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Short vs Long Duration Storage Technologies
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Power capacity cost = cost per kW of maximum instantaneous power
Energy capacity cost = cost per kWh of energy storage capacity
Duration = energy capacity / power capacity
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Long-duration energy storage options are developing
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Redox Flow Batteries — ________ > Metal-Air Batteries

* Independent scaling of power (stack)
and energy (tanks) makes RFBs
tunable for storage duration

* Very low energy cost makes metal-air
attractive despite high power cost and
low round-trip efficiency
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Electrolyte l'

* Vanadium redox is most technically
advanced but cost and supply
challenged

» Best suited for long-duration storage
applications
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long-duration applications are in lon-selective existing supply chains
development

Cation Transport

Thermal Energy Storage Mechanical Energy Storage

» Key cost challenge: conversion of heat to electricity « Historically constrained by
low energy density, geology

250

* Near-term low-cost option: Steam turbine retrofit with TES
at existing coal plants * Pumped storage hydropower :

Already installed equipment at coal plant
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Fe-air batteries can enable cost-effective multi-day storage
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Iron-Air Batteries use Principle of “Reversible Rusting”

Discharge

Water-based
electrolyte

Rusting iron pellets
(Fe(OH),)

Iron pellets

Air
Electrode

—

1 Oxygen enters
the battery
through the
air electrode

I

o Oxygen reacts with
water and electrons to
form hydroxide ions
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4 Electrons from
the rusting
reaction form
the discharge
current

| Current

collector

Hydroxide ions from the

electrolyte react with

iron pellets to rust them
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Hydroxide ions
are liberated back
to liquid electrolyte

Hydroxide ions react at 2
the air electrode, forming
water, electrons and oxygen

W.H. Woodford et al., One Earth, 2022, https://doi.org/10.1016/j.oneear.2022.03.003
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Leveraging the lowest-cost iron materials from the steelmaking supply chain

iron Ore Iron Ore Direct Reduced Hot Briquetted Pid Iron Atomized / Sponge
Pellets Iron (DRI) Iron (HBI) 9 / Carbonyl Irons

7, 3
< mtfec rustpassalibaba.sgm

More oxidized
Higher
impurities
Lower cost

More metallic
Lower impurities
Higher cost

Direct Reduced Iron (DRI) is the lowest cost form of metallic iron
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Scalability of Fe-air Batteries

* Two iron barges = 1 GWh of Fe-air batteries

* One U.S. iron reduction plant today produces
~2 million tons of Fe/year — 0.5 TWh/yr of Fe-air

« Reaching 100 TWh (global) by 2050 requires <1%
increase in current global iron production

» U.S. supply chain already exists

Form
enoergy © 2022 Form Energy




Iron-air multi-day storage commercial pilot projects

GREAT

RIVER
ENERGY..

A Georgia Power

10 to 15 megawatts/1-1.5 gigawatt hours of
energy storage systems to be located in the
utility’s service area

1.5 megawatt/0.15 gigawatt hour multi-day
energy storage project in Cambridge, Minnesota

« Site selection for first manufacturing plant underway

*  Will be east of Mississippi, ideal location for Fe-air is coal and
steel country — need water and rail access

« Ramp over three years to 500 MW, 50 GWh
« Multiple GW, 100’s of GWh capacity by 2030
- Pathway to 10-20 TWh in U.S. by 2050



The Iron-Energy Nexus: Long duration storage and clean steelmaking
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Long duration energy storage
accelerates the path towards
100% clean electricity

W.H. Woodford et al., One Earth, 2022, https://doi.org/10.1016/j.oneear.2022.03.003
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Production challenge in reaching 100 TWh globally (10-20 TWh U.S.) by 2050

Materials Avallablllty Scallng Li-lon Battery Production
° Y i
« Li-ion battery critical elements (Li, Co, Ni) are production limited. 20% CAGR projected through 2030
« Vanadium (redox flow batteries) is both production and resource limited. * Reaches 2.5 TWh/year by 2030
° (o)
* Requires production CAGR near or above historical maxima for next 28 yrs ng g:_\?voh/" CAGR through 2050 to reach
Typical time from prospecting to deployment of minerals is 5-15+ years. 2500 ——
S
Ll éiisdgi'nng&igegs&tzyomrgonne National Laboratory
2000 —-——Roland Berg;er, 2020 "
Capacit d
Lithium  3%-15% 12% (50% mkt) 700 TWh —neram
1500k —sgsgiogﬁ%m ~20% CAGR >4
Cobalt -2%-10% 6-15% (50% mkt) 125-280 TWh é //f’
5 , ,,//7
Nickel 0%-5% 10% (50% mkt) 400 TWh 1000k o
Vanadium  -5%-12% 25% (50% mkt) 70 TWh
500 .
* Number in parentheses indicates % of new production used for batteries /;:Z//’
* CAGR = compound annual growth rate (in production) ::::5/
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