

U.S. DOE Hydrogen and Fuel Cell Activities

Dr. Sunita Satyapal, Director, Hydrogen and Fuel Cell Technologies Office and DOE Hydrogen Program Coordinator U.S. Department of Energy

Hydrogen Online Conference November 7, 2022

Introduction – Energy, Market, and Policy Context

HZ

U.S. Energy Landscape and Key Goals

U.S. primary energy consumption by energy source, 2021

Note: Sum of components may not equal 100% because of independent rounding **Source**: Data collected from U.S. Energy Information Administration, April 2022, *Monthly Energy Review*, preliminary data

Administration Goals include:

- Net-zero emissions economy by 2050 and 50–52% reduction by 2030
- 100% carbon-pollution-free electric sector by 2035

Priorities: Ensure benefits to all Americans, focus on jobs, EJ40: 40% of benefits in disadvantaged communities

EJ: Environmental Justice

Snapshot of Hydrogen and Fuel Cells in the U.S.

• 10 million metric tons produced annually • More than 1,600 miles of H₂ pipeline • World's largest H₂ storage cavern

PEM Electrolyzer Locations and Capacity – 2021 Snapshot

Operational and Under Construction: 172 MW Capacity

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

hydrogen.energy.gov/program records.html

PEM Electrolyzer Locations and Capacity – 2022 Snapshot

Operational and Under Construction: > 620 MW Capacity

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Penetration of Renewables Drives the Need for Energy Storage

For the first time in history, in May 2022, renewable power in California exceeded demand

Source: California Independent System Operator

Credit: Daniel Wood and Lauren Sommer/NPR

Other renewables include geothermal, biomass, biogas and small hydroelectric power. Large hydroelectric and nuclear power are not considered renewable by the state of California. Total supply exceeds demand because some amount of electricity is lost in transmission and some is exported to other states.

Key Hydrogen Provisions in Recent Legislation

Bipartisan Infrastructure Law

- Includes \$9.5 billion for clean hydrogen:
 - \$1B for electrolysis research, development and demonstration
 - \$500M for clean hydrogen technology manufacturing and recycling R&D
 - \$8B for at least four regional clean hydrogen hubs
- Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to \$2 per kilogram by 2026
- Requires developing a National Hydrogen Strategy and Roadmap

Inflation Reduction Act

 Includes <u>clean hydrogen production tax credit</u> of up to \$3 per kg

President Biden Signs the **Bipartisan Infrastructure Law** on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

Recent Announcements and BIL Deliverables

DOE National Clean Hydrogen H2 Hubs Funding Opportunity **Clean Hydrogen Production Strategy and Roadmap** Announcement (FOA) Standard (CHPS) Draft Guidance Document Released **Draft Document Released FOA Released** for Initial Standard ENERGY 6 to 10 H2 Hubs for a combined **DOE** National Clean Hydrogen total of \$6B to \$7B Strategy and Roadmap Draft - September 2022 Concept papers due 11/7/22 e. drvine, purificati Full applications due 4/7/23 Net GHG emissions associated with

Request for Information released by U.S. Treasury on Production Tax Credit

Learn about DOE Life Cycle Emissions Analysis and GREET tool through DOE webinars: <u>https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office-webinars</u>

Strategy & Goals

HZ

U.S. DOE Hydrogen Program

Hydrogen is part of a broad portfolio of activities. The Program includes multiple offices and addresses the entire RDD&D value chain from production through end use.

www.hydrogen.energy.gov Includes multiple offices across DOE, led by DOE's Hydrogen and Fuel Cell Technologies Office

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

H2@Scale provides vision for how hydrogen can enable clean-energy pathways across applications and sectors.

Key Opportunities

Industry and Chemicals

Steel, ammonia, cement, synfuels (e.g., aviation), exports

Transportation

Trucks, marine, buses, etc.

Power and Energy Storage

Long-duration storage, NG blending, turbines, fuel cells

Comprehensive DOE Strategy Across the Hydrogen Value Chain

	NEAR-TERM	1	L	ONGER-TERM	
Production	Electrolysis (low-temperature, high-tem Advanced fossil and biomass reforming Gasification of biomass, legacy coal wa	Advanced biological/m	ced thermo/photoelectro-chemical H ₂ O splitting iological/microbial conversion ure, utilization, and storage		
Delivery	Distribution from on-site produ Tube trailers (gaseous H ₂) Cryogenic trucks (liquid H ₂)		Widespread pipical H $_2$ carriers	peline transmission and distribution	
Storage	Pressurized tanks (gaseous H ₂) Cryogenic vessels (liquid H ₂)	Cryo-c	e (e.g., caverns, depleted ompressed H ₂ carriers	d oil/gas reservoirs) Materials-based H ₂ storage	
Conversion	Turbine combustion Fuel cells		combustion ation fuel cells	Fuel cell/combustion hybrids Reversible fuel cells	
Applications	Fuel refining Space applications Portable power	Blending in natural ga Distributed stationary Transportation Industrial and chemica Defense, security, and	power Distributed CHP Il processes	Utility systems Integrated energy systems	

Draft DOE National Clean Hydrogen Strategy and Roadmap

- Provides a snapshot of hydrogen production, transport, storage, and use in the United States today
- Explores the potential for clean hydrogen to contribute to national goals across multiple sectors
- Identifies opportunities for domestic production of clean hydrogen:
 - 10 million metric tons per year by 2030
 20 MMT by 2040
 50 MMT by 2050
- The Strategy and Roadmap will be finalized in early 2023 and updated per Bipartisan Infrastructure Law at least every 3 years.

https://www.hydrogen.energy.gov/clean-hydrogen-strategy-roadmap.html

Draft DOE National Clean Hydrogen Strategy and Roadmap

Actions from Draft DOE National Strategy and Roadmap

Strategy 1: Target High-Impact Uses of Hydrogen

U.S. Energy Related CO₂ Emissions by End-Use

Note: Sum of sectors may not equal 100% due to independent rounding Source: M. Koleva, DOE HFTO, NREL, adapted from EIA, 2020, U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Hydrogen can provide benefits particularly in hard to decarbonize sectors: industry, heavy duty transport and to enable energy storage

VCLRW - Ventilation, Cooking, Lighting, Refrigeration & Washing BOM - Balance of Manufacturing

Other industrial: aluminum, cement and lime, construction, agriculture, plastics, wood, electrical equipment, transportation equipment, computing and electronics equipment, paper products, glass ,etc.

Threshold Costs for Hydrogen to be Competitive Across Sectors

Threshold cost for each application includes cost of production, delivery, storage, compression/processing/dispensing, as required, to the point of use for each application

Costs include production, delivery, dispensing to the point of use (e.g., high-pressure fueling for vehicle applications)

** Volumes dependent on multiple variables

Refs: 1. NREL MDHD analysis using TEMPO model; 2. Analysis of biofuel pathways from NREL; 3. Synfuels analysis based off H2@Scale ; 4. Steel and ammonia demand estimates based off DOE Industrial Decarbonization Roadmap and H2@Scale. Methanol demands based off IRENA and IEA estimates; 5. Preliminary Analysis, NREL 100% Clean Grid Study; 6. DOE Solar Futures Study; 7. Princeton Net Zero America Study

Strategy 2: Focus on Cost-Reduction

Stakeholder Reported Barriers to Hydrogen Market Adoption

Over 3,000 participants at DOE Hydrogen Shot Summit were requested to provide feedback on key barriers to market adoption of hydrogen

https://www.energy.gov/eere/fuelcells/hydrogen-shot-summit

Source: Hydrogen Shot Summit, Sept 2021

Hydrogen

Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

> Launched June 7, 2021 Summit Aug 31-Sept 1, 2021

How to reduce cost? Examples across multiple pathways

Strategies and scenarios being developed to reduce cost and emissions across pathways

H₂ from Electrolysis

- Reduce electricity cost, improve efficiency and utilization
- Reduce capital cost >80%, operating & maintenance cost >90%

Thermal Conversion

Example: Natural Gas Conversion + CCUS

 Reforming; pyrolysis; air separation; catalysts; carbon capture and storage (CCS); upstream emissions

Advanced Pathways

• Photelectrochemical (PEC), thermochemical, biological, etc.

*2020 Baseline: PEM (Polymer Electrolyte Membrane) low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Pathways to targets include capital cost <\$300/kW by 2025, < \$150/kW by 2030 (at scale). Assumes \$50/MWh in 2020, \$30/MWh in 2025, \$20/MWh in 2030

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements – guided by applications specific targets

Examples of Cost Drivers and Focus Areas for Hydrogen Technologies

Build Regional Networks through "Clean Hydrogen Hubs"

Stakeholder Feedback Identified Opportunities for Regional Clusters

Example: Industrial Clusters to Enable Large-Scale Offtakers

Priority deployments for hydrogen in industry include sectors where other decarbonization pathways are challenging, such as high-temperature heat generation, steelmaking, and ammonia production.

National Distribution of Industrial Sites, CO₂ Output, and CO₂ Sink Demand

Industrial Sites

 Aluminum
 Lime

 Ammonia
 Magnesium

 Carbonate Use
 Petrochemicals

 Cement
 Pulp and Paper

 Ethanol
 Refining

 Ferroalloy
 Silicon Carbide

 Glass
 Soda Ash

 Iron and Steel
 Titanium Dioxide

 Lead
 Zinc

CO₂ Sources (kt/year) < 500 500.01 - 1250 1250.01 - 3000 3000.01 - 6250 > 6250 CO₂ Sink Demand (kt) 500 250 Mapping industrial sites to CO₂ sources and demands can help identify **industrial clusters for potential decarbonization hubs**

Adapted from Carbon Capture and Utilization in the Industrial Sector | Environmental Science & Technology (acs.org)

Ongoing Work and Accomplishments to Address Key Priorities

42

Program Enabled Accomplishments

DOE Hydrogen Activities across RDD&D – Examples

Deployment and Financing Technology Integration, Validation, Demos Research and Development Basic and applied research through 1st of a kind demonstrations and systems H2 Hubs, loan guarantee program, individual projects and consortia integration to de-risk deployments workforce development **Examples**: Regional Consortia Examples Example: **Clean-Hydrogen Hubs** Core Team: National Labs \$8 billion for at **HydroGEN** least 4 hubs: FOA 8 Renewables. University & National Industry HONEW Non-Profit fossil w/CCS, Lab nuclear; multiple end-uses GMat CELectroCat Clean-H₂ Producers Infrastructure *Renewables and nuclear to H*₂, 15 *delivery* ELL TRUCK 2 new loan guarantee projects (\$1.5B total) trucks in disadvantaged area, 3 Super Truck on pyrolysis and large-scale electrolysis, H₂ SHASTA projects, data center, fueling for passenger energy storage and power generation Basic science user facilities, theory, modeling

- Enabling **Activities**
- U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Analysis and tools

Manufacturing

• Safety, codes & standards

Workforce development

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

31

ferry, energy storage, H₂ for steel

Hydrogen Education for

Connecting a Global Community

H2 Matchmaker

賽

Clean-H

Clean-H₂

Consumers

DOE National Laboratories

Strategy leverages DOE National Laboratories, partnering with industry and academia

DOE National Laboratories across energy, science, and security:

- Support RD&D
- Offer User Facilities and science resources
- Help to de-risk technology adoption, accelerating progress

HyBlend and H-Mat Consortia

To assess and enhance compatibility of key materials with hydrogen, and to accelerate the use of hydrogen in multiple applications (including in natural gas blending)

National lab consortium to assess and improve performance and reliability of materials in hydrogen, reduce costs, and inform codes and standards

Labs

Pipeline materials compatibility R&D, technoeconomic analysis, and life-cycle analysis to assess the feasibility of hydrogen blending in the U.S. natural gas pipeline infrastructure

Cost and emissions

life-cycle analyses of

blending and RNG to

inform RDD&D

Over 30 partners

Testing pipeline materials in H₂ blends for risk analysis tool data and to inform codes and standards

Online data portal shares information with R&D community worldwide, and international MOUs enable coordination

Materials R&D aims to lower cost of components in H₂ infrastructure and enhance life by 50%

Loan Programs Office (LPO) has \$40 Billion in Available Debt Capital

LPO announces loan guarantees for two clean hydrogen projects

(one guarantee pending, as "conditional commitment")

 \$1.04B for the first-ever commercial-scale project
 to deploy methane pyrolysis technology. Will enable
 1,000 construction jobs and 75 operations jobs.
 (Conditional commitment for loan guarantee announced December 2021)

\$504.4M for large-scale hydrogen energy storage,
220 MW electrolysis and turbine. Will enable up to
400 construction jobs and 25 operations jobs.
(Loan guarantee closed in June 2022)

Supply Chain Report

Investigated key U.S. opportunities to enable the growth of electrolytic hydrogen and fuel cell markets

Platinum Iridium 1200 Raw Materials Cumulative manufactured (b) SOEC Nickel Titanium Chromium electrolyzer capacity Chemical Precursors Graphite PEMEC Total US manufactured electrolyzer (includes stack replacement at 1000 Alkaline lonomers Catalysts (Precursors, Powders, Inks) end of lifetime) Processed Foams/Plates/Rolls Graphite composites Stainless Steel Materials Carbon fiber Thermoplastics/Elastomers ePTFE 800 capacity (GW) Membranes Catalysts/Electrodes Gas Diffusion Layers (Sub) Membrane Electrode Assemblies Components **Bipolar Plates** Seals End Plates BOP 600 Stacks, Power Electronics & Controls, System BOP subsystems 400 Transportation, Power Generation and Energy Storage. End Uses 200 Chemical & other Industries cling ٥ End of Life Material Recovery, Refurbishment, Waste Recyclingand 2020 2025 2030 2035 2040 2045 2050 Recy Stream Minimization, Second Use Applications Reuse

Example: PEM fuel cell & electrolyzer supply chain

More information: www.energy.gov/eere/fuelcells/water-electrolyzers-and-fuel-cells-supply-chain-deep-dive-assessment

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Example: Scenario for U.S. electrolyzer capacity

Collaboration Diversity, Equity, Inclusion

The redwoods are the tallest trees on earth—growing tall and enduring long dry spells—on harsh terrain and despite shallow roots.

They are able to do this through the collective strength of their roots which are an interwoven system, where each tree supports—and is supported by—the trees around it.

Focus on Benefits in Underserved & Disadvantaged Communities

New index ranks America's 100 most disadvantaged communities University of Michigan News (umich.edu)

Funding Opportunities will encourage broader engagement, demonstrating benefits, including DEI (minorities, gender equity, etc.)

Example: DOE project with CTE for UPS Fuel Cell Delivery Vans

Trucks will be demonstrated in Ontario, CA- disadvantaged community

<u>Goal</u>: Demonstrate 15 fuel cell trucks (up to 125-mile range) <u>Project impact per year</u>: Savings of

- 285 metric tons of CO₂-eq
- 280,000 grams of criteria pollutants
- 56,000 gallons of diesel

Call to Action: Join the Center for Hydrogen Safety!

www.aiche.org/CHS

Over 90 members from industry, government, and academia—and growing!

New Hydrogen Safety

Composed of 7 fundamental hydrogen safety e-courses, including:

- Properties & Hazards
- Safety Planning
- System Operation
- Inspection & Maintenance

Examples of International Collaboration

Collaborating through multiple global and bilateral partnerships—key priority is creating coordinated framework to leverage activities, identify gaps, and avoid duplication to accelerate progress

CEM Global Ports Coalition with EC Numerous Bilaterals on Hydrogen Hydrogen Council, IRENA, and more

The International Partnership for Hydrogen and Fuel Cells in the Economy Enabling the global adoption of hydrogen and fuel cells in the economy

H₂ Production Analysis (H2PA) To facilitate international trade Common analytical framework for GHG emissions footprint

Regulations, Codes, Standards, Safety and Education & Outreach Working Groups

www.iphe.net

BREAKTHROUGHS

Breakthrough Agenda in collaboration with other partnerships is mapping activities across global H₂ initiatives to identify gaps, focus areas, and prioritized workstreams

Landscape Coordination	Hydrogen Forcul Biorigistic gestioned by attribute biolistical indices									
Tong Kon Viana Kitatan Pian	Harapa Perigr Danishat S LUI,	Informations of Lightness to the Displayment is a set Contract must be access	CTs Hylegee Adder Fold	BUDON Constanting Frankrack on Carent Helenger	Anna Rylingen Wyneseton	UNIDE Clinical Recommender Carrens Francisco In Recomp	Construction Colopel	ENT RECOVER		
Demont Creation S.Monaccenter(mason Possible References	Test these peakes	ACTS Accelerating Class Hydrogen Milliolum	CLA PROSE Milder	Inclusion Council	unen metsen Veisen				
Manda da e C Septy Lazar	Production for surface's United interaction Meanser	rance and a second	Rylage Gasel	Constitutions Entropol	Production T25					
Trance & Trance & Trance &	EN incoded and Process Trables	ACT's arrivaling Class Hydrogen Selfaller	Georgeonation Reportation	Indicate Courses						
Reprint 6 Million Million	Notice Installer's Ocean Independent Material	GUI INNER TOP	Orașe Hydrogra Digentrative	Orași î și aște Geleșel						
República Gradinalis X Coldinalis a	Biomecone Protecting to Ferninger & Fact Calmin for Protection	#10 Salarow TVP	General Statespera Technologies	Baller Antonialar Interaction Generityinge	Natur Inconstructs Circus Incongroundement	Mul 's foodernes Receitederprin Interes	lationslama George 200	Generalitysk spera Uderpoer Technologi s Louriot		
International Mariana & Trade	international Professional In- Hydrogen & Part Colorin In Profession	CBD (stars)	Generaliya yar Generaliya	CLUS ACCOMMEND Class Hydrogen Millioler						
Encoderiges Cognitality X XMIN	Biotracora Protecting In Hydroger & Part Calls in the Frances	Mar Heropen Bellet	Ballers Cold installers Presentering Class - Spingers	Marco newstation Close Hydrogen Artiket	Meen hitydrogen Gegenheeton	OH DO OHIN Programmin Original Statistics Factory	Deconstruction Line on proc	P.D. Spinger 707		

IPHE Early Career Network

Calling all hydrogen-enthusiast STUDENTS (undergraduate & graduate), POST-DOCS, and EARLY CAREER PROFESSIONALS worldwide!

Connect with peers, mentors, scientific researchers, industry professionals, and policymakers!

Networking • Career Development • Webinars Research • Policy • Leadership • Science

Nigeria France Ghana Nigeria France Ghana China United Kingdom Poland Iceland Romania Poland Iceland Romania Poland Iceland Romania Inited States of America South Africa Pakistan Colombia South Africa Pakistan Colombia South Africa Pakistan Colombia Portugal Vietnam Germany Spain New Zealand New Zealand Norway Russia Argentina 230+ members from 37 countries

www.iphe.net/early-career-chapter

2022-2023 Leadership Team

Handoff from Current Chair and Vice-Chairs for New Term

Chair Christine Watson (USA)

Vice-Chair Gaurav Shukla (India)

Vice-Chair Kendall Parker (USA)

Chair: Gaurav Shukla (India)

Vice-Chair Sookyung Kang (France/Korea)

Vice-Chair Tomas Green (USA)

Vice-Chair Manan Prathak (India)

Resources and Opportunities for Engagement

Join Monthly H2IQ Hour Webinars

Download H2IQ For Free

Visit H2tools.Org For Hydrogen Safety And Lessons Learned https://h2tools.org/

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY

Thank you

Dr. Sunita Satyapal Director, Hydrogen and Fuel Cell Technologies Office Coordinator, DOE Hydrogen Program <u>Sunita.Satyapal@ee.doe.gov</u> U.S. Department of Energy

www.energy.gov/fuelcells www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE