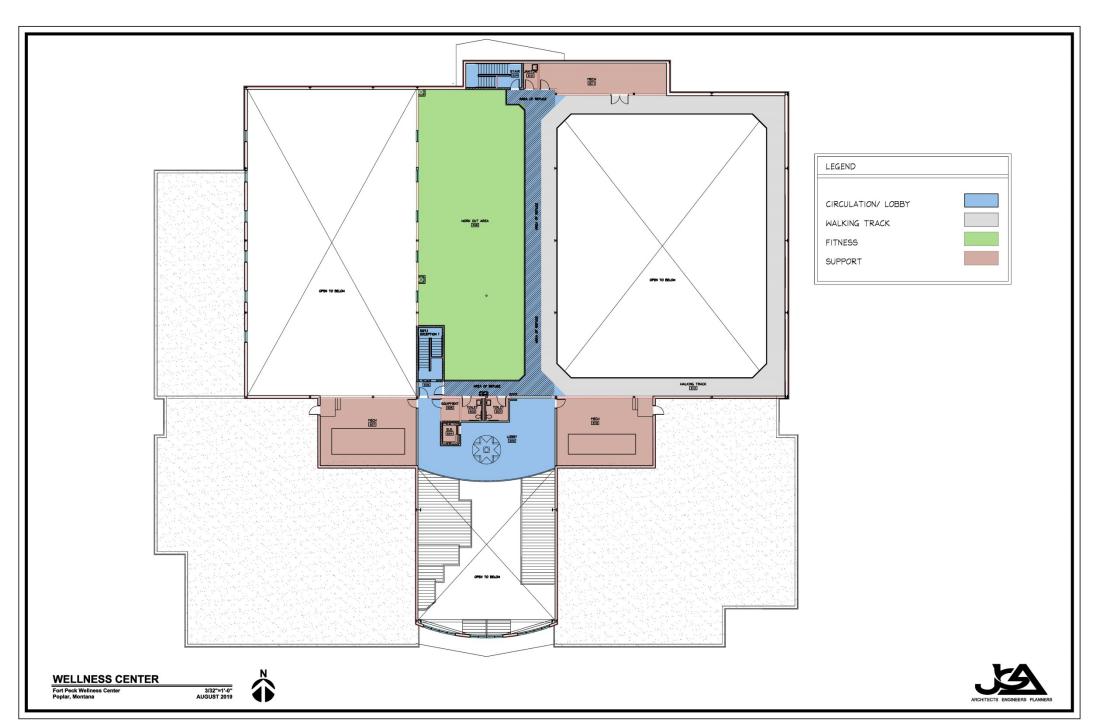
- Solar Photovoltaic Panels Option 1 and 2
- Wind Power Not considered due to recent system failures and significant maintenance issues

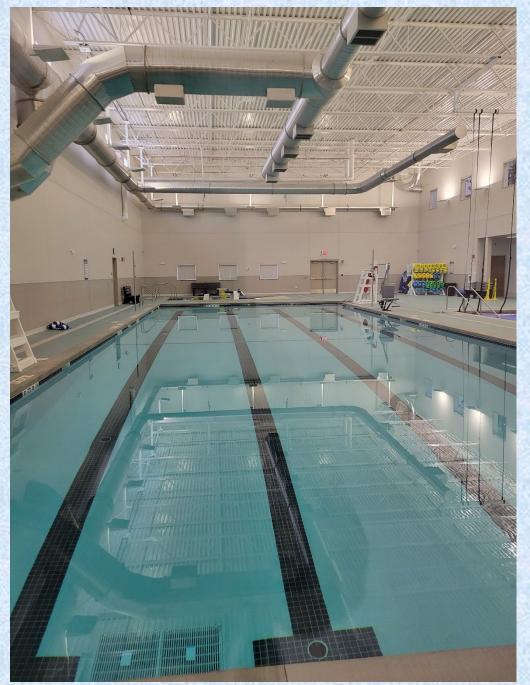
Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation

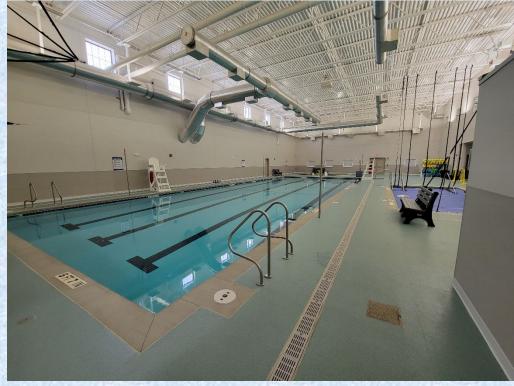

CO2 E	quivalents for EEM Energy Savings								
Including PV Panels									
268.3	Metric Tons of CO2 equivalent								
56.9	Passenger vehicles drive for 1 year								
655,546	Miles Driven by an Average Passenger Vehicle								
30,170	Gallons of Gasoline Consumed								
293,114	Pounds of Coal burned								
621	Barrels of oil consumed								

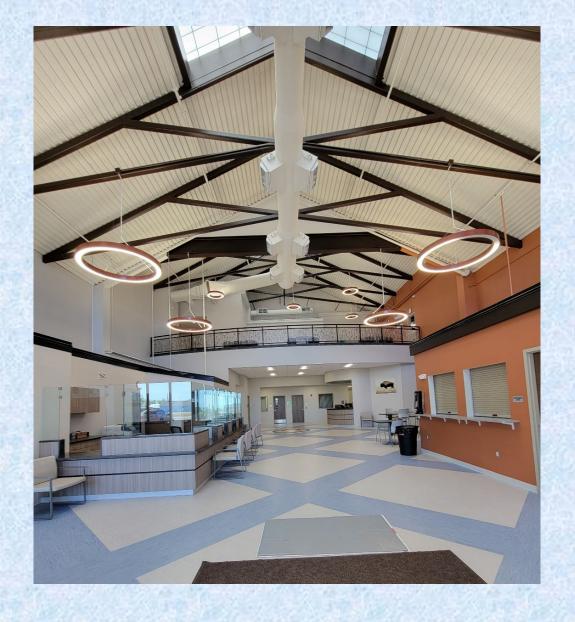
Overall installing the accepted envelope, lighting, PV and VAV HVAC measures would result in energy savings of about \$31,561.00 per Year

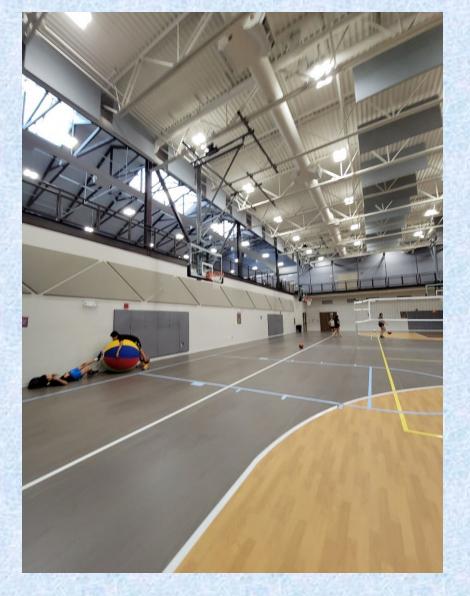


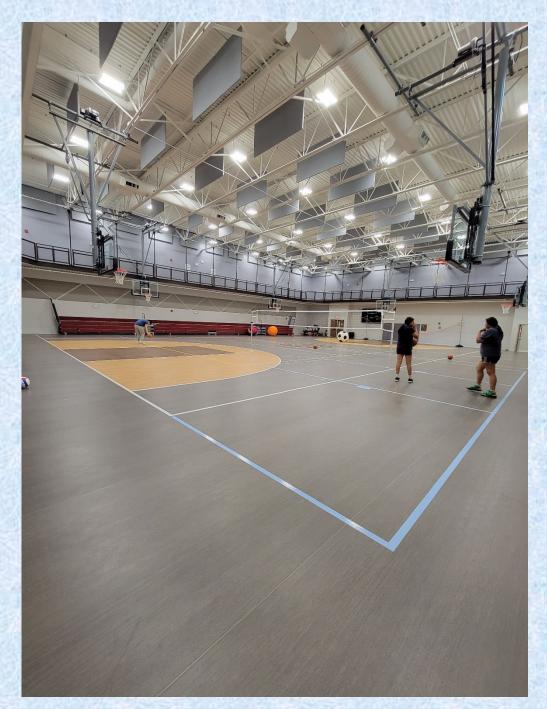


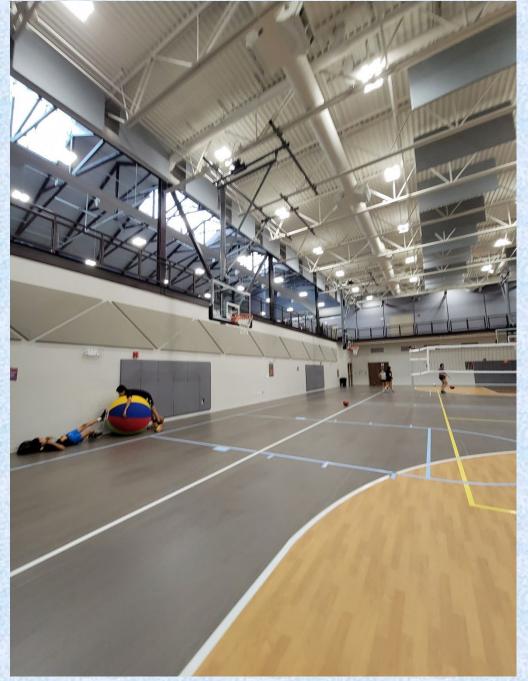


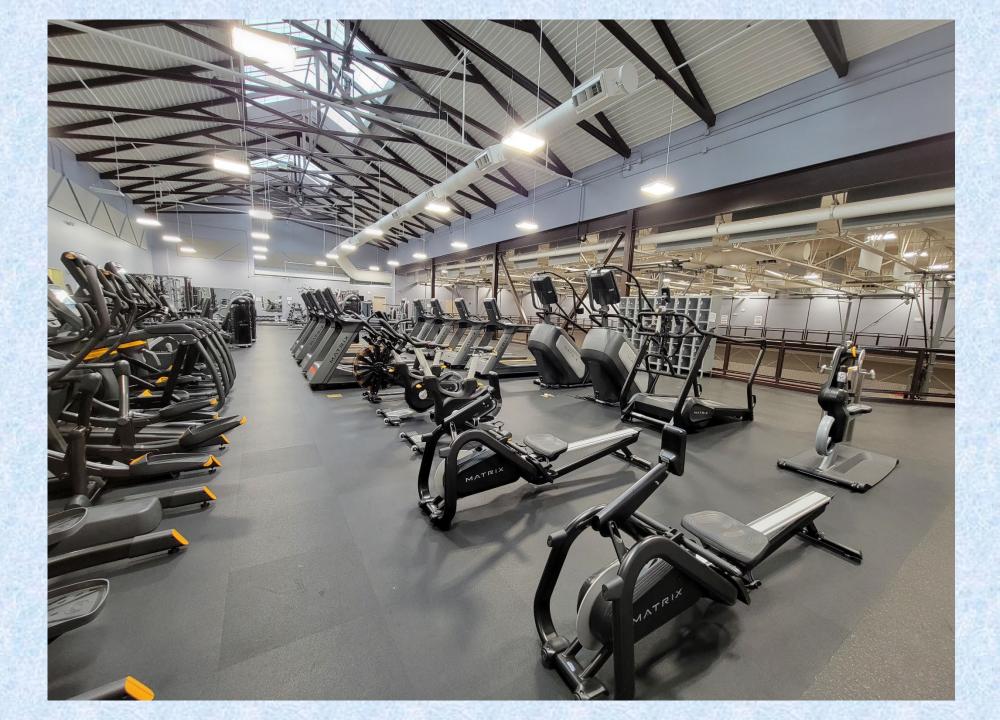












Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

The building has been in operation since March of 2022. As part of the funding scope, the project is required to conduct measurement and verification for the energy efficiency improvements included in the design. The following table summarizes the electricity, gas, and cost savings for each of the energy efficiency measures input into the project design. Overall, the installation of energy measures for the project is projected to reduce annual electricity usage by about 171,498 kWh per year and gas usage by about 23,988 therms per year. Total annual cost savings is expected to be about \$40,139 per year, which is a 28% reduction in operating cost compared to an IECC 2012 baseline design.

Including the solar PV system, total annual electricity savings would be **245,986 kWh per year** and cost savings of **\$45,651 per year**, resulting in a **33%** reduction in operating cost compared to IECC 2012 baseline design.

		Site Energy				Source Energy			Utility Costs				
#	Run Energy Use	Electric	Gas	Total	EUI	Total	EUI	E	Electric		Gas	To	tal Cost
	Rull Energy Use-	(kWh)	(Therm)	MMBtu	(kBtu/ft²)	MMBtu	(kBtu/ft²)		(\$)		(\$)	Ш	(\$)
B-0	IECC 2012 Baseline	743,012	67,083	9,243	177.8	15,004	288.5	\$	81,011	\$	60,374	\$	141,385
E1	R-31.6 Metal Exterior Wall	740,787	65,752	9,103	175.1	14,841	285.4	\$	80,734	\$	59,177	\$	139,911
E2	Design Window GT	739,984	65,519	9,077	174.6	14,807	284.8	\$	80,636	\$	58,967	\$	139,603
L1	Lighting Power Density = 0.68 W/sf	620,525	66,523	8,770	168.6	13,633	262.2	\$	68,069	\$	59,871	\$	127,940
M1	High Efficieny DX AHUs	562,980	63,272	8,248	158.6	12,675	243.8	\$	61,697	\$	56,945	\$	118,642
M2	High Efficiency, Condensing Boilers	572,883	51,394	7,094	136.4	11,534	221.8	\$	62,574	\$	46,255	\$	108,829
P1	High Efficiency Pool Heater	572,883	49,889	6,944	133.5	11,376	218.8	\$	62,574	\$	44,900	\$	107,474
P2	High Efficiency DHW Heater	572,883	48,880	6,843	131.6	11,270	216.7	\$	62,574	\$	43,992	\$	106,566
P3	Dehumidification Heat Recovery for Pool Heating	571,514	43,095	6,260	120.4	10,648	204.8	\$	62,461	\$	38,785	\$	101,246
R1	Solar PV System Generation	497,026	43,095	6,005	115.5	9,850	189.4	\$	56,949	\$	38,785	\$	95,734
ncre	mental Savings relative to Previous Measure	savings	per EC	M									
E1	R-31.6 Metal Exterior Wall	2,225	1,331	141	2.7	164	3.1	\$	277	\$	1,197	\$	1,474
E2	Design Window GT	803	233	26	0.5	33	0.6	\$	98	\$	210	\$	308
L1	Lighting Power Density = 0.68 W/sf	119,459	(1,004)	307	5.9	1,174	22.6	\$	12,567	\$	(904)	\$	11,663
M1	High Efficieny DX AHUs	57,545	3,251	521	10.0	958	18.4	\$	6,372	\$	2,926	\$	9,298
M2	High Efficiency, Condensing Boilers	(9,903)	11,878	1,154	22.2	1,141	21.9	\$	(877)	\$	10,690	\$	9,813
P1	High Efficiency Pool Heater	-	1,505	151	2.9	158	3.0	\$	-	\$	1,355	\$	1,355
P2	High Efficiency DHW Heater	**	1,009	101	1.9	106	2.0	\$	2	\$	908	\$	908
P3	Dehumidification Heat Recovery for Pool Heating	1,369	5,785	583	11.2	622	12.0	\$	113	\$	5,207	\$	5,320
R1	Solar PV System Generation	74,488	2	254	4.9	798	15.3	\$	5,512	\$	72	\$	5,512
Total	Savings relative to Baseline	1-2012											
	Total Savings w/o Solar PV	171,498	23,988	2,984	57.4	4,356	83.8	\$	18,550	\$ 2	21,589	\$	40,139
	Total Percent Savings w/o Solar PV	23%	36%	32%	32%	29%	29%		23%	- 1	36%		28%
	Total Savings w/ Solar PV	245,986	23,988	3,238	62.3	5,154	99.1	\$	24,062	\$ 2	21,589	\$	45,651
	HRAE 90:1-2012 Total Percent Savings w/ Solar PV	33%	37%	36%	36%	35%	35%		30%	- 3	37%		33%
Savir	ngs Comparison to Preliminary Analysis												
	Preliminary Savings w/o Solar PV	177,377	18,951	2,500	48.1	3,890	74.8						25,017
	Actual Savings w/o Solar PV	171,498	23,988	2,984	57.4	4,356	83.8					\$	40,139
	Percent Change from Preliminary Results	-3%	27%	19%	19%	12%	12%						60%

Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

Overall, utility cost savings increased from ~\$25,000 to \$40,000 per year and overall energy savings increased by ~19%. note this is savings, not usage

	;							
		Pre	liminary Saving	S	Actual Savings			
#	Energy Conservation Measure	Electricity	Natural Gas	Cost	Electricity	Natural Gas	Cost	
		(kWh/year)	(therms/year)	(\$/year)	(kWh/year)	(therms/year)	(\$/year)	
E1	R-31.6 Metal Exterior Wall	2,171	1,140	\$841	2,225	1,331	\$1,474	
E2	Design Window GT	690	523	\$362	803	233	\$308	
L1	Lighting Power Density = 0.68 W/sf	169,356	-5,981	\$9,681	119,459	-1,004	\$11,663	
M1	High Efficieny DX AHUs	8,725	0	\$681	57,545	3,251	\$9,298	
M2	High Efficiency, Condensing Boilers	-4,125	12,219	\$6,888	-9,903	11,878	\$9,813	
P1	High Efficiency Pool Heater	0	1,286	\$759	0	1,505	\$1,355	
P2	P2 High Efficiency DHW Heater		Not Modeled		0	1,009	\$908	
P3	Dehumidification Heat Recovery for Pool Heating	560	9,764	\$5,805	1,369	5,785	\$5,320	
	Total Savings	177,377	18,951	\$25,017	171,498	23,988	\$40,139	
	Perce	nt Change f	rom Preliminary	Results	-3.3%	26.6%	60.4%	

Step 1: match operation hours and setpoints to actual

Step 2: Compare to code in Energy Model - identifying savings

Utility rates increased significantly vs. modeled costs.

Clarification: both comparisons are based on comparison between our building and 2012 IECC comparison.

Major M&V Calibration changes:

Building Schedule (6 am-10pm, 7 days) operating schedule is less, resulting less savings (and lower energy costs)

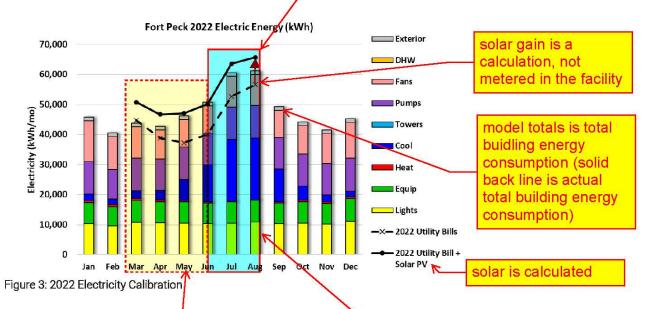
Final Design Changes

Temperature Control Sequence

High Efficiency Water Heater

Power savings is lower. Due to actual pump use, differing schedule.

gas savings increased because: higher efficiency HW heater not originally modeled, High efficiency DX AHU's updated control scheme (better than original modeling) supply air temperature reset (less VAV reheat).

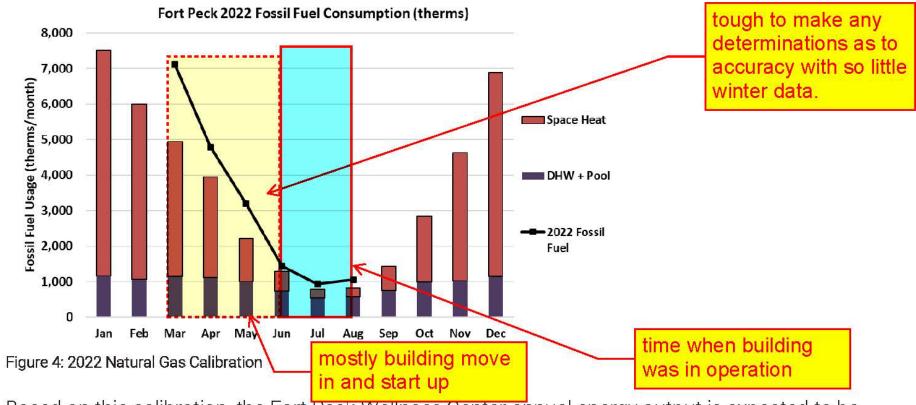

Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

missing 6 mos of utility information, so difficult to fully interpret data.

Given that the building was turned over for full operation in March of 2022, the calibration process is based on only six months utility data, from March 2022 to August 2022. The following graphs show the result of the calibration process for electricity usage. The bar chart represents the output from the energy model. The dotted black line represents electricity utility bill data and the solid black line represents total electricity usage for the building (utility bill data + solar PV generation).

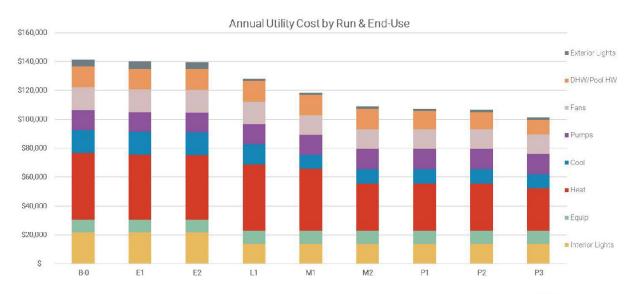
The natural gas calibration is shown in the following graph. As noticed below, the energy model is currently underpredicting natural gas energy usage during the winter months. Further investigation is required to understand the difference in actual natural gas usage and the output from the energy model.

mostly building move in and start up

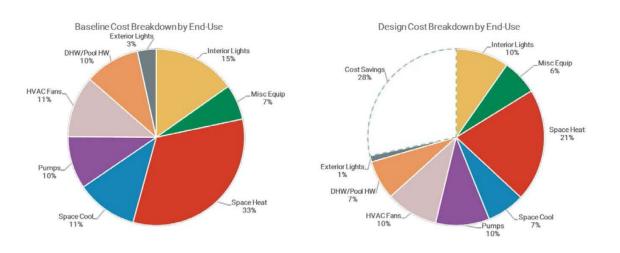

time when building was in operation

Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

Based on this calibration, the Fort Peck Wellness Center annual energy output is expected to be 571,514 kWh per year and 43,095 therms per year, resulting in an EUI of 120.4 kbtu/SF/year. The solar PV system would be expected to output 74,488 kWh per year, offsetting 13% of the total electricity consumption for the building.

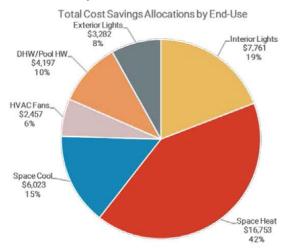


Assiniboine
& Sioux
Tribes of the
Fort Peck
Indian
Reservation

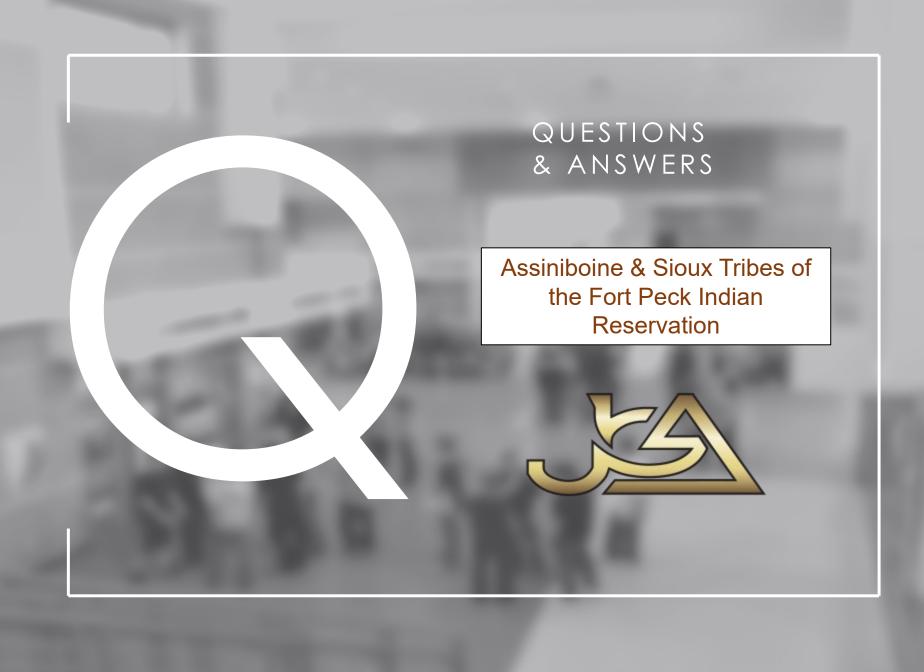


The following graph shows annual utility costs by end-use for each energy measure.

The following pie charts show the cost breakdown by end-use between the baseline (IECC 2012 model) and the calibrated design energy model.



Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation



The following pie charts show the total cost savings broken down and allocated to each enduse. Based on this pie chart, 42% of the total cost savings are from reductions in space heating energy usage. This is to be expected as space heating comprises 33% of the total energy cost for the facility.

Overall, utility cost savings increased from ~\$25,000 to \$40,000 per year and overall energy savings increased by ~19%.

		Prel	iminary Saving	S	Actual Savings			
#	Energy Conservation Measure	Electricity	Natural Gas	Cost	Electricity	Natural Gas	Cost	
		(kWh/year)	(therms/year)	(\$/year)	(kWh/year)	(therms/year)	(\$/year)	
E1	R-31.6 Metal Exterior Wall	2,171	1,140	\$841	2,225	1,331	\$1,474	
E2	Design Window GT	690	523	\$362	803	233	\$308	
L1	Lighting Power Density = 0.68 W/sf	169,356	-5,981	\$9,681	119,459	-1,004	\$11,663	
M1	High Efficieny DX AHUs	8,725	0	\$681	57,545	3,251	\$9,298	
M2	High Efficiency, Condensing Boilers	-4,125	12,219	\$6,888	-9,903	11,878	\$9,813	
P1	High Efficiency Pool Heater	0	1,286	\$759	0	1,505	\$1,355	
P2	High Efficiency DHW Heater		Not Modeled		0	1,009	\$908	
P3	Dehumidification Heat Recovery for Pool Heating	560	9,764	\$5,805	1,369	5,785	\$5,320	
	Total Savings	177,377	18,951	\$25,017	171,498	23,988	\$40,139	

Assiniboine & Sioux Tribes of the Fort Peck Indian Reservation

Fort Peck Tribes Wellness Center Poplar, Montana March 28, 2019 tecem Januar Febru March April May June July August Septe Octobe Novem Decem Januar Februa March April May June Supte Octobe Novem Decem Januar Febru March Ap Phase 1 Services - Preliminary Design and Programming Thu 12/20/18 Kick-off meeting, communications plan/goal setting Thu 12/20/18 Thu 12/20/18 Research and data gathering Fri 12/21/18 Wed 1/2/19 Programming Sessio Thu 1/3/19 Thu 1/3/19 Fri 1/4/19 Fri 1/11/19 Presentation of Program & Conceptual Design Mon 1/14/19 Mon 1/14/19 Owner review and approval Tue 1/15/19 Tue 1/29/19 Program refinement Wed 1/30/19 Wed 2/6/19 Thu 2/7/19 Thu 3/28/19 DOE Grant Assistance Fri 3/29/19 Tue 4/30/19 Owner Review and Approval Wed 5/1/19 Tue 5/14/19 Phase 2 Services - Schematic Design (SD) 10% Completion Wed 5/1/19 Fri 6/25/21 Schematic design documents Wed 5/15/19 Tue 6/25/15 SD - Cost model update Wed 6/26/19 Mon 7/1/19 Facilities Roundtable Tue 7/2/19 Tue 7/2/15 Owner Review and approval Wed 7/3/19 Mon 7/8/19 Design Development (DD) integration 35% Completion Wed 5/1/19 Mon 9/23/19 User review sessions Tue 7/9/19 Wed 7/10/1 Design Development Drawings Thu 7/11/19 Wed 9/11/1 DOE Grant Award Notification Thu 8/1/19 Wed 5/1/19 FEM's and PV System input/coordination/Finalize Building Envelope deta Fri 9/6/19 Mon 8/5/19 Engineering Coordination Meeting Thu 9/12/19 Thu 9/12/1 DD Cost Model update Fri 9/13/19 Wed 9/18/19 Owner Review and approval Thu 9/19/19 Mon 9/23/19 Construction Document (CD) integration 60% Completion Tue 9/24/19 Tue 1/21/20 Completion of CDs by design team Tue 9/24/19 Finalize CD's & Building Envelope CD's - EEM's - E2, E4, E8 and E11 Tue 9/24/19 Tue 1/7/20 Finalize the CD's for EEM - L1 High Efficiency Lighting Mon 9/30/19 Fri 10/11/19 Finalize the CD's For EEM - VM1 High Efficiency DX AHU Mon 10/14/19 Fri 10/25/19 Finalize the CD's for EEM - VM3 High Efficiency Boiler Mon 10/28/19 Finalize the CD'S for EEM - VMS Dehumid Heat recovery for pool Mon 11/11/19 Fri 11/22/19 Finalize the CD's for EEM - P1 High Efficiency Boiler for Pool Finalize the CD'S for EEM - P3 Pool Covers Mon 12/9/19 Fri 12/20/19 Finalize the CD's for EEM - PV1 Photovoltaic Array on Root Mon 12/23/19 Mon 1/6/20 Thu 1/9/20 Fri 1/10/20 Second review 100% Completion Tue 1/21/20 Bidding/Plan Review and Permitting Wed 1/22/20 Thu 2/20/20 Advertising for Bids Wed 1/22/20 Wed 1/22/20 Tue 2/4/20 Pre-bid meeting - with Special emphasis on EEM's and PV Systems Wed 2/5/20 Wed 2/5/20 Thu 2/6/20 Thu 2/6/20 52 Fri 2/7/20 Thu 2/20/20 53 Fri 2/21/20 Fri 6/25/21 Construction Administration (CA) Fri 2/21/20 Mon 6/21/21 Building construction Fri 2/21/20 Mon 6/21/21 Tue 6/22/21 Fri 6/25/21 57 Warranty inspection - 11 months Thu 5/26/22 Thu 5/26/22 Project: Fort Peck Tribes Wellness Center Date: April 28, 2019 Deadline

