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Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government, nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States government or any agency thereof. The views and opinions 
of authors expressed herein do not necessarily state or reflect those of the United States government or any 
agency thereof. 
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Acronyms and Abbreviations 
21CTP 21st Century Truck Partnership 
ACS American Community Survey 
ADOPT Automotive Deployment Options Projection Tool 
AEO Annual Energy Outlook 
AHS American Housing Survey 
ANL or Argonne Argonne National Laboratory 
APR Annual Progress Report 
BA Balancing Authority 
BETO Bioenergy Technologies Office 
BEV battery electric vehicle 
BTU British thermal unit 
C2G cradle-to-grave 
CA community area 
CAV connected and automated vehicle 
CH4 methane 
CI compression ignition 
CNG compressed natural gas 
CO2 carbon dioxide 
COVID COronaVIrus Disease 
CT current term 
DCFC direct current fast charger 
DOE U.S. Department of Energy 
E-drive electric drive 
EEMS Energy Efficient Mobility Systems (Program) 
EERE Energy Efficiency and Renewable Energy 
EIA U.S. Energy Information Administration 
EPA U.S. Environmental Protection Agency 
EPRI Electric Power Research Institute 
EV electric vehicle 
EVI-Pro Electric Vehicle Infrastructure Projection tool 
EVSE electric vehicle supply equipment 
eVTOL electric vertical takeoff and landing 
FAF Freight Analysis Framework 
FASTsim Future Automotive Systems Technology Simulator 
FCEV fuel cell electric vehicle 
Fleet DNA a clearinghouse of commercial vehicle operations data 
FOTW fact of the week 
FY fiscal year 
GBP Gaussian belief propagation 
GCD great circle distances 
GEM Grid-Integrated Electric Mobility Model 
GHG greenhouse gases 
GLH Google location history 
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GPS Global Positioning System 
GREET Greenhouse gases, Regulated Emissions, and Energy use in Transportation model 
GridLAB-D a power distribution system simulation and analysis tool 
GWh gigawatt hour 
H2@Scale DOE initiative to advance affordable hydrogen production, transport, storage, and 

   

      

       

      

       

       

      

 utilization 
H3 a geospatial analysis tool that provides a hexagonal, hierarchical spatial index to gain 

insights from large geospatial datasets developed by Uber 
HD heavy duty 
HDstock heavy-duty stock (model) 
HDV heavy-duty vehicle 
HEV hybrid electric vehicle 
HEVII Heavy-Duty Electric Vehicle Integration and Implementation 
HFTO Hydrogen and Fuel Cell Technologies Office 
Hz hertz 
ICE/ICEV internal combustion engine/vehicle 
ISATT  Integrated Systems Analysis Technical Team 
ISG integrated starter generator 
kg kilogram 
kWh kilowatt hour 
LCA  life cycle analysis 
LCOD levelized cost of driving 
LDV light-duty vehicle 
LH location history 
LODES Longitudinal Origin-Destination Employment Statistics 
LPG liquified petroleum gas (or propane) 
LT long term 
MA3T Market Acceptance of Advanced Automotive Technologies model 
MDHD/MDHDV  Medium- and Heavy-Duty Vehicle 
MD medium-duty 
ML machine learning 
MNL multinomial logit (model) 
mpg or MPG miles per gallon 
mph  miles per hour 
MS Microsoft 
MSA metropolitan statistical areas 
MSRP manufacturer’s suggested retail price 
Mt metric tons 
MT mid-term 
MTOW maximum takeoff weight 
MUD multi-unit dwelling 
MWh megawatt hour(s) 
MY  model year 
NEAT Non-Light Duty Energy and GHG Emissions Accounting Tool 
NHTS National Household Travel Survey 
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NOx oxides of nitrogen 
NREL National Renewable Energy Laboratory 
OEM original equipment manufacturer 
OpenPATH Open Platform for Agile Trip Heuristics 
OpenVSP Open Vehicle Sketch Pad 
ORNL Oak Ridge National Laboratory 
pax passenger 
PDF portable document format 
PEV plug-in electric vehicle 
PHEV plug-in hybrid electric vehicle 
PM2.5 particulate matter with diameters equal to or less than 2.5 micrometers 
PM10 particulate matter with diameters equal to or less than 10 micrometers 
PNNL Pacific Northwest National Laboratory 
POLARIS a high-performance, open-source agent-based modeling framework designed for  
 simulating large-scale transportation systems 
PopulationSim population synthesizer 
PTW pump-to-wheel 
PUMS Public Use Microdata Samples 
R&D research and development 
REVISE Regional Electric Vehicle Infrastructure Strategic Evolution 
RF Random Forest (model) 
S Shares (in fractions or percentages) 
SAEV shared, automated electric vehicles 
SCE Southern California Edison 
SCM Smart Charging Management 
SCOOT Screening for City Opportunities Online Tool 
SHAEV shared heavy-duty autonomous and electric vehicles 
SMART Systems and Modeling for Accelerated Research in Transportation 
SOC state of charge 
ST short term 
SUV sport utility vehicle 
SVTRIP Stochastic Vehicle TRIp Prediction 
TCO  total cost of ownership 
TDP Transportation Data Program 
TEDB Transportation Energy Data Book 
TEEM Transportation Energy Evolution Modeling 
TNC transportation network companies 
UAM urban air mobility 
U.S. DRIVE Driving Research and Innovation for Vehicle efficiency and Energy sustainability 
VC vehicle cycle 
VISION Verifiable Fuel Cycle Simulation 

 
VMT vehicle miles traveled 
VOC volatile organic compound 
vs. versus 
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W watt 
Wh/kg watt hours per kilogram 
VTO Vehicle Technologies Office 
WTP well-to-pump 
WTW wheel-to-wheel 
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Executive Summary 
During fiscal year 2021 (FY 2021), the U.S. Department of Energy Vehicle Technologies Office (VTO) 
funded analysis projects supportive of VTO’s goals to pursue early-stage research in vehicle and mobility 
system technologies to reduce petroleum dependence, increase energy reliability and security, improve 
transportation affordability, and promote economic growth. VTO analysis projects result in a foundation of 
data, analytical models, and applied analyses that provide insights into critical transportation energy problems 
and assist in research investment prioritization and portfolio planning.  

This document presents a brief overview of VTO analysis efforts and progress for projects funded in FY 2021. 
Each of the progress reports includes project objectives, approach, and highlights of the technical results that 
were accomplished during the fiscal year (FY). 
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Vehicle Technologies Office Overview  
Vehicles move our national economy. Annually, vehicles transport 12 billion tons of freight—more than $38 
billion worth of goods each day1—and move people more than 3 trillion vehicle-miles.2 Growing our economy 
requires transportation, and transportation requires energy. The transportation sector accounts for 
approximately 27% of total U.S. energy needs,3 and the average U.S. household spends over 17% of its total 
family expenditures on transportation,4 making it, as a percentage of spending, the most costly personal 
expenditure after housing. Transportation is critical to the overall economy, from the movement of goods to 
providing access to jobs, education, and healthcare. 

The Vehicle Technologies Office (VTO) funds research, development, demonstration, and deployment 
(RDD&D) of new, efficient, and clean mobility options that are affordable for all Americans. VTO leverages 
the unique capabilities and world-class expertise of the National Laboratory system to develop new 
innovations in vehicle technologies, including advanced battery technologies (including automated and 
connected vehicles as well as innovations in efficiency-enhancing connected infrastructure); innovative 
powertrains to reduce greenhouse gas and criteria emissions from hard-to-decarbonize off-road, maritime, rail, 
and aviation sectors; and technology integration that helps demonstrate and deploy new technology at the 
community level. Across these technology areas and in partnership with industry, VTO has established 
aggressive technology targets to focus RDD&D efforts and ensure there are pathways for technology transfer 
of federally supported innovations into commercial applications.  

VTO is uniquely positioned to accelerate sustainable transportation technologies due to strategic public-private 
research partnerships with industry (e.g., U.S. DRIVE, 21st Century Truck Partnership) that leverage relevant 
expertise. These partnerships prevent duplication of effort, focus DOE research on critical RDD&D barriers, 
and accelerate progress. VTO advances technologies that assure affordable, reliable mobility solutions for 
people and goods across all economic and social groups; enable and support competitiveness for industry and 
the economy/workforce; and address local air quality and use of water, land, and domestic resources. 

Annual Progress Report 
As shown in the organization chart (below), VTO is organized by technology area: Batteries & Electrification 
R&D, Materials Technology R&D, Advanced Engine & Fuel Technologies R&D, Energy Efficient Mobility 
Systems, and Technology Integration. Each year, VTO’s technology areas prepare an Annual Progress Report 
(APR) that details progress and accomplishments during the fiscal year. VTO is pleased to submit this APR for 
Fiscal Year (FY) 2021. The APR presents descriptions of each active project in FY 2021, including funding, 
objectives, approach, results, and conclusions. 

  

 

1 U.S. Department of Transportation, Freight Analysis Framework Version 5.0 Data Tabulation Tool. 
2 U.S. Department of Transportation, March 2022 Traffic Volume Trends, Figure 1. 
3 U.S. Energy Information Administration. Monthly Energy Review, 2022, 
https://www.eia.gov/totalenergy/data/monthly/index.php. 
4 Davis, Stacy C., and Robert G. Boundy. Transportation Energy Data Book: Edition 39. Oak Ridge National Laboratory, 2020, 
https://doi.org/10.2172/1767864. 

https://www.eia.gov/totalenergy/data/monthly/index.php
https://doi.org/10.2172/1767864
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Analysis Program Overview 

Introduction 
Achieving deep decarbonization in transportation will require vehicle efficiency improvements, low lifecycle 
carbon-intensity fuels and related infrastructure, and overall system-wide improvements in the transportation 
system, particularly those that have the potential to reduce total annual vehicle miles traveled (VMT). VTO 
funds research, development, demonstration, and deployment of new, efficient, and clean mobility options that 
are affordable for all Americans. 

The impact of VTO’s investments depends on the eventual commercialization of supported technologies. 
Therefore, maximizing the benefits achieved requires development of a portfolio based on a fundamental 
understanding of the complex system within which transportation technologies are manufactured, purchased, 
and used. This system is shaped by the actions and interactions of manufacturers, consumers, markets, 
infrastructure, and the built environment. 

The VTO Analysis Program supports mission-critical technological, economic, and interdisciplinary analyses 
to assist in prioritizing VTO technology investments and to inform research portfolio planning. These efforts 
provide essential vehicle and market data, modeling and simulation, and integrated and applied analyses, using 
the unique capabilities, analytical tools, and expertise resident in the DOE’s national laboratory system. 

Key questions addressed by these data, modeling, and analysis efforts include: 

• Which vehicle use domains—including vehicle design, powertrain technologies, increased automation 
and system connectivity, greater penetration of shared vehicles and micromobility, and a better 
understanding of travel patterns—offer the potential to provide clean mobility benefits and at a 
reasonable cost to both businesses and the consumer? In which applications can specific new 
technologies make the greatest impact?  

• What trends in VMT, vehicle ownership, fuel and technology choice, infrastructure development, 
consumer behavior, and other factors are likely to impact the achievement of future benefits? 

• As sales of electric vehicles (EVs) grow, how will charging infrastructure needs evolve? How will use 
of these vehicles impact the electricity grid, and vice versa? How can this infrastructure be made 
available to consumers across the socioeconomic spectrum, and how might the infrastructure best 
address the needs of individuals living in a variety of different housing/neighborhood types? 

• As demand for freight transportation grows, how can we improve the efficiency of moving the goods 
we buy? How can a variety of medium- and heavy-duty vehicle technologies—including advanced 
lightweight materials, advanced engine designs, and electric powertrain technologies—and modes 
help the nation to achieve key energy and environmental goals despite this demand growth? 

• How will developments in vehicle connectivity and autonomy impact energy demand? How do we 
ensure that these developments lead to a safe, efficient, and clean transportation system? 

• What will the future look like if we meet all of our subprogram targets? What if our subprograms fall 
short? 
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Goals  
The goals of the VTO Analysis Program are to: 

• Assist VTO in prioritizing technology investments and inform research portfolio planning. 

• Support quantitative assessment of vehicle and mobility technology impacts. 

• Provide insights into transportation and energy use problems for a broad range of internal and external 
stakeholders. 

To achieve these goals, the Analysis Program supports activities with the following three broad objectives: 

• Create and maintain a strong foundation of data.  

• Build, maintain, and exercise relevant analytical models.  

Execute insightful integrated analyses that provide greater understanding of critical transportation energy 
problems. 

Program Organization Matrix  
As shown in the tab list below, the Analysis Program activities are organized within three areas as described in 
the Introduction section above: (1) data, (2) modeling and simulation, and (3) applied analysis. This list 
illustrates the relationship between these three areas, the program goals, and the activities summarized in this 
report. 
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For FY 2021, several applied analysis activities within VTO’s Systems and Modeling for Accelerated 
Research in Transportation (SMART) Mobility Consortium were co-funded by the VTO Analysis team and 
VTO’s Energy Efficient Mobility Systems (EEMS) Program. Several of the SMART Mobility project reports 
appear in both the Analysis FY 2021 Annual Progress Report and the EEMS FY 2021 Annual Progress Report. 
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I Analysis Program Project Portfolio 
I.1 Distributions of Real-world Vehicle Travel (Argonne National 

Laboratory) 

David Gohlke 
Argonne National Laboratory 
9700 South Cass Avenue 
Lemont, IL  60439 
Email: gohlke@anl.gov 

Jacob Ward, DOE Technology Manager 
U.S. Department of Energy 
Email: jacob.ward@ee.doe.gov 

Start Date: October 1, 2019 End Date: September 30, 2022 
Project Funding (Initial): $150,000 DOE share: $150,000 Non-DOE share: $0 
Project Funding (FY20-FY21): $300,000 DOE share: $300,000 Non-DOE share: $0 
Total Expected Project Funding: $450,000 DOE share: $450,000 Non-DOE share: $0 
 

Project Introduction 
A firm understanding of vehicle ownership and operational behavior is necessary to fully assess the economic 
and environmental impacts of that vehicle. A vehicle mileage schedule represents the estimated annual miles 
driven by a typical vehicle each year as the vehicle ages. These schedules are used in calculations of levelized 
cost of driving (LCOD) and cradle-to-grave environmental lifecycle assessments. However, there is a high 
degree of uncertainty in the vehicle mileage schedules that are often used for these calculations. Published 
travel schedules typically disaggregate only to a broad vehicle type level (e.g., cars vs. light trucks). Present 
analysis may not capture differences in how vehicles are operated—differences beyond the vehicle size—
particularly for variables such as fuel economy. 

Furthermore, driving behavior is not homogenous, and using a single mileage schedule for all calculations 
related to lifecycle emissions, cost of ownership, and vehicle survivability does not yield a full understanding 
of fleet-wide fuel consumption. Optimal vehicle choices from a levelized-cost-of-driving standpoint may vary 
depending on differing use cases. New technologies are more likely to be useful to a subset of consumers 
before the whole market, e.g., a battery electric vehicle driven more intensively than the average may have an 
easier time reaching cost parity than a “typical” vehicle. Detailed understanding of vehicle travel at a 
disaggregated level is necessary to quantify important metrics more accurately. 

Objectives 
This project aims to understand what key metrics are changed by variations in light-duty vehicle usage, and 
how. In particular, this project 1) quantifies variations in VMT, considering vintage, vehicle characteristics, 
and demographic characteristics; 2) quantifies LCOD for vehicles with different use intensities; 3) estimates 
how variations in VMT impact national-scale metrics such as fuel consumption and emissions, both for today’s 
vehicles and potential future scenarios; and 4) assesses variations in vehicle survivability to determine typical 
length of time that different types of vehicles stay on the road. These results will be broadly shared to better 
inform calculations by DOE and others. 

Approach 
This paper explores the non-homogeneous driving behavior of passenger vehicles, with the goal of 
understanding with greater resolution the energy consumption of the light-duty vehicle fleet along with the 
representative consumer costs. The typical metric used for driving behavior is vehicle miles traveled, or VMT. 

mailto:gohlke@anl.gov
mailto:jacob.ward@ee.doe.gov
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Since fuel consumption is largely proportional to mileage, an understanding of VMT is necessary to estimate 
lifetime energy consumption. In turn, operational costs are largely proportional to fuel consumption, and so 
estimates of consumer costs are strongly dependent on calculations of VMT. 

This project uses light-duty vehicle travel data from the National Household Travel Survey (NHTS) and state 
odometer reading records to explore the nationwide distribution of VMT [1]. In prior analysis, this distribution 
has been examined as a function of multiple parameters related to vehicle age, vehicle characteristics, and 
demographics. The project also considers vehicle survivability, comparing the number of vehicles registered 
[2] with original vehicle sales [3],[4],[5] to see how many of those vehicles are still operational today. Per-
vehicle VMT and scrappage rates have been correlated with other variables in order to determine how VMT
and scrappage are linked to demographic characteristics.

In this project, LCOD is the metric used to assess costs of different vehicle technologies for different driving 
habits. LCOD calculations will focus on vehicle purchase costs and fuel costs and will include other costs 
(such as vehicle maintenance and repair), data-permitting. In particular, this project analyzes cost-
competitiveness of different technologies for low-, medium-, and high-intensity driving. For higher VMT, fuel 
costs will be a larger portion of the total cost. For a given set of vehicle technologies, LCOD is calculated to 
find the tipping point where technology A becomes cost-competitive with technology B. Using results for 
light-duty vehicle characteristics from the Energy Information Administration Annual Energy Outlook 2020 
[6] in the Verifiable Fuel Cycle Simulation (VISION) model [7], this project quantifies the energy variations
that arise from consumers with non-homogeneous driving behavior purchasing vehicles that they expect to
minimize their driving costs.

Results 
This project is modeling vehicle survivability using a logistic function, popular for population dynamics, 
following Greene and Chen [8]. For each vehicle make and model, the survivability was modeled using the 
logistic function:   =  1 −  (  1  +  (( 0 ) 0) )

−1
, where β represents a rate parameter, t0 i s a

variable to represent the median lifetime of a model, x0 represents the current year, and x represents the model 
year. The rate parameter shows how sharp the "S"-shape is of the logistic. The logistic function solves for t0 and β 
by a least squares fit between the logistic function and the implicit survivability found by dividing that model 
year’s registrations in the current year by its sales in the model year. Figure I.1.1 shows a logistic curve for the 
implicit survivability of all vehicles for which original sales data was available. The x-axis represents the number 
of years between the data snapshot (2021) and the calendar year of sales (assumed as the vehicle model year in 
this study). The y-axis represents the ratio of currently registered vehicles to originally sold vehicles. 
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This project finds that the shape of this logistic curve varies as a function of vehicle size or powertrain. Table 
I.1.1 shows the median lifetime and rate factor for different size classes (car, pickup, sport utility vehicle, and 
van), and Table I.1.2 shows the information for different powertrains (conventional internal combustion engine 
vehicle (ICEV), hybrid electric vehicle (HEV), battery electric vehicle (BEV), and plug-in hybrid electric 
vehicle (PHEV)). Trucks generally have slower scrappage than cars. Specifically, pickup trucks have the 
longest life, followed by sport utility vehicles (SUV). Cars and vans both have a modeled median lifetime of 
16.2 years. This table also shows that HEV have a modeled vehicle lifetime longer than the average vehicle, 
while BEV and PHEV each have median lifetimes shorter than conventional vehicles. It is worth noting that 
most HEV, BEV, and PHEV which have been sold in the United States are cars, which exhibit a shorter 
lifetime than light trucks. Further, because of the shorter availability of alternative-fuel vehicles, these vehicles 
have fewer model years for the curve fits, which may skew the numbers toward a lower lifetime. 

Table I.1.1 Modeled Vehicle Scrappage Rates Aggregated by Size Class 

Vehicle size class Median Lifetime 
(years), t0 Rate Factor, β Number of 

vehicles Model years 

All vehicles 17.6 0.199 228 million 1972 – 2019 
Car 16.2 0.200 92 million 1972 – 2019 

Pickup Truck 22.1 0.166 48 million 1973 – 2019 
Sport Utility Vehicle 18.6 0.197 75 million 1976 – 2019 

Van 16.2 0.232 13 million 1983 – 2019 
 

Table I.1.2 Modeled Vehicle Scrappage Rates Aggregated by Powertrain 

Vehicle powertrain Median Lifetime 
(years), t0 Rate Factor, β Number of 

vehicles Model years 

All vehicles 17.6 0.199 228 million 1972 – 2019 
HEV 18.3 0.152 4.3 million 2000 – 2019 

PHEV 10.7 0.632 0.6 million 2011 – 2020 
BEV 13.4 0.183 1.0 million 2011 – 2020 

Figure I.1.1 Implicit vehicle survivability as a function of vehicle age. Source: ANL 
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There is a likely interplay between end-of-life vehicle behavior and the total cost of ownership (TCO). A state-
by-state analysis was performed to examine spatial variations in vehicle age, where age is a proxy for vehicle 
scrappage. The full correlation matrix is shown in Figure I.1.2. This analysis found that vehicle age is 
negatively correlated with median income and fuel economy; newer vehicles have better fuel economy and are 
more likely to be purchased in higher-income locations. VMT is weakly negatively correlated with fuel price, 
and reasonably correlated to income. At the end of vehicle life, average vehicle age is correlated to the 
presence of state inspections for emissions or safety. These stricter state requirements may require vehicles to 
have repairs that are viewed as not economical, leading people to decide to scrap their vehicle (or sell across 
state lines). 

 

Total cost of ownership can be quantified rigorously based on assumptions of driving behavior, as was done in 
a recent VTO Analysis-funded project [9]. Using the framework that was presented in that work, this project 
compared LCOD for different vehicles, including hypothetical vehicles modeled to be available in the future 
and others that are available for purchase today. Figure I.1.3 shows the total cost of ownership for real-world 
model year 2019 small sport utility vehicles, purchased used after three years (e.g., in late 2021 or 2022), and 
held for seven years. The vehicles modeled are representative of those that were on the market in 2019. 
Vehicles driven in the 15th percentile of driving intensity, as determined by an analysis of the NHTS data [1] 
(approximately 6,000 miles per year) show HEV to be the lowest cost powertrain at 57 cents per mile, 
followed by conventional ICEV at 61 cents per mile, with the BEV at 75 cents per mile. The BEV is the 
highest cost option due to the higher purchase value at three years after original purchase as well as the cost to 
purchase charging equipment for home use. For vehicles driven in the 50th percentile (approximately 14,000 
miles per year), HEV remain the lowest cost option at 37 cents per mile, followed by BEV at 40.8 cents per 
mile and ICEV at 41.5 cents per mile. In this case, the greater driving distance leads to a greater amortization 
of the initial purchase cost, lowering the per-mile LCOD for each powertrain. Finally, for vehicles driven in 
the 85th percentile (approximately 25,000 miles per year), BEV are the cheapest option at 28.2 cents per mile, 
followed closely by HEV at 28.5 cents per mile, with ICEV again presenting the highest cost option, with an 
LCOD of  33.5 cents per mile. 

Figure I.1.2 Correlations of different demographic factors by state with vehicle characteristics, including vehicle age and 
fuel economy. Source: ANL 



Analysis Technologies 

10 Distributions of Real-world Vehicle Travel (Argonne National Laboratory)  

 

 

As seen in Figure I.1.3, LCOD skews more toward operational costs than vehicle purchase costs when driving 
distances are farther. It is therefore likely that rational consumers who drive more than average will aim to 
minimize operational costs and therefore disproportionately use more fuel-efficient vehicles and alternative-
fuel vehicles. Figure I.1.4 shows sales shares across the population as a function of VMT percentile for a 
scenario in which all drivers are equally likely to choose a given vehicle and a second scenario in which the 
probability of purchasing a specific vehicle is proportional to e-kx, where k is a proportionality constant and x is 
the total cost of driving per mile. Inputting these scenarios into the VISION model, the baseline scenario 
yielded a calculated light-duty vehicle (LDV) energy consumption of 9.45 quadrillion British thermal units 
(BTUs) (quads) through 2050, while the second scenario used 8.95 quads over the same timeframe. In other 
words, heavier electrification in the most intense segment leads to moderately lower total energy consumption 
(-5.3%) and this is accompanied by much higher LDV electricity charging (+80%). 
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Figure I.1.3 LCOD for three different powertrains for small sport utility vehicles, representative of model year 2019 
vehicles purchased at three years old and held for seven years. Source: ANL 

Figure I.1.4 Sales shares for cars in 2050 for two scenarios of consumer vehicle choice. Source: ANL 
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Conclusions  
This project has found broad distributions in vehicle travel, which are highly dependent on both household and 
vehicle characteristics. These distributions show that a one-size-fits-all approach to LCOD is not sufficient 
given differences in household travel behavior, as many vehicles drive significantly more or significantly less 
than the “average” vehicle, with approximately 13% of all vehicles driving more than twice as much as the 
median, and 20% of all vehicles driving less than half as much as the median. This project has begun to 
understand how vehicle energy consumption is related to vehicle survivability as well. 

Data from this task has been used to quantify vehicle TCO and energy consumption based on inputs from 
parallel DOE-sponsored research. As described above, vehicle lifetime and typical annual travel are key 
assumptions which impact TCO and LCOD calculations. This project uses the VISION model to quantify the 
sensitivity of aggregated results (e.g., total national fuel consumption, average carbon emissions, levelized cost 
of driving) to using distributions of vehicle miles rather than point estimates.  
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Project Introduction 
This project uses life cycle analysis (LCA) to estimate the cradle-to-grave (C2G) greenhouse gas (GHG) 
emissions and costs of LDV and medium- and heavy-duty vehicles (MDHDVs) considering current and future 
technologies. For this analysis, Argonne configured the Greenhouse gases and Regulated Emissions and 
Energy use in Technologies (GREET) model to evaluate the lifecycle GHG emissions of current and future 
technology pathways of petroleum and renewable gasoline for ICEVs and HEVs, conventional and renewable 
natural gas for CNG ICEVs, diesel for ICEVs, corn and cellulosic ethanol for ICEVs, steam-methane 
reforming and renewable hydrogen for fuel cell electric vehicles (FCEVs), and current and low carbon 
electricity for PHEVs and BEVs. Cost data were obtained from the literature and Department of Energy 
modeling for both current and future vehicle powertrain and fuel conditions. 

Objectives 
The goal of this research is to identify the C2G GHG emissions and costs associated with current (2020) and 
future (2030–2035) LDV and MDHDV technologies, considering a variety of different fuel pathways. The 
completed analysis so far covers LDV technologies. Utilizing gasoline-powered sedans and small SUVs in the 
United States as the baseline, the analysis evaluated the GHG reduction potential and the cost of such 
reductions using future cost projections for conventional fuels, biofuels, electricity from different resources, 
and hydrogen produced in several different ways. Vehicle-fuel combinations could thus be identified that offer 
significant GHG reductions in the most economically favorable manner. 
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Approach 
To assess lifecycle GHG emissions, this study considers emissions associated with both the fuel cycle and the 
vehicle cycle. The C2G GHG emissions assessment was carried out by expanding and modifying the GREET 
model with inputs informed by industry expertise. GREET calculates the energy use and emissions associated 
with production, transportation, distribution, and use of fuel during vehicle operation as well as those 
associated with the production of the vehicle and the end of life decommissioning and recycling of vehicle 
components. The cost analysis considered the cost of producing fuels and of producing and operating the 
vehicle while accounting for depreciation and the time value of money. Relevant data on energy use, 
emissions, and cost was obtained from agency projections (such as those by the U.S. Energy Information 
Administration (EIA)), literature, and modeling for both current and future conditions. 

Results 
Current and future vehicle powertrain technologies were evaluated for current and future fueling pathways, 
respectively, to determine their resultant GHG emissions on a life cycle basis and the costs of these vehicle-
fuel combinations. Results indicated that future vehicle technology developments alone, will be capable of 
reducing GHG emissions in a meaningful way, with a 25% reduction from the Current to the Future Gasoline 
ICEV vehicle. In fact, the Current HEV may perform equally relative to Future ICEV. At the same time, the 
results demonstrate that achieving deep GHG reduction will need coupled improvements in vehicle 
technologies along with decarbonized fueling pathways, as seen by the vertical gray arrows in Figure I.2.1. 
From a cost perspective, the levelized cost of driving (owning and operating cost) over the lifetime of the 
battery EV is comparable to that of an ICEV, ranging from a 14% cost reduction (200-mile range EV) to a 4% 
cost increase (400-mile range EV). 

 

Conclusions  
This study so far has found that technology advancement on the vehicle side will be an important facilitator of 
GHG reduction for LDVs. Both efficiency improvement and powertrain switching could lead to meaningful 
GHG reductions for these vehicles . However, to achieve deep decarbonization it will be necessary to advance 
fueling technologies such that the energy sources, themselves, have much reduced CO2 contents. Results also 
suggest that the cost of reduction for battery electric vehicles are likely to make battery EVs competitive with 
gasoline ICEVs on a levelized cost of driving basis. 

Figure I.2.1 GHG emissions for Current and Future (2030-2035) Small SUVs across multiple fueling pathways. Source: ANL 
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Project Introduction 
To date, LDVs have been modeled on a C2G basis within Argonne’s GREET (Greenhouse gases and 
Regulated Emissions and Energy use in Technologies) LCA model. Well-to-wheels (WTW) analyses of 
MDHDVs have also been developed within GREET. However, the vehicle cycle of MDHDVs has not been 
modeled or evaluated in depth. Yet, an unladen long-haul Class 8 tractor-trailer ICE truck can weigh up to 
26,000 pounds, comprised largely of steel, cast iron, aluminum, and various polymers, and may represent a 
significant energy and emissions burden. But the lifetime VMT of these trucks may mitigate the large initial 
energy use and emissions burdens on a per-mile basis. Similarly, the large payload these trucks can carry may 
mitigate the initial energy and emissions burdens on a per-ton-mile basis. On the other hand, electrification of 
MDHDVs may have very different vehicle-cycle energy and emission implications than conventional ICEVs 
since vehicle batteries can have a significant energy and emissions burden during production. 

Objectives 
The goal of this project was to identify the total vehicle material composition of Class 6 pickup and delivery 
trucks, and Class 8 day-cab and sleeper-cab trucks, inclusive of the tractor and trailer, across ICEV, HEV (for 
Class 6), and BEV powertrains. Additionally, we sought to understand the replacement timeline for common 
elements, such as tires, oil, batteries, etc. The primary desired outcome of this effort was the integration of 
these vehicles within the GREET model, thereby allowing for C2G analyses of MDHDVs.  

Approach 
Argonne modeled and evaluated vehicle and component weights, and material compositions for MDHDVs. 
Vehicles’ payload and lifetime vehicle miles traveled (VMT) were assessed to amortize material and 
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manufacturing burdens on a per-mile and per-ton-mile basis so that they can be additive to the fuel-cycle 
WTW energy use and emissions for a full C2G LCA. Component replacement over vehicle lifetime was also 
assessed and incorporated. Battery chemistry and the full battery systems appropriate for each BEV vehicle 
class were evaluated and incorporated. The modeling effort used a bottom-up and top-down approach to 
identify the material composition of all MDHDV components along with their weights. From the bottom-up 
perspective, weight, and material composition data for MDHDV component systems were compiled and 
aggregated from information on individual parts and subsystems. Data sources included: (a) Technical 
literature (journal and conference papers, and technical reports); (b) Company literature from manufacturers 
and sellers of individual parts, subsystems, and/or component systems used in present-day versions of the 
selected MDHDVs; (c) the existing GREET model for LDVs. From the top-down perspective, modeling 
outputs from Islam et al. [1] were used to size the component systems in order to align energy consumption 
profiles of the same vehicles. 

Results 
Vehicle cycle material composition inventories were developed for MDHDVs, incorporated into the GREET 
model, and then evaluated to better understand life cycle impacts. Integration of these vehicle compositions 
into GREET allows comparison of the vehicle cycle (VC) with the vehicle’s WTW—aka “fuel cycle”—
components ( i.e., well-to-pump (WTP), or fuel/energy production and delivery, and pump-to-wheel (PTW), or 
operations). Figure I.3.1 shows initial results of this analysis, which assumes that BEVs charge on the average 
U.S. electrical grid and assumes lifetime vehicle miles traveled of 300k and 1 million for the Class 6 and Class 
8 vehicles, respectively. Also note that Class 6 BEVs have one lifetime traction battery, while Class 8 have 
two. 

 

Conclusions 
The GREET model was expanded to include an extensive mass and material composition formulation for 
MDHDVs. This allows for C2G analysis when coupled with the fueling WTW modeling that is already a 
fundamental component of the GREET model. Initial results indicate that, on a C2G basis, the MDHDV 
vehicle cycle represents a relatively small portion of the total life cycle GHG emissions for ICEVs (~2%–5%) 
but a larger portion for BEVs (~13%–19%).  

Key Publications 
Iyer, R.K., et al., 2021, ”Vehicle-Cycle Inventory for Medium- and Heavy-Duty Vehicles.” Argonne National 
Laboratory publication ANL/ESD-21/18. 

Figure I.3.1 Life cycle GHG emissions for MDHDVs on a per-mile basis. Note that the lifetime miles traveled are 300k for 
a Class 6 vehicle and 1 million for Class 8 vehicles. Source: ANL 
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Project Introduction 
An accurate picture of electricity characteristics, which vary significantly by region, are crucial for the 
assessment of the environmental impacts of BEVs at the regional level. Due to the fact that there are frequent 
electricity interchanges among regions in the U.S., regional electricity characteristics as derived from a 
consumption-based perspective might differ significantly from those characterized solely based on electricity 
generation. In FY 2020, Argonne developed an integrated modeling system that considers electricity 
generation, consumption, and imports and exports among 78 balancing authorities (BAs) in the U.S., Canada, 
and Mexico in order to characterize consumption-based regional electricity characteristics at an annual level. 
In FY 2021, Argonne expanded the analysis to include the sectoral and the monthly levels, since there are 
significant variations in electricity use by sector as well as in electricity generation/interchanges by month. 
Argonne also conducted a preliminary WTW comparison of a diesel ICEV and BEV technologies for medium-
duty and heavy-duty (MDHD) trucks at the state level from the consumption-based electricity perspective. 

Objectives 
The objectives of this project were to (1) develop consumption-based electricity mixes, energy use intensities, 
and emissions intensities of both greenhouse gases (both GHGs as a whole and also CO2, methane, and nitrous 
oxide separately) and air pollutants (NOx, sulfur dioxide, carbon monoxide, VOC, PM10, PM2.5, black carbon, 
and organic carbon) for regional electricity use in the U.S. by sector and by month, and (2) compare WTW 
energy use and emissions of diesel ICEV and BEV technologies for MDHDVs at the state level using the 
developed consumption-based electricity characteristics. 

Approach 
Argonne processed, compiled, and estimated all relevant data at the monthly level, including electricity 
generation and fuel consumption by fuel type and by power plant, emissions of GHGs and air pollutants by 
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power plant, electricity interchanges among BAs, and electricity sales by BA and by sector (including 
residential, commercial, industry, and transportation) in the year 2017. Using Argonne’s GREET.Net software, 
these collected data were incorporated into the network-based modeling system for the entire North American 
electrical network and consumption-based regional electricity mixes, energy use intensities, and emission 
intensities of electricity by month and by sector in the U.S. were also derived. 

Argonne expanded its recent national WTW analysis of battery MDHDVs [1] to the state level using the 
consumption-based regional electricity characteristics developed in this project. Six types of MDHDVs were 
considered, including Class 8 long-haul combination, Class 8 short-haul combination, Class 8 refuse, Class 6, 
medium heavy-duty vocational, Class 4 light heavy-duty vocational, and Class 2 pickup trucks and vans. Fuel 
economy values for these MDHDV classes are from Argonne’s Autonomie model simulations. 

Results 
Figure I.4.1 shows monthly GHG emission intensities of electricity by BA in 2017. At the national level, 
electricity GHG emission intensities are relatively high in summer and winter and low in spring and autumn. 
Moreover, significant seasonal variations in electricity characteristics are evident at the regional level, from 
both the consumption-based and generation-based perspectives. An additional key finding from this data is 
that, as had been hypothesized, consumption-based electricity results differ from generation-based ones for 
most regions in the U.S., particularly for small BAs, due to frequent interregional electricity interchanges. 

 

Similar results are also available for electricity mixes, energy use intensities, and emission intensities of 
individual GHGs and air pollutants for all BAs. 

Figure I.4.2 shows sectoral variations in consumption-based GHG emission intensities of electricity by state in 
2017. There are moderate differences in consumption-based electricity results among sectors within most 
states. At the national level, GHG emission intensities of electricity used in the transportation, commercial, and 
residential sectors were 31%, 3%, and 1% lower than the average of all-sector electricity use, respectively. 
Electricity consumed in the industry sector was 6% more GHG-intensive than the all-sector average. It is 

Figure I.4.1 Monthly variations of generation-based (bottom) and consumption-based (top) GHG emission intensities of 
electricity relative to the annual averages by BA in 2017. Some BAs do not have generation-based results because they 

solely act as nodes in the grid. (Transmission losses are not taken into account.). Source: ANL 
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important to note that the electricity used in the transportation sector does not include that used to charge on-
road plug-in electric vehicles, but it does include the electricity used to power railroads and railways. 

 

Similar results for electricity mixes, energy use intensities, and emission intensities of specific GHGs and air 
pollutants are also available. 

Figure I.4.3 shows a WTW GHG emissions comparison, by state, between BEVs and diesel ICEVs for Class 8 
long-haul and Class 6 MDHD vocational trucks, presumably as deployed in 2017. Consumption-based 
electricity characteristics are used in the analysis. There are large WTW emissions variations for BEVs at the 
state level. From a consumption-based electricity perspective, Class 8 long-haul BEVs have higher WTW 
GHG emissions than their ICEV counterparts in 27 states. Due to higher weighting from the Air Resources 
Board cycle (i.e., urban cycle), Class 6 MDHD BEVs have less WTW GHG emissions than their ICEV 
counterparts in all states. 

 
(a)                                                                                            (b) 

In nearly all continental U.S. states, Class 8 long-haul and Class 6 MDHD BEVs have less WTW NOx 
emissions than their ICEV counterparts. Shifting from ICEV to BEV would increase WTW PM10 emissions 
across all MDHDV types except for in states with a cleaner consumption-based grid (e.g., the northwestern and 
northeastern states). 

Similar results are available for WTW emissions of individual GHGs and air pollutants for all six types of 
MDHD trucks. 

Conclusions 
The previously developed consumption-based regional electricity characteristics analysis was expanded to the 
sectoral and the monthly levels, which improves the representation of regional electricity use in the 

Figure I.4.2 Generation-based (numeric only) and sectoral consumption-based GHG emission intensities of electricity by 
state in 2017. (Transmission losses are taken into account for both consumption and generation.). Source: ANL 

Figure I.4.3 Differences between WTW GHG emissions of BEV and diesel ICEV for (a) Class 8 long-haul and (b) Class 6 
MDHD vocational trucks at the state level in 2017. Source: ANL  
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environmental assessment of BEVs at the regional level. Whether MDHD BEVs have WTW environmental 
benefits over their ICEV counterparts varies by vehicle type, state, and the pollutants targeted. 

Key Publications 
Ankathi, S., Lu, Z., Zaimes, G., Hawkins, T., Gan, Y., Wang, M. “Greenhouse gas emissions from the global 
transportation of crude oil: current status and mitigation potential.” Journal of Industrial Ecology. Submitted. 

Burnham, A., Lu, Z., Wang, M., Elgowainy, A. “Regional emissions analysis of light-duty battery electric 
vehicles. Atmosphere.” Submitted. 

Lu, Z., Elgowainy, A. “Consumption-based regional electricity characteristics of North American electrical 
network.” In preparation. 
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Project Introduction 
Vehicle market dynamics modeling for energy transition issues are important to the DOE mission and to its 
stakeholders, enabling both government and industry to better understand and quantify the future value of 
ongoing R&D. Technology impacts (e.g., energy consumption, consumer costs, and GHG emissions) are often 
used to justify and prioritize R&D investments in advanced vehicle technologies. Quantifying such impacts 
requires estimation of consumer adoption of the technologies. However, consumers may view technologies 
differently than engineers and scientists. Meanwhile, suppliers seek less risk and a good public image, in 
addition to profits. These factors, both individually and in combination, present challenges in understanding 
and modeling supplier behavior and consumer acceptance of advanced vehicle technologies.  

To alleviate these challenges, the Transportation Energy Evolution Modeling (TEEM) program developed the 
MA3T (Market Acceptance of Advanced Automotive Technologies) model and its derivative models to 
simulate market penetration and dynamics in transitions toward energy efficient vehicle and mobility 
technologies. MA3T output is annual sales share of either a vehicle or mobility technology (e.g., 42-volt mild 
hybrid, 200-mile BEV, or autonomous shared mobility). Model inputs include consumer segmentation and 
attributes, technology cost and performance, infrastructure availability and prices, and government incentives. 
All of these inputs can be easily changed in the Microsoft Excel-based model. 

The success of the VTO Analysis investment in the MA3T model has been evidenced by expanded 
sponsorship from IIASA, VTO EEMS, Hydrogen and Fuel Cell Technologies Office (HFTO), Bioenergy 
Technologies Office (BETO) and the Office of Energy Efficiency and Renewable Energy (EERE), for both 
adaption of MA3T for other purposes and application of it. The TEEM team has published over 90 peer-
reviewed articles (https://teem.ornl.gov/publications.shtml), including 10 during FY 2021. 

Objectives 
The objectives of the TEEM project are to: (1) develop a user-friendly, useful, and credible simulation tool in 
support of techno-economic analysis with respect to energy-relevant vehicle technologies; (2) close key 
knowledge gaps in fundamental issues, (3) advance discussions of vehicle technologies through publications, 
and (4) use the model as a coherent intellectual platform to collect industry feedback and conduct quick-
turnaround scenario analysis of interest to stakeholders. 

Approach 
The core of the MA3T model is based on a nested multinomial logit methodology, with the immediate outputs 
indicating the purchase probability of each technology option by each consumer segment. These probabilities 
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are then translated into estimates of vehicle sales by technology, vehicle population, energy consumption, and 
emissions. These outputs are also used as feedback to dynamically affect the conditions and purchase 
probabilities of the next time step. Model inputs include consumer segmentation and attributes, technology 
cost and performance, infrastructure availability and prices, and government incentives.  

The MA3T and its derivative models are structured to accept data, targets, and assumptions from VTO R&D 
programs, including but not limited to program targets of VTO, HFTO, and BETO, projected energy prices 
from various Annual Energy Outlook (AEO) scenarios, industry inputs on battery cost and fuel economies, 
state-level plug-in electric (PEV) incentives, regional deployment of public chargers and, in some cases, the 
hypothetical deployment of extreme fast charging. The TEEM program also developed new methods to 
quantify certain utility components in consumer choice, such as range limitation cost and refueling 
inconvenience. 

In particular, to improve the future MA3T modeling assumptions, in FY 2021 the primary effort of the team 
was to update and calibrate the MA3T model with the most recent data sources and public literature, to capture 
the market dynamics impacts of the expansion of charging infrastructure, different charging speeds, battery 
degradation, feedback from the used vehicle market and restriction on consumer choices. 

Results 
1. Climate and Health Benefits of Long-haul Electric Trucks 
Invited by Joule to preview a designated article, the team published an article on climate and health impacts of 
long-haul electric trucks [1]. Published by Environmental Science and Technology and authored by Tong et al. 
[2], the previewed article monetized the health and climate damages at somewhere between a 47%–54% 
increase and a 77%–88% reduction. The preview article by the team argued for adjustments to the marginal 
emission and static assumptions. In fact, with the use of average emission factors and a simple weighting 
method to reflect transition dynamics, the impacts are found to be almost certainly positive, with a 7%–94% 
reduction in damages, as shown in Figure I.5.1. More detail on this can be found in the published article [2]. 

 
Figure I.5.1 Health and climate damages--diesel trucks vs electric trucks [1]. Source: ORNL 
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2. MA3T Improvements and Applications 
Two major upgrades for MA3T are being carried out—modeling the used vehicle market and calculating 
consumer surplus. 

Even with accelerated adoption of electric vehicles, petroleum consumption from the increasingly durable 
legacy gasoline vehicles could still pose a barrier to President Biden’s 2050 net zero goal. Expanding MA3T to 
be able to consider the used vehicle market and its dynamics with the new vehicle market will allow analysis 
of policies that may aim at accelerating retirements of legacy gasoline vehicles from the vehicle fleet. Such 
policy goals can be controversial and should be informed by systematic model-based analysis that objectively 
anticipates the associated benefits and risks. Detailed vehicle registration data from 2002-2020 have been 
purchased from Information Handling Systems – IHS - Automotive and have been cleaned and merged with 
used vehicle price data from the Consumer Expenditure Survey. Vehicle scrappage schedules and price 
elasticities are being estimated for calibration of the MA3T-Used module in order to align it with the current 
new vehicle sales module of MA3T. The MA3T-Used module will “tell” the new vehicle sales module the 
costs and benefits of buying a used vehicle by fuel type, thereby “influencing” the choices among new vehicle 
purchases. 

The calculation of consumer surplus, the second upgrade, enables MA3T to analyze the impacts of broader 
policies, such as incentives for used vehicle early retirements or replacement with EVs and banning of gasoline 
vehicles. The positive impacts of such policies are usually measured in terms of increased EV sales or reduced 
GHG emissions, but their negative impacts (e.g., restricting consumer choices) have often been ignored. 
Consumer surplus calculation is one method to capture negative impacts and to allow anticipation of market 
resistance. MA3T has been upgraded to calculate and output consumer surplus change, for example as a result 
of choice restriction. The upgraded MA3T is being used for a working paper on U.S. LDV net zero pathways. 

3. Regional Electric Vehicle Infrastructure Strategic Evolution (REVISE) 2.0 Model 
This task is to develop an open-source on-premises software for national electric vehicle infrastructure 
planning. The software, named REVISE 2.0, helps users to make infrastructure planning decisions based on 
different technology, policy, and traveler assumptions. The open-source code and the compiled software are 
published in GitHub (https://github.com/xiefei0117/REVISE-national-charging-infrastructure-model), and a 
paper on national infrastructure analysis using REVISE 2.0 was published in Applied Energy in FY 2021 [3]. 
Figure I.5.2 shows example EV charging infrastructure expansion strategies along U.S. interstate highways to 
support inter-city passenger travel demand between metropolitan areas. 

 
Figure I.5.2 Expansion of Charging Infrastructure Systems – Output from REVISE 2.0 with close-up display of results in two 

selected periods. Source: ORNL 

https://github.com/xiefei0117/REVISE-national-charging-infrastructure-model
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4. Empirical Estimation of Route Length Along U.S. Interstate Highways Based on Great Circle Distance 
This study was to develop simple linear regression models to estimate route distances along interstate 
highways in the U.S. based on great circle distances (GCDs). The motivation was that calculating routing 
distances is a necessary step for most transportation energy projects, though this requires non-trivial network 
processing efforts. Many projects only require approximated distances, which could be estimated based on the 
GCDs, and the GCDs are much easier to compute (it assumes the earth is a perfect sphere with a radius of 
6378.137 km and calculates the sphere surface distance between two points of given longitude and latitudes). 
As part of this study, a database was created whereby users could query the appropriate empirical statistical 
regression models for selected regions. A paper that describes the methods and shows the database was 
published in Transportation Research Record [4]. Figure I.5.3 shows geographic variations of the slope 
coefficient in the state-level empirical statistical models of route distance estimation. The slope coefficient is 
expected to be higher than 1, indicating that the actual route distance is longer than the GCD. Larger slopes 
indicate that a longer route distance is expected for the same GCD. 

 
Figure I.5.3 state-level empirical statistical models of route distance estimation. Source: ORNL 

5. Deployment Priority of Public Charging Speeds for Increasing Battery Electric Vehicle Usability 
The impact of different charging speeds on BEV usability is conducted using trip-chain data from NHTS 2017 
[5]. Figure I.5.4 shows a heatmap of daily expected driving range with different levels of charging power 
under four scenarios. Scenarios 1 is a theoretical and ideal case that no charging constraint exists. Although it 
is not realistic, this scenario gives an overall benchmark on the expected driving range of the 150-mile-range 
BEV. Scenario 2 added the constraint of battery capacity. Compared with scenario 1, the expected driving 
range decreases for all types of chargers. Scenario 3 is a case that considers the remaining battery capacity and 
trip chain constraints. It is the most realistic case and suggests that the expected daily driving range across 
direct current fast charger (DCFC), smart charging, and extreme fast charging do not significantly differ from 
each other. Scenario 4 is a special case of Scenario 3 in which BEVs only charge once daily, at the stop with 
the longest dwell time. In this case, the expected daily driving range drops further for all charger types and, for 
all but the level 2 charger type, is equivalent across charger type. As the sole exception, the level 2 charger has 
a slightly lower expected daily driving range. 
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Figure I.5.4 Expected daily driving range, in miles, by charging speed (95th percentiles of the expected range distribution as 

the expected driving range). Source: ORNL 

Conclusions 
In FY 2021, the TEEM team conducted research on charging infrastructure, vehicle efficiency, consumer 
surplus, and vehicle technology-related topics that supported improvements of the MA3T model. The team 
also published studies on charging infrastructure, long-haul truck electrification and contributed to a National 
Academies study examining technologies that could improve LDV fuel economy [1]. More research is needed 
to continue the improvement of MA3T and its derivative models toward the goal of achieving fully integrated 
analyses of emerging energy-relevant technologies.  
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Project Introduction 
Energy use by the U.S. transportation sector has significant impacts on national energy security and emissions. 
To help research and develop technologies to reduce those impacts, VTO needs strong analytical modeling 
capabilities to compare and evaluate the fleet impact of vehicle and fuel technologies by employing consistent, 
systematic approaches and methodologies. The macroeconomic accounting models, VISION and NEAT ([1] 
and [2] respectively) have been previously developed to provide estimates of the potential energy use, oil use, 
and carbon emissions impacts of advanced LDVs, medium-duty vehicles, HDVs, and freight modes, as well as 
of alternative fuels, at the national level. VISION provides estimates of the potential energy use, oil use, and 
carbon emissions impacts of advanced light- and heavy-duty vehicle technologies and alternative fuels while 
NEAT focuses on the five domestic freight carrying modes and their use of alternative fuels. The five modes 
are: (1) Intercity Freight-carrying Trucks, (2) Freight Rail, (3) Domestic Freight Marine, (4) Domestic Freight 
Aviation, and (5) Pipeline.  

This project 1) annually updates and calibrates the VISION/NEAT models with projections from the EIA’s 
AEO Reference Case [3] and the Department of Transportation’s Federal Highway Administration Freight 
Analysis Framework (FAF) [4], and 2) enhances the extant MDHD modeling capabilities and adds 
heterogeneity to the model by adding flexible inputs for new mobility patterns and demographic variation. 

The annually updated and enhanced tools should better serve key stakeholders and provide the VTO Analysis 
Program with a systematic and consistent approach to evaluate emerging technologies and trends as well as the 
expanding the DOE MDHD R&D portfolio. Argonne is working with the National Renewable Energy 
Laboratory (NREL) on this task. DOE EERE programs and other agencies use these models extensively in 
projects such as other VTO analyses, SMART Mobility, H2@Scale, and Natural Gas analysis to evaluate the 
impacts of advanced vehicle/fuel technologies. The models are also widely used by researchers across 
universities, state agencies, consulting companies, and energy companies. VISION-online 
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(https://vision.es.anl.gov/) is a web-based lite version, developed in FY 2019, of the VISION model. VISION-
online allows both technical and non-technical users to run quick analyses of fleet impacts by changing key 
inputs including market penetration, annual VMT, and vehicle efficiency by technology and type. VISION-
online also acts as an educational tool to help users understand major functionalities of the VISION model. 

Objectives 
The project objective is to develop and update macroeconomic accounting model capabilities for the VTO 
Analysis Program and other programs to systematically and consistently evaluate and/or compare vehicle 
technologies, freight modes, and fuel systems with regard to energy and environmental impacts. The 
VISION/NEAT models were, in fact, originally developed to serve this goal. Enhanced MDHD capabilities 
and model heterogeneity will both respond to the needs of the Transportation Decarbonization Analysis 
(formerly “Benefits Analysis”) and reflect the expanding DOE R&D portfolio in the MDHD space. These 
enhancements will also reflect emerging trends, such as the growth in local and regional shipping relative to 
long haul, and will support the future incorporation of emerging technologies, such as shared vehicles, and 
connected and automated commercial vehicles. 

In FY 2021, this project analyzed the impact of vehicle upsizing using VISION. The EIA’s AEO estimates 
energy consumption in all sectors of the economy for the United States through 2050. However, historically, 
the market share estimated for light trucks has generally been lower than the actual number of sales, leading to 
energy projections that are overly optimistic. The specific objective has been to quantify the vehicle emissions 
and energy use assuming a different mix of cars and trucks and identify possible potential technical pathways 
available to mitigate some or all of this vehicle upsizing, including lightweighting, hybridization and 
electrification, and engine downsizing.  

Approach  
There are two tasks under this project. The following describes the method for each task separately. Figure 
I.6.1 shows the overall VISION/NEAT model framework, along with the vehicle technologies and 
transportation fuel pathways considered. 

https://vision.es.anl.gov/
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Figure I.6.1 VISION/NEAT Model Structure. Source: ANL 

Task 1 Annual Update and Enhancement: VISION/NEAT were updated according to the latest annual data 
in order to align the base case with the reference cases of the current AEO and FAF projections. The models 
were also revised to reflect energy and emissions coefficients from the latest Argonne GREET model [5]. The 
models were calibrated to match the total energy consumption of highway vehicles and of the freight sector, by 
fuel type, with projections from the AEO. Historical numbers for market penetration, stock, freight mode 
shares, vehicle usage (e.g., annual miles and lifetime miles) and efficiency, survival by vehicle technology and 
vehicle class, as well as many other technological and regulatory factors were also updated using information 
from various data sources, including highway statistics, the Transportation Energy Data Book (TEDB) [6], the 
EIA projections to 2050 [7], the U.S. Census, Wards’ Auto, and others. As in previous years, Argonne will 
release the models to the public on its website (more specifically, https://www.anl.gov/es/vision-model for 
VISION and https://www.anl.gov/es/neat-nonlight-duty-energy-and-ghg-emissions-accounting-tool for NEAT) 
and address users’ questions as needed. Major inputs that can be changed by users of VISION and NEAT to 
define their own scenarios include, but are not limited to, the following: 

VISION 
• Market penetration by technology  

• Fuel economy by technology  

• Vehicle survival rate 

• Alternative fuel energy and carbon emissions rate (per mile)  

• Light truck share of the total LDV market 

• Share of Fischer-Tropsch diesel/biodiesel in diesel (by volume) 

https://www.anl.gov/es/vision-model
https://www.anl.gov/es/neat-nonlight-duty-energy-and-ghg-emissions-accounting-tool
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• Electric generation mix 

• Flex-fuel vehicle, VMT share 

• Ethanol production share by feedstock 

• Hydrogen production share by feedstock 

• LDV VMT growth rate 

• Diesel share in heavy-duty truck VMT 

• Fuel price (i.e., in comparison to gasoline) 

• Vehicle cost (in comparison to a conventional midsize car or light truck, in ratio). 

NEAT 
• Ton-mile change factors over 2010 values by commodity 

• Ton-mile shares by mode within commodity 

• Modal energy intensity/efficiency (i.e., Btu/ton-mile) by commodity 

• Fuel shares (i.e., % of petroleum fuels, biofuels, electricity by volume) by mode 

• Electricity generation primary fuel shares (% kWh/fuel). 

This project enhances MDHD model capabilities to better align the model with emerging technologies and 
trends, the growing DOE MDHD R&D portfolio, and the MDHD components of the annual VTO 
Transportation Decarbonization Analysis. FY 2020 work focused on the HD module. The enhancement will be 
fully completed in FY 2022. 

The MDHD stock in the previous VISION was segmented into three markets: Class 3–6, Class 7 and Class 8 
Single Unit (SU), and Class 7 and Class 8 Combination trucks. Now the model has been enhanced to separate 
Class 7 and Class 8 into three market segments: vocational single-unit trucks, day cab (regional) tractor-trailer 
combination trucks, and sleeper (long haul) tractor-trailer combination trucks, with separate accounting for 
multiple powertrains. Table I.6.1 shows the twenty different powertrains that were considered, though not all 
powertrains will be included in each market segment. Selection of appropriate powertrains for each segment 
were made in consultation with the DOE and the VTO Transportation Decarbonization Analysis team.  

Table I.6.1 Alternative Powertrains for Class 7-8 Trucks 

 Class 7-8 
Sleeper 

Class 7-8 
Day Cab 

Class 7-8 
Vocational 

Diesel Yes Yes Yes 
Gasoline (incl flex)   Yes 

CNG/LNG Yes Yes Yes 
HEV (Diesel) Yes Yes Yes 

HEV (Gasoline)    
BEV Yes Yes Yes 

PHEV (Diesel) Yes Yes Yes 
PHEV (Gasoline)   Yes 

FCEV Yes Yes Yes 
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Task 2 Impact of Vehicle Upsizing: The EIA’s AEO 2020 estimates a lower share of light trucks in the future 
than many third-party forecasts. This analysis develops 20 different scenarios, changing the mix of cars, 
crossovers, SUVs, pickups, and vans from the AEO 2020 Reference Case, and calculates the average fuel 
economy in these alternate scenarios with larger (or smaller) vehicles. 

The VISION model estimates energy consumption and emissions for vehicles through 2100 given vehicle fuel 
economy and sales mix, accounting for typical travel patterns and vehicle scrappage rates [1]. VISION splits 
vehicles into the two regulatory size classes and offers 14 different combinations of vehicle powertrains and 
fuel types for each. For each model year, we determine the sales-weighted average fuel economy for our AEO-
modeled vehicles with our updated fleet sales mix to use as inputs into VISION. This analysis uses VISION 
defaults to quantify the scrappage of these vehicles over time. VMT distributions for cars and light trucks have 
historically differed, with light trucks driving more than cars [8], [9]. Additionally, VISION includes an 
elasticity for VMT based on the price of fuel. This analysis does not consider changes in mobility along with 
changes in size class, but rather makes a proportional adjustment to VMT to match total light-duty vehicle 
travel in each year. This analysis normalizes VMT, redistributing VMT across the vehicle fleet but not 
changing the total amount of travel. 

Quantifying the energy and emissions for each vehicle type requires a full cradle-to-grave analysis including 
both the fuel consumption cycle and vehicle manufacturing cycle. This analysis uses the GREET model to 
estimate the embodied (or “well-to-wheel”) energy consumption and emissions for each vehicle type [5] using 
default values for electricity emissions (matching AEO 2020) and for upstream gasoline emissions. We 
account for the vehicle powertrain, size class, and total weight when estimating lifecycle energy consumption 
for these vehicles. 

This analysis considers four different mitigation strategies to improve fuel economy in spite of vehicle 
upsizing: vehicle lightweighting, hybridization of ICE engines, full electrification of ICE vehicles, and reduced 
ICE horsepower. For lightweighting and mild hybridization, we adjust the fuel economy of each vehicle based 
on the technology matrix published by EIA in the AEO documentation [3]. For powertrain switching, we 
estimate the fraction of the ICE fleet that must be converted to either HEV or BEV to achieve the total energy 
consumption as calculated by VISION [1]. Finally, for decreased performance, we note that engine 
performance and efficiency can be viewed as a tradeoff [10] [11], and estimate the gain in fuel economy from 
reduced horsepower [12].  For each strategy we consider cumulative energy use and GHG emissions through 
2050.  

Results  
The VISION 2021 base case reflects projections relating to light and heavy highway vehicles in EIA’s AEO 
2021. In Figure I.6.2, this can be seen by the slight re-adjustment of the trend lines in the following year. In the 
2021 VISION model update, these projections have been extended to the year 2100. For GHG emissions, the 
VISION model uses carbon coefficients derived from Argonne’s GREET model. GREET GHG coefficients 
account for the full fuel cycle. VISION 2021 has been updated to reflect the (1) EIA AEO 2021 Reference 
Case, and (2) GHG and upstream energy rates from GREET1_2020. Class 7–8 heavy-duty vehicles now are 
subdivided into three market segments with separate accounting for multiple powertrains technologies: 
vocational single-unit trucks, day cab (regional) tractor-trailer combination trucks, and sleeper (long haul) 
tractor-trailer combination trucks. 
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Figure I.6.2 VISION 2021 Base Case, Full-fuel cycle energy use and GHG emissions by fuel and vehicle type. Source: ANL 

This task involves quantifying the total energy consumption and lifecycle GHG emissions for LDV nationwide 
through 2050 for each of the scenarios defined. In the AEO Reference Case, annual LDV petroleum 
consumption, energy use, and GHG emissions drop by around 15% from 2020 to 2030. Table I.6.2 shows the 
total energy and GHG emissions, via percentage change from the AEO 2020 Reference Case, for each of the 
twenty scenarios through 2050, along with the national costs based on the same format. 

In general, each technology pathway considered for mitigation yields similar results in all scenarios. 
Specifically, this analysis finds that, by 2050, on average: 

• A 20% mass reduction lowers GHG emissions by about 1% while increasing total consumer costs by 
about 3%;  

• Micro-hybrid ICEs, with engine stop-start technology, lower GHG emissions by just over 1% while 
slightly decreasing total consumer costs;  

• Mild-hybrid ICEs, where the battery can assist propulsion of the combustion engine, lower GHG 
emissions by about 2% while increasing total consumer costs by about 2%; 

• A 50% share of full HEVs lowers GHG emissions by about 9% while decreasing total consumer costs 
by about 0.5%; 

• A 50% share of full BEVs lowers GHG emissions by over 12%, but increases total consumer costs by 
about 6%; and 

• A 15% reduction in engine horsepower lowers GHG emissions by about 2.5% and decreases total 
consumer costs by about 1%. 
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Table I.6.2 Percentage Change of Each Metric Relative to AEO 2020 Reference Case 

Scenario 

Energy GHG Emissions Costs 

Petroleum Biofuels Electricity Total Fuel Lifecycle National 

Baseline: AEO 
2020 

2,780 billion 
gallons 

329 billion 
gallons 2,315 TWh 439 quad 

33,619 
million 

metric tons 
CO2-eq 

37,254 
million 

metric tons 
CO2-eq 

$26.5 
trillion 

#1 19% 19% -45% 18% 17% 18% 5% 
#2 10% 10% -44% 10% 9% 10% -5% 
#3 17% 17% -45% 15% 15% 15% 23% 
#4 1% 1% -11% 1% 1% 1% -1% 
#5 -12% -12% 45% -11% -11% -11% -4% 
#6 17% 17% -45% 16% 16% 16% 18% 
#7 11% 11% -32% 10% 10% 10% 9% 
#8 13% 14% -36% 12% 12% 12% 14% 
#9 11% 11% -30% 10% 10% 10% 11% 

#10 7% 7% -21% 6% 6% 6% 5% 
#11 5% 5% -18% 4% 4% 4% 0% 
#12 8% 8% -19% 7% 7% 7% 9% 
#13 5% 5% -14% 5% 5% 5% 5% 
#14 6% 6% -10% 5% 5% 5% 8% 
#15 3% 3% -4% 2% 2% 2% 4% 
#16 -1% -1% 3% 0% 0% 0% -1% 
#17 -2% -2% 13% -2% -2% -2% 0% 
#18 -6% -6% 25% -5% -5% -5% -2% 
#19 2% 2% -10% 2% 2% 2% 1% 
#20 2% 3% 6% 3% 3% 3% 7% 

Conclusions  
The VISION/NEAT models have been used in several DOE EERE programs and activities such as the VTO 
analysis program, Transportation Decarbonization (formerly “Benefits”) Analysis, SMART Mobility, and 
H2@Scale, in order to evaluate the impacts of advanced vehicle technologies. VISION/NEAT has over 4000 
users. 

In this project, Argonne’s VISION/NEAT model was fully updated to match the projections in the EIA AEO 
2021 Reference Case and FAF4.0. VISION/NEAT is now also updated with GHG and upstream energy rates 
from GREET1_2020. Historical vehicle sales, stock, fuel economy, and other information were collected and 
documented in the model. The MDHD module is further segmented into Class 7 and 8 Vocational, Day Cab, 
and Sleepers, with projections aligned with the AEO 2021 Reference Case.  

A vehicle upsizing scenario analysis shows that energy consumed by on-road light-duty vehicles in the U.S. 
can vary by as much as 10% by changing assumptions regarding the mix of sedans, utility vehicles, vans, and 
pickup trucks. Scenarios that are aligned with third-party forecasts of vehicle sales assume a greater proportion 
of light trucks and fewer cars, which yields petroleum consumption 3%–8% higher than the Reference Case in 
the 2020 AEO. This results in GHG emissions that are 5%–7% higher and a 4%–9% increase in consumer 
spending on vehicles and fuel. This incremental energy consumption can be offset by considering additional 
technologies for these vehicles; electrification, hybridization, reduced engine power, and lightweighting can all 
mitigate increases in vehicle size to some extent. If sedans were fully phased out in favor of sport utility 
vehicles, a sales share of either 30% battery electric vehicles or 39% hybrid electric vehicles would be 
sufficient to return to the GHG emissions baseline as set by the AEO Reference Case. 
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Key Publications    
David Gohlke, Jarod Kelly, Thomas Stephens, Xinyi Wu and Yan Zhou, 2022, “Mitigation of Emissions and 
Energy Consumption Due to Light-Duty Vehicle Size Increases.” presentation accepted for the 2022 
Transportation Research Board Annual Meeting. 
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Project Introduction  
To inform stakeholders, transportation analysts and VTO staff require quality current and historical data and 
information on the transportation sector. The TEDB and Vehicle Technologies Fact of the Week are created by 
Oak Ridge National Laboratory’s Transportation Data Program (TDP). The TDP provides a wealth of 
information that is used as a DOE resource to improve analyses of the transportation sector; these studies 
contribute to program planning, evaluation, and technology research in the public and private sectors. 
Meanwhile, stakeholders, academia and others use these data to help move the United States toward using less 
petroleum and reducing greenhouse gas emissions. 

Objectives  
The objective of the TDP is to provide quality data and information for the VTO Analysis Program and 
stakeholders. Specifically, the project has (1) produced the text, graphics, and data for a Fact of the Week 
(FOTW) that is posted on the VTO website each week and is sent to a subscription list via email, (2) produced 
updated tabular and graphical data on the transportation sector that were posted on the TEDB website twice a 
year as Editions 39.1 and 39.2, and (3) produced a draft of Edition 40 of the TEDB, including updated data and 
information. 

Approach  
Oak Ridge National Laboratory’s (ORNL’s) approach for the TDP can be categorized into four stages: 
discovery, due diligence, approval, and publication as shown in Figure I.7.1. Data are discovered from a 
myriad of public and private sources, and ORNL performs due diligence to ensure that the data are defined and 
notated correctly. In this stage of the approach, ORNL works with other laboratories (e.g., Argonne and 
NREL), government agencies (e.g., the Federal Highway Administration), and private companies (e.g., Ward’s 
Automotive) to compile and understand the data that are collected, being careful to ensure that data derived 
from differing sources are comparable. Explanatory text is written, and tabulations/graphics are generated in 
Microsoft (MS) Word and/or MS Excel. DOE reviews and approves each FOTW and the tabulations/graphics 
in the TEDB before final publication. The FOTW is published on the VTO Transportation Fact of the Week 
webpage (https://energy.gov/eere/vehicles/transportation-fact-week), and an email with the FOTW is sent (via 
the GovDelivery system) to the subscription list every week, typically on Monday afternoons. The PDF and 
MS Excel files for the TEDB (https://tedb.ornl.gov/) are posted on the website hosted by ORNL. The major 
topics for the TDP publications are provided in Table I.7.1. 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/DavisSC@ornl.gov
mailto:Jacob.Ward@ee.doe.gov
https://energy.gov/eere/vehicles/transportation-fact-week
https://tedb.ornl.gov/
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Figure I.7.1 Approach for the transportation data program at ORNL. Source: ORNL 

Table I.7.1 Major Topics for the Transportation Data Program at Oak Ridge National Laboratory  

Transportation Energy Data Book Topics Fact of the Week Topics 

Petroleum Sales 

Energy Petroleum 

Light Vehicles  and Characteristics Fuel Economy 

Heavy Vehicles and Characteristics Travel Behavior 

Alternative Fuel and Advanced Technology 
Vehicles and Characteristics 

Gasoline 

Transit and Other Shared Mobility Electric Vehicles 

Fleet Vehicles and Characteristics Cost to Consumer 

Household Vehicles and Characteristics Diesel 

Nonhighway Modes Import/Export 

Transportation and the Economy Infrastructure 

Emissions Heavy-duty Vehicles 

Energy Conversions Behavior/Ownership, and More… 

 

Results  
The weekly email for the FOTW began on July 27, 2015, with 50 email subscribers. As of the end of FY 2021, 
there were 25,371 subscribers to the Transportation FOTW newsletter. 

FOTW 1154 through 1205 were posted on the VTO website during FY 2021 as listed in Table I.7.2. For FY 
2021, FOTW content accounted for 336,360 pageviews, or 50% of all VTO website pageviews during the FY. Of 
those pageviews, 304,605 were unique visits, meaning that some visitors (31,755) to FOTW content were repeat 
visitors. Of all VTO website visits, 58% (294,799) entered the VTO website through a FOTW landing page. Fact 
915, Average Historical Annual Gasoline Pump Price from 1929- 2015, had the highest number of pageviews of 
any VTO website page—196,584, or 29% of all website pageviews during the FY. 

Table I.7.2 Facts of the Week Posted on the VTO website in FY 2021 

Date Posted Fact Fact Title 
09/27/2021 1205 Fourteen Different Models of Plug-in Electric Small SUVs Were Available in MY 2021 
09/20/2021 1204 Fuel Wasted Due to U.S. Traffic Congestion in 2020 Cut in Half from 2020 to 2020 
09/13/2021 1203 Light-Duty PEV Displaced 500 Million Gallons of Gasoline in the U.S. in 2020 
09/06/2021 1202 U.S. Light-Duty Electric Vehicle Miles Traveled Reached 13.7 Billion Miles in 2020 
08/30/2021 1201 11 Gasoline Powered Light-Duty Vehicle Models Achieved 50 MPG or Higher in 2021 

https://www.energy.gov/eere/vehicles/articles/fotw-1205-sept-27-2021-fourteen-different-models-plug-electric-small-suvs
https://www.energy.gov/eere/vehicles/articles/fotw-1204-sept-20-2021-fuel-wasted-due-us-traffic-congestion-2020-cut-half
https://www.energy.gov/eere/vehicles/articles/fotw-1203-sept-13-2021-light-duty-plug-electric-vehicles-displaced-500
https://www.energy.gov/eere/vehicles/articles/fotw-1202-sept-6-2021-us-light-duty-electric-vehicle-miles-traveled-reached
https://www.energy.gov/eere/vehicles/articles/fotw-1201-august-30-2021-eleven-gasoline-powered-light-duty-vehicle-models
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08/23/2021 1200 Sales of New EV Were Up for 2020 While Conventional Vehicle Sales Were Down 
08/16/2021 1199 U.S. Monthly Gasoline Price Has Averaged $2–$3 per Gallon Since December 2014 
08/09/2021 1198 Average Age of U.S. Light-Duty Vehicles Reached a New High of 12.1 Years in 2020 
08/02/2021 1197 Petroleum Use by U.S. Transportation Sector Declined to 12 MMBD in 2020 
07/26/2021 1196 MY 2025 Class 4 Delivery Trucks Have Lowest Total Cost of Driving 
07/19/2021 1195 The Small SUV Segment Has the Greatest Improvement in Fuel Economy of All LDV 
07/12/2021 1194 For-Hire Freight Volume Was Not Impacted as Severely Passenger Volume 
07/05/2021 1193 Nearly 76 GWh of Battery Cell Capacity Produced for U.S. PEV Market 2010 ‒ 2020 
06/28/2021 1192 Most U.S. PEV Battery Cells and Packs Produced Domestically 2018 ‒2020 
06/21/2021 1191 Fourteen States Considering Zero-Emission Light-Duty Sales Requirements 
06/14/2021 1190 Battery-Electric Vehicles Have Lower Scheduled Maintenance Costs than Other LDV 
06/07/2021 1189 U.S. Net Petroleum Imports Negative for 2020 
05/31/2021 1188 Consumers Can Estimate Upstream Greenhouse Gas Emissions for PEV 
05/24/2021 1187 The Share of U.S. Workers Who Work from Home Grew from 20% to 71% in 2020 
05/17/2021 1186 The Cost of Fuel for an Electric Vehicle is about 60% Less than for a Gasoline Vehicle 
05/10/2021 1185 Nearly 1/3 of All Light Trucks Produced in MY 2020 had 9- 10-speed Transmissions 
05/03/2021 1184 Half of all States Now Have at Least 1,000 Non-residential EV Charging Units 
04/26/2021 1183 New Cars Purchased with Low Fuel Economy Ratings Assessed a Gas Guzzler Tax 
04/19/2021 1182 Nearly 50 Light-Duty Plug-In Electric Vehicle Models Were Available in MY 2020 
04/12/2021 1181 Gross Domestic Product and Vehicle Miles Traveled Declined in 2020 
04/05/2021 1180 U.S. Vehicle Miles Traveled in April 2020 Was 40% Below April 2020 
03/29/2021 1179 All-Electric Vehicles Have the Lowest Estimated Annual Fuel Cost 
03/22/2021 1178 Gasoline Direct Injection was Installed on 55% of all LDV Produced in 2020 
03/15/2021 1177 Fuel Economy of New Light-Duty Vehicles Reached a Record High MPG in 2020 
03/08/2021 1176 The Average Household Spent 3.27% of its Income on Vehicle Fuel in 2018 
03/01/2021 1175 Vehicles Registered in the District of Columbia Averaged 22 Miles per Gallon in 2018 
02/22/2021 1174 Over 20,000 New Electric Vehicle Charging Outlets Were Installed in the U.S. in 2020 
02/15/2021 1173 California Had the Highest Number of PEV Registrations per 1,000 People in 2018 
02/8/2021 1172 New Light-Duty Vehicle Sales Declined by 15% from 2020 to 2020 

02/01/2021 1171 Crude Oil Feedstock is the Dominant Cost Component in the Retail Price of Gasoline 
01/25/2021 1170 Retail Gasoline Prices Ranged from $2.26/gallon in Mississippi to $3.67 in Hawaii 
01/18/2021 1169 Vermont Had the Highest Number of Public Electric Vehicle Chargers per Capita 
01/11/2021 1168 New Light Truck Price in 2020 was 43% Higher than the Average New Car Price 
01/04/2021 1167 Median Driving Range of All-Electric Vehicles Tops 250 Miles for Model Year 2020 
12/28/2020 1166 MY 2020 Light-Duty Vehicles Offered Consumers a Range of Fuel Economy Choices 
12/21/2020 1165 When Adjusted for Inflation, the Price of Gasoline in 2020 was Similar to 1929 
12/14/2020 1164 The Effect of Cold Temperatures on Fuel Economy 
12/07/2020 1163 Average Retail Vehicle Fuel Prices, 2020 
11/30/2020 1162 Shared Micromobility Replacing Car Trips 
11/23/2020 1161 A Tool is Available for Estimating Charging Loads from Plug-In Electric Vehicles 
11/16/2020 1160 Scooter Trips from Rental Services Averaged One Mile per Trip in 2020 
11/09/2020 1159 Shared Micromobility Trips Grew by 62% in 2020 
11/02/2020 1158 Transportation Fuels Were 62% of U.S. Government Energy Consumption in 2020 
10/26/2020 1157 Per Capita Transportation Sector Energy Consumption Has Been Flat Since 1974 

https://www.energy.gov/eere/vehicles/articles/fotw-1200-august-23-2021-sales-new-electric-vehicles-us-were-2020-while
https://www.energy.gov/eere/vehicles/articles/fotw-1199-august-16-2021-us-monthly-gasoline-price-has-averaged-2-3-gallon
https://www.energy.gov/eere/vehicles/articles/fotw-1198-august-9-2021-average-age-us-light-duty-vehicles-reached-new-high
https://www.energy.gov/eere/vehicles/articles/fotw-1197-august-2-2021-petroleum-use-us-transportation-sector-declined-12
https://www.energy.gov/eere/vehicles/articles/fotw-1196-july-26-2021-estimates-model-year-2025-diesel-trucks-show-class-4
https://www.energy.gov/eere/vehicles/articles/fotw-1195-july-19-2021-small-suv-segment-has-seen-greatest-improvement-fuel
https://www.energy.gov/eere/vehicles/articles/fotw-1193-july-5-2021-nearly-76-gigawatt-hours-battery-cell-capacity-was
https://www.energy.gov/eere/vehicles/articles/fotw-1193-july-5-2021-nearly-76-gigawatt-hours-battery-cell-capacity-was
https://www.energy.gov/eere/vehicles/articles/fotw-1192-june-28-2021-most-us-light-duty-plug-electric-vehicle-battery
https://www.energy.gov/eere/vehicles/articles/fotw-1191-june-21-2021-fourteen-states-considering-zero-emission-light-duty
https://www.energy.gov/eere/vehicles/articles/fotw-1190-june-14-2021-battery-electric-vehicles-have-lower-scheduled
https://www.energy.gov/eere/vehicles/articles/fotw-1189-june-7-2021-us-net-petroleum-imports-negative-2020
https://www.energy.gov/eere/vehicles/articles/fotw-1188-may-31-2021-consumers-can-estimate-upstream-greenhouse-gas
https://www.energy.gov/eere/vehicles/articles/fotw-1187-may-24-2021-share-us-workers-who-work-home-grew-20-71-2020
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https://www.energy.gov/eere/vehicles/articles/fotw-1174-february-22-2021-over-20000-new-electric-vehicle-charging-outlets
https://www.energy.gov/eere/vehicles/articles/fotw-1173-february-15-2021-california-had-highest-number-plug-electric
https://www.energy.gov/eere/vehicles/articles/fotw-1172-february-8-2021-new-light-duty-vehicle-sales-declined-15-2019-2020
https://www.energy.gov/eere/vehicles/articles/fotw-1171-february-1-2021-crude-oil-feedstock-dominant-cost-component-retail
https://www.energy.gov/eere/vehicles/articles/fotw-1170-january-25-2021-2019-average-annual-retail-gasoline-prices-ranged
https://www.energy.gov/eere/vehicles/articles/fotw-1169-january-18-2021-vermont-had-highest-number-public-electric-vehicle
https://www.energy.gov/eere/vehicles/articles/fotw-1168-january-11-2021-average-new-light-truck-price-2019-was-43-higher
https://www.energy.gov/eere/vehicles/articles/fotw-1167-january-4-2021-median-driving-range-all-electric-vehicles-tops-250
https://www.energy.gov/eere/vehicles/articles/fotw-1166-december-28-2020-model-year-2020-light-duty-vehicles-offered
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https://www.energy.gov/eere/vehicles/articles/fotw-1163-december-7-2020-average-retail-vehicle-fuel-prices-2019
https://www.energy.gov/eere/vehicles/articles/fotw-1162-november-30-2020-shared-micromobility-replacing-car-trips
https://www.energy.gov/eere/vehicles/articles/fotw-1161-november-23-2020-tool-available-estimating-charging-loads-plug
https://www.energy.gov/eere/vehicles/articles/fotw-1160-november-16-2020-scooter-trips-rental-services-averaged-one-mile
https://www.energy.gov/eere/vehicles/articles/fotw-1159-november-9-2020-shared-micromobility-trips-grew-62-2019
https://www.energy.gov/eere/vehicles/articles/fotw-1158-november-2-2020-transportation-fuels-were-62-us-government-energy
https://www.energy.gov/eere/vehicles/articles/fotw-1157-october-26-2020-capita-transportation-sector-energy-consumption-has
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10/19/2020 1156 Texas has the Highest Speed Limit for Light-Duty Vehicles 
10/12/2020 1155 Light-Duty Vehicles Use More Gas at Speeds Above 50 Miles per Hour 

10/05/2020 1154 Class 3-8 Diesel Vehicle Population Is Becoming Cleaner in NOx and Particulate Matter 
Emissions 

The TEDB is an online publication that is published once per year with two mid-year updates to the tables and 
graphics. Although the draft of Edition 39 was delivered in fiscal year 2020, the final Edition 39 was approved 
by DOE and put online in January 2021. The April update to Edition 39 debuted online at the end of April 
2021, with 77 tables and 9 figures updated with more recent data than was published in the original Edition 39. 
In August 2021, another 44 tables and 9 figures were updated. The draft of Edition 40 was completed and 
delivered on September 30, 2021, with a total of 223 tables and 71 figures of transportation data, many with 
historical series going back to 1970. The two appendices contain an additional 39 tables. Edition 40 will be 
posted to the website once DOE has reviewed and approved the content. 

The TEDB website has a keyword search feature to help users find the data that they need quickly and efficiently 
in both PDF and MS Excel format. In addition to enabling data access, the website has five rotating data 
highlights, links to the Transportation FOTW and Argonne National Laboratory’s E-Drive Monthly Sales, and a 
contact link so that users can easily contact the project principal investigator, Stacy Davis. The five highlights are 
changed three times each year, alongside the release of each TEDB update on the website. Other pages on the 
website provide access to an archive of older reports, citation information, and project contact information. The 
TEDB website had 48,372 pageviews in FY 2021. Google Scholar reports 4,110 citations for the TEDB as of 
October 2021. 

Twice each month a graph from data in the TEDB and a sentence about the graph was provided to the NREL 
for the Clean Cities Coordinator’s Newsletters. 

Data collected in the TDP have also provided input to other VTO programs and other agency models, such as 
MA3T, GREET®, ADOPT, the Transportation Decarbonization Analysis, the U.S. Energy Information 
Administration’s National Energy Modeling System, and the U.S. Environmental Protection Agency’s Motor 
Vehicle Emission Simulator model. 

Conclusions  
TDP has facilitated successful publication in the form of weekly, monthly, and annual milestones delivered on 
time and within budget, with improvements over time. Having such accessible information leads to analyses 
that support program planning and evaluation and technology research to address transportation efficiency, 
which will help meet DOE’s R&D priorities of reducing petroleum dependence and greenhouse gas emissions. 

Key Publications  
Davis, S. and R. Boundy (2021). “Transportation Energy Data Book: Edition 40.” Oak Ridge National 
Laboratory, Oak Ridge, Tennessee. [Draft completed in FY 2021. To be published in final form in FY 2022.] 
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Project Introduction  
The U.S. Department of Energy’s VTO and HFTO support R&D of affordable, efficient, and clean 
transportation options that will ensure fuel diversification, improve energy efficiency, and eventually achieve 
net-zero emissions. The programs include research on batteries, electric drive technologies, combustion, 
materials, fuel cells, and hydrogen storage. The intent of this project has been to develop tools and, using these 
tools, conduct analyses to estimate the benefits from DOE investments in these technology areas. Going 
forward the project will increasingly focus on pathways to achieving national transportation decarbonization 
goals through leveraging technologies supported by the VTO, HFTO and BETO. 

Objectives  
The work summarized in this progress report focuses on the project’s objective to estimate the level of energy 
and emissions benefits from achieving VTO and HFTO program technical goals under an assumed 
continuation of historical policy conditions (i.e., based on policy conditions and technology goals from 2020). 
Work is ongoing to assess updated technology progress assumptions within alternative policy and economic 
contexts conducive to decarbonizing the transportation sector. The updated analyses will be documented in 
future reports. 

Overall Approach  
This evaluation includes deep dive analyses into the benefits of technology improvements on the U.S. LDV 
fleet and, separately, on the U.S. MDHDV fleet. This report summarizes the outcomes from each of these 
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mailto:Jeff.Gonder@nrel.gov
mailto:Jacob.Ward@ee.doe.gov


FY 2021 Annual Progress Report 

Vehicle Choice Modeling and Benefits/Transportation Decarbonization Analysis (National Renewable Energy 
Laboratory) 41 

analyses both independently and in combination. Both analyses assume that technology improvements 
achieved today would not enter the market for five years, and thus do not include the benefits from past 
program research that are impacting energy and emissions today or which might in the near future. As such, 
the impact of rolling out greater technology improvements into new vehicle sales starts, in these analyses, in 
2025. Additionally, while the analyses do not quantify the benefits after 2050, the trends suggest that benefits 
will continue to grow. 

Light-Duty Vehicle Approach 
The benefits estimation for LDV is performed using the Automotive Deployment Options Projection Tool 
(ADOPT). ADOPT is a vehicle choice and stock model that estimates vehicle technology improvement 
impacts on sales, energy, and emissions [1]. It includes all the existing vehicle options for realism, estimates 
their sales using extensively validated consumer preferences, creates new market driven vehicle options 
through time, and uses the estimated sales and additional derived data to estimate energy and emissions. 

VTO and HFTO program technical goals feed into ADOPT and are applied to the vehicles through time. The 
differing assumption sets are represented by a No Program scenario that reflects the technology improvements 
assumed to occur without contributions from VTO or HFTO, and a Program Success scenario under which 
VTO and HFTO program goals are realized. Technology advancements are assumed to enter the market five 
years after they are achieved with a 1.5 cost multiplier to convert manufacturing costs to consumer price. 
Detailed technology improvement assumptions can be found in the full benefits assessment report listed in the 
Key Publications section. 

Light-Duty Results 
The benefits are estimated by comparing the national-level energy and emissions between the “No Program” 
scenario and the “Program Success” scenario. The ADOPT simulation starts in 2015, and it matches the historical 
sales trends through 2020, which include expanding HEV sales and 2% plug-in electric (PEV) sales. These can 
be seen in the No Program scenario sales results, in Figure I.8.1. The simulation additionally matches the historic 
sales observations that indicate relatively higher priced and higher performance BEVs selling best to high-income 
households. Even under the No Program scenario, the costs and performance of advanced component 
technologies such as vehicle batteries are anticipated to improve, which results in changing sales trends into the 
future. Just before 2030 sales shift to greater expansion of HEVs until 2035, after which sales transition to 
expanding PHEV market share.  

Figure I.8.1 No Program vehicle sales by powertrain. Source: NREL 

The No Program scenario results in petroleum consumption dropping from 8 million barrels per day in 2020 to 
5 million barrels per day by 2050. Carbon emissions drop from 1,365 to 924 million metric tons.  
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Next, the team evaluated the Program Success scenario, in which all the VTO and HFTO program goals are 
achieved simultaneously. While sales trends start similarly, with HEVs expanding and then PHEVs, sales 
under the Program Success scenario shift again to BEVs around 2040, as shown in Figure I.8.2. By 2050, this 
scenario results in 11% less annual petroleum consumption and 10% less annual carbon emissions than the No 
Program scenario.  

Figure I.8.2. Program Success vehicle sales by powertrain. Source: NREL

Heavy-Duty Approach 
VTO and HFTO program benefits for Class 4-8 MDHD vehicles are estimated using a set of legacy modeling 
tools. This tool set includes the Future Automotive Systems Technology Simulator (FASTSim) vehicle 
powertrain model [2], the TRUCK payback-based market adoption model, and the heavy-duty stock 
(HDStock) MDHD vehicle stock model. For the MDHD analysis, these tools are not integrated but rather are 
executed sequentially to translate component and vehicle level goals into vehicle performance (i.e., miles per 
gallon), adoption rates, and future in-use fleet energy consumption and emissions.  

The SuperTruck initiative represents a key ongoing VTO investment in improving the energy efficiency of 
commercial vehicles, with SuperTruck II goals to increase diesel engine efficiency and long-haul tractor 
vehicle-level freight efficiency by 2021. In addition, VTO supports the 21st Century Truck Partnership 
(21CTP), a government/industry research collaboration that has established high-level goals for heavy vehicles 
and engines and is in the process of developing targets for electrification technologies for commercial vehicles 
across the MDHD spectrum. HFTO recently completed a first target-setting analysis for Class 8 long-haul 
tractors [3]. These goals, in addition to recent analysis by NREL for VTO, are used to establish future vehicle 
characteristics as inputs to FASTSim, the outputs from which then feed into TRUCK, which in turn provides 
inputs for HDStock. As with the light-duty analysis, technologies incorporating research goals are assumed to 
enter the market five years after the advancements are achieved with a 1.5 cost multiplier to convert 
manufacturing costs to consumer price. Detailed technology improvement assumptions can again be found in 
the full benefits assessment report listed in the Key Publications section below. The full MDHD results details 
can be found in the same report, and these are briefly summarized in the following section.  

Heavy-Duty Results 
The Program Success results represent realization of the 2020 program goals noted just above and are 
compared to a No Program Case derived from the comparable AEO Reference Case by removing future 
adoption of advanced diesel technologies supported by VTO or HFTO R&D from this Reference Case. The No 
Program Case retains the very small penetration of alternative powertrains from the AEO Reference Case, 
including plug-in diesel and gasoline hybrid EVs, BEVs, and FCEVs. The projections for each of these 
powertrains is below 0.6% of sales within each vehicle class and, when combined, account for less than 1.7% 
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of sales within any vehicle class. There is no market penetration of strong hybrids in either the AEO Reference 
or No Program Cases. 

In the Program Success Case, advanced diesel and hybrid vehicles are very successful. These vehicles occupy 
a steadily increasing share of the diesel compression ignition (CI) segment into the future, and by 2040 achieve 
97% of the new vehicle market for sleeper tractors, around 70% for day cab tractors and Class 7 and 8 
vocational trucks, and 80% for Class 4-6 diesel vocational trucks. While the fuel economy of new diesel-
powered trucks continues to improve through 2050, shares of alternative powertrains begin to supplant these 
technologies after 2040. By 2050, PHEVs, BEVs, and FCEVs combined account for more than 40% of the 
market in the analyzed classes, as shown in Figure I.8.3 and Figure I.8.4. This results in 28% less diesel 
consumption and 21% less GHG emissions annually in 2050, as shown in Figure I.8.5. 

 
Figure I.8.3. Program Success Case tractor sales by powertrain. Source: NREL 

 
Figure I.8.4. Program Success Case vocational truck sales by powertrain. Source: NREL 

 
Figure I.8.5. Program Success Case MDHD fuel consumption and carbon emissions. Source: NREL 
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Conclusions  
The results for the combination of light-duty and MDHD program success can be seen in Figure I.8.6. By 
2050, annual petroleum consumption is reduced 15% and annual emissions 13%. The cases analyzed here are 
based on technology progress assumptions established in 2020 and do not account for potential future policies 
that may drive a more rapid transition to zero-emission vehicles. Future project updates will address updated 
assumptions within alternative policy and economic contexts conducive to decarbonizing the transportation 
sector. 

 
Figure I.8.6. Program Success Case MDHD fuel consumption and carbon emissions. Source: NREL 
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Project Introduction  
Recent advancements in predictive analytics, coupled with non-traditional data sources, can pave the way to 
next generation travel models that are as accurate as traditional travel demand models and that can be 
automatically updated on a regular basis. In pursuit of this goal, this project explored location history (LH) 
data as an alternative to traditional travel surveys for modeling individual travel patterns. Through LH data, it 
is possible to view all the places visited (and modes used) by an individual on a specific day. For instance, 
Google Location History (GLH) is automatically recorded from any device which has its location services 
turned ‘on.’ Sadeghvaziri et al. proposed procedures for processing and utilizing GLH data for travel pattern 
analysis [1]. However, GLH data itself does not provide any information on the socio-demographic attributes 
and modal preferences of individuals. Addressing this gap, a tool consisting of a mobile app backed by a server 
and automated data processing system has been developed and deployed. This tool was initially called e-
mission when originated by researchers at the University of California, Berkeley [2], but it has since evolved 
into the NREL-supported capability known as Open Platform for Agile Trip Heuristics (OpenPATH5). In 
addition to collecting location-based travel history data, OpenPATH provides the flexibility to deploy small 
user surveys to obtain information regarding individual socio-demographic attributes. OpenPATH thus 
delivers the best of both worlds: i.e., combining traditional travel survey and advanced location-based data 
collection methods.  

Objectives  
The key objectives of the project are to: 

• Assess the viability of LH data for travel pattern prediction 

• Using LH data, compare accuracies of logit and machine learning (ML) models in predicting:  

o what activity to participate in next (i.e., activity type choice) 

o when to start a journey to reach the next activity (i.e., departure time choice) 

o which mode to use to get to that activity (i.e., mode choice). 

 

5 https://www.nrel.gov/transportation/openpath.html  
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Approach  
The project team had originally planned to collect trip data, coupled with a small (~5 minute) socio-
demographic survey using the OpenPATH mobile application. The idea was to solicit responses from a modest 
sample of (roughly 75–100) researchers from NREL. Although the logistics required for the data collection 
were in place, the lengthy cybersecurity and data sensitivity approval processes, not to mention complications 
from the Coronavirus disease (COVID-19) pandemic, disrupted the original plan. The team explored using 
other “similar” datasets collected through OpenPATH and was able to use a sample dataset collected for an e-
bike mini pilot in Colorado. While the dataset was not as large as was originally envisioned for the project, it 
had depth: 13 participants provided data from November 2020 to January 2021, and this included detailed trip-
level information as well as socio-demographic characteristics of the individuals. At the trip level, OpenPATH 
automatically logs trip start and end times, route taken, as well as the inferred travel mode. Respondents are 
then prompted by the application to confirm or modify the mode and trip purpose information to ensure 
accuracy. From a total of 4,163 trips made by the respondents over the data collection timeframe, 2,785 trips 
had complete information and were used for analysis. The app plus survey data collected through OpenPATH 
were consolidated in a database. The trip latitude/longitude data were intersected with spatial databases to 
gather information regarding built environment at both ends of the trip. Socio-demographic, trip, and built 
environment characteristics were used as features to model activity type, departure time, and mode choices 
made by individuals. A traditional statistical model (namely the multinomial logit (MNL) model) and a ML 
model (namely the Random Forest (RF) model) were estimated using similar features so that the performance 
of the models could be compared and contrasted.  

Multinomial Logit Model: The MNL model is a standard statistical model that can best be described as a 
classification method. The utility function of MNL is defined as: 

 
The probability of choosing alternative 𝑖𝑖 is written as: 

 
Where: α is the constant value; J is the total number of alternative attributes considered; βj is the parameter 
value of attribute xj; k represents each alternative in the choice set; K is the total number of alternatives in the 
choice set; C is the choice set. 

Random Forest Model: RF belongs to the class of decision tree learning methods and can be used for 
regression as well as classification models. Each tree model is a series of random splits for each feature in the 
sample data. Estimation occurs by traversing the tree from root (top) to leaf (bottom), where a prediction is 
stored. 

Results  
Cross-validation was performed with 10 test/train split sets (a typical approach for evaluating model 
performance). The results, shown in Figure I.9.1, are based on the average of the ten model runs.  
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(a) Activity Type Choice Model Results 

(b) Mode Choice Model Results 

Figure I.9.1 Comparison of (a) activity type choice, and (b) mode choice prediction results. Source: NREL 

From the figure, it can be observed that RF and MNL models capture the observed trends in activity type and 
mode choice reasonably well, with RF performing slightly better than MNL. While the results in Figure I.9.1 
show distributional accuracy of both the models, Table I.9.1 presents sample-wise prediction accuracies of 
MNL and RF models for activity type, destination, and mode choice predictions. The number in each cell of 
the table signifies the percent of data for which the model predicts the exact choice made by the respondent. A 
high percent value indicates that the model performs well at predicting individual trip-level outcomes. It can be 
observed from the table that the RF model consistently outperforms the MNL model in sample-wise prediction 
accuracies across the three choice dimensions.  

Table I.9.1 Comparison of Sample-Wise Prediction Accuracies (and Standard Deviations) 

Model Type MNL Accuracy (StdDev) RF Accuracy (StdDev) 

Activity Type Choice 25.1% (σ = 1.82%) 41.9% (σ = 1.93%) 

Departure Time Choice 27.4% (σ = 3.1%) 43.7% (σ = 2.87%) 

Mode Choice 47.2% (σ = 1.80%) 67.9% (σ = 1.79%) 
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Conclusions 
The objectives of this project were to: (i) Assess the feasibility of location history data for travel pattern 
prediction, and (ii) Compare the accuracies of ML and logit models in predicting travel choices. Though the 
project team could not collect data in the manner originally planned, the project goals were accomplished using 
a small sample dataset collected for the Colorado e-bike mini pilot program. MNL and RF models were 
estimated using the processed data, proving that LH data can be used for travel pattern prediction. Model 
estimation revealed that the ML model consistently performed better than the logit model (particularly at the 
sample level) in predicting activity type, departure time, and mode choices. 
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Project Introduction  
Vehicle simulation is a reliable way to predict the cost and energy consumption benefits of technology changes 
in automotive applications. This work relies on Autonomie [1], a simulation tool developed by Argonne, to 
quantify the techno-economic benefits of technologies funded by the DOE VTO. This project integrates VTO-
sourced data on component-level technology performance and cost to generate vehicle-level metadata based on 
U.S. standard driving cycles, with these results useful for informing other analysis activities. In addition, 
Autonomie vehicle models are used to support additional activities within VTO (e.g., with regard to LCA, 
economic impact, market penetration, and individual component technologies) as well as outside of VTO. 

Objectives 
The main goals of this project have been to: 

• Quantify the benefit of vehicle technologies across multiple vehicle classes, powertrains, component 
technologies, and uncertainties (e.g., business-as-usual vs. VTO target-achieving cases) to represent 
current and potential future scenarios. 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/rvijayagopal@anl.gov
mailto:eislam@anl.gov
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• Develop a database that includes vehicle energy consumption and cost, and detailed component 
information, including power, energy, cost, efficiency, and operating conditions on the U.S. standard 
driving cycles. 

• Draft a report describing the main assumptions and results, as well as an analysis that to be provided 
through a detailed excel sheet or a Tableau Server. 

Approach 
To achieve the objectives outlined above, Argonne identified the following tasks shown in Table I.10.1. 

Table I.10.1 Argonne Project Tasks 

No. Tasks Status 

1 Quantify vehicle energy consumption and cost estimation Complete 

2 Analyze the impact of individual technologies on energy and cost Complete 

Task 1 aimed to quantify the energy consumption and cost of various types of vehicles. The scope of this task 
extended from small passenger cars in light-duty segments to large, long-haul trucks in heavy-duty segments. 
Several vehicles were identified to cover the large variety of vehicles needed to represent the light-, medium- 
and heavy-duty segments. This study examined the differences in vehicle requirements and use cases in 10 
types of LDVs and more than 20 types of MDHD trucks. The assumptions used for defining these vehicles 
were based on inputs that were provided by VTO’s U.S. DRIVE [2] and 21CTP (21st Century Truck 
PartnershipSM) [3]. This work used updated powertrain and sizing assumptions based on these inputs. The main 
simulation tool used for this work was Autonomie. In addition to Autonomie, a techno-economic analysis tool 
named BEnefit ANalysis – BEAN – was also used in this project which provides a convenient user interface 
for the users to examine the sensitivity of the TCO of a vehicle to the component efficiency and cost 
assumptions.  

Efforts supporting Task 2 resulted in a process to identify the value of improving different vehicle technologies 
in trucks. This task examined several component technologies that are of interest to DOE and industry and 
quantified the monetary benefits to the consumer if incremental improvements were to be made to these 
components. Battery, motors, engines, aerodynamics, lower rolling resistance, etc., were all examined as part 
of this work. The analysis was aimed at helping to identify the technologies that yield the most “return on 
investment” for both manufacturers and consumers.  

Results  
Results from FY 2021 analysis activities are included in this section and follow the outline by task, as used in 
the approach section.  

Task 1. Quantifying vehicle energy consumption and cost estimation 
The main output of this task is a report that covers the assumptions, vehicle sizing, and simulation results of 
MDHDVs. The databases accompanying the report give the details of all vehicle-level assumptions, fuel 
economy observed on regulatory cycles, and the estimated manufacturing cost and operational cost of each 
vehicle. The FY 2021 report and the databases are accessible from our website [4].  

This dataset forms the basis of LCA and other DOE-funded market penetration predictions. The Annual 
Technology Baseline project by NREL [5] also relies on the vehicle simulation results from this work. 

 The report presents a quick overview of the results available in the database. Vehicles and technologies for 
future time frames were modeled in this work. Two potential scenarios for technology progress were 
examined: the first one a “business-as-usual” scenario (low), and the second one based on a more aggressive 
level of technology progress (high). For light-duty vehicles, a third scenario is also considered in which all 
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technologies expect both lightweighting advances alongside the “high” level of technology progress. This was 
done to better understand the effect of energy savings and cost increases associated with lightweighting for 
each type of vehicle.  

The simulation results provide insights into how the vehicle component requirements are likely to change in 
the years to come as a result of accompanying technology advances. In addition to the component 
requirements, the database also provides information on projected vehicle-level cost, weight, energy 
consumption, and cost of driving and ownership for various powertrains. This helps in understanding when 
advanced powertrains might achieve functional and economic parity with other competing choices. Figure 
I.10.1 shows the weight, cost, energy consumption, and TCO of hybrid, FCEVs, and EVs as a function of the 
corresponding values of the conventional diesel truck. This particular analysis projects a gradual reduction of 
the cost and weight penalties for all powertrains. In fact, this study finds that electric and fuel-cell trucks will 
be able to compete with diesel trucks even in this segment if the high level of technology progress assumed in 
this study is met. 

 
Figure I.10.1 Evolution of vehicle cost, weight, and energy consumption for long-haul trucks that use advanced powertrains. 

All percentages are computed based on the conventional truck parameters for that year. Source: ANL 

Task 2. Value of individual technology improvements 
MDHDVs consume approximately 24% of the overall energy from the transportation sector [6]. In this study, 
we focus on three truck applications, which are defined as part of the DOE-sponsored 21CTP: long-haul 
trucks, regional-haul trucks, and Class 6 Box trucks [2]. We investigate the improvement of technology with a 
focus on conventional vehicles and BEVs. 

A detailed report was submitted to DOE on this topic, and a paper is also under development. The report will 
be soon available on the Autonomie website [7]. This annual report provides a quick overview of the scope and 
results of this task. 

The technology improvements assessed in this task relate to the following factors: electric machine and power 
electronics efficiency, battery energy density, aerodynamics, lightweighting, and tire rolling resistance. We 
start by quantifying the impact of technology on a 2020 and 2030 long-haul BEV. We then extend the analysis 
to a 2030 regional-haul truck and a 2030 Class 6 Box truck. Finally, we compare the value of technology 
improvement for electric and conventional powertrains, with a focus on both the long-haul BEV and the Class 
6 Box truck. 
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In this study, the savings predicted are based on the overall cost of driving the vehicles. This cost refers to a 
levelized cost of driving, which is computed as shown below. 

 
The vehicle purchase price is the vehicle cost multiplied by 1.2 of the retail price equivalent. The vehicle cost 
is determined by adding up the cost of all components. 

Table I.10.2 Baseline Values for Sensitivity Studies for Line Haul Trucks 

 Year 2020 Year 2030 

Motor/inverter combined efficiency 0.91 0.94 

Battery pack energy density 158 Wh/kg 273 Wh/kg 

Cd 0.52 0.42 

Glider weight 10,833 kg 9.305 kg 

Tire rolling resistance 5.4 kg/ton 4.9 kg/ton 

Auxiliary load 3,400 W 2,600 W 

Analysis of 2030 BEV long-haul, 2030 BEV regional-haul, and 2030 BEV Class 6 Box trucks 
The impact of technology improvement depends on vehicle assumptions and on duty cycles and operational 
assumptions. In this section, we compare the results among BEV long-haul, BEV regional-haul, and Class 6 
Box trucks based on 2030 assumptions. Comparing long- and regional-haul BEVs, the values of technology 
improvement in terms of percentage reduction in driving cost shown in Figure I.10.2 are similar for all 
technologies except aerodynamics.  

 
Figure I.10.2 Value of technology improvements for 2030 long-haul and regional-haul trucks and Class 6 Box trucks. 

Source: ANL 
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The higher charge depletion assumption for regional-haul BEVs (0.5 versus 0.42 for long-haul BEVs) explains 
why the benefit of technology improvement is greater for regional-haul BEVs than for long-haul BEVs. Also, 
the share of the savings coming from energy cost is greater for regional-haul versus long-haul BEVs and is 
because regional-haul trucks drive more miles overall (15 years at 50,000 miles per year) than long-haul trucks 
(5 years at 100,000 miles per year). Class 6 Box trucks show lower reduction in cost of driving for all 
technology except auxiliary load compared to long- and regional-haul trucks. Due to the low average duty-
cycle speed, the benefit of aerodynamic improvement is less for Class 6 Box trucks than it is for Class 8 long 
haul trucks. While the weight reduction decreases the amount of energy required to move the vehicle, it also 
limits the regenerative braking in a dynamic duty cycle. The lower daily mileage requirement for Class 6 Box 
trucks also drives a lower battery size; and, hence, an improvement in battery energy density has less of an 
impact. Finally, the baseline auxiliary loads (2,600 W for long- and regional-haul trucks and 2,500 W for Class 
6 Box trucks) are similar for all applications. Since the average power output to operate a Class 6 Box truck is 
less than the output to operate long- and regional-haul trucks, the auxiliary load represents a higher percentage 
of the power output; hence, Class 6 Box trucks are more sensitive to reduction in auxiliary load. 

Comparison of 2030 BEV and conventional Class 6 Box trucks 
Comparison of the benefits in conventional trucks and BEVs shows the differences in the importance of a 
given technology for different powertrains. The monetary value associated with reducing vehicle losses 
through the reduction of glider weight, auxiliary loads, aerodynamic drag, or rolling resistance varies both 
across powertrains and across time.  

When comparing the value of technology improvement between BEVs and conventional powertrains shown in 
Figure I.10.3, there is no clear trend as to which powertrain benefits more from technology improvement. 
Overall, the contribution from energy cost savings is greater for conventional powertrains since the average 
cost of a kWh from the engine (which depends on a combination of engine efficiency and diesel cost) is higher 
than the average cost of a kWh from the battery (which depends on a combination of battery efficiency, 
charger efficiency, and electricity cost). This difference is less pronounced for long-haul trucks, with their 
higher engine efficiency (55% peak engine efficiency for long-haul trucks vs. 45% for Class 6 Box trucks).  

 
Figure I.10.3 Value of technology improvement for BEV and conventional Class 6 Box trucks. Source: ANL 

With BEVs, despite the lower energy cost savings from technology improvement, the overall savings can still 
be greater due to reduction in battery size. 
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While Class 6 Box trucks drive at a lower speed, their aerodynamics have not seen the same level of 
optimization over the years as long- and regional-haul trucks. Other projects have shown that up to 50% 
reduction in drag coefficient could be achieved, which would result in significant reduction in driving costs. 
The data points on the far left of each graphic in Figure I.10.3 demonstrate the significant reduction in driving 
cost that could be achieved with some aerodynamic improvements, a reduction that is particularly pronounced 
with the BEV. 

Improvements in battery energy will primarily benefit applications that require large batteries. The value of 
technology improvement for BEVs is likely to decrease as batteries become cheaper, whereas technology 
improvement for conventional vehicles may be more valuable in the future as diesel costs are expected to 
increase. 

To reiterate a key point, with BEVs, technology improvement has a compounding effect in that it benefits from 
both the technology improvement itself and from the reduction in battery size that the improvement allows. 
With conventional vehicles, the savings are primarily due to reduction in diesel expenditure.  

Conclusions 
The team has completed all of the tasks planned for FY 2021. This work has resulted in two detailed reports. 
The first report covers the energy consumption, performance, and cost of vehicles spanning light-, medium-, 
and heavy-duty vehicles [4], and the second report focuses on the value of various technological improvements 
for conventional and electric trucks [7]. The simulation and data analysis support that was provided for U.S. 
DRIVE technical target development activities has helped various technical teams to determine the appropriate 
technology development goals needed to achieve comparative cost metric parity with competing vehicles. 

Key Publications 
Freyermuth, V., Vijayagopal, R., Rousseau, A., “Medium- and heavy-duty value of technology improvement, 
submitted to Society of Automotive Engineers World Congress 2022 for publication. 

Islam, E., Vijayagopal, R., et al. “A Detailed Vehicle Modeling and Simulation Study Quantifying Energy 
Consumption and Cost Reduction of Advanced Vehicle Technologies Through 2050,” Report to the U.S. 
Department of Energy, Contract ANL/ESD-21/10, October 2021. 
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Project Introduction 
The transportation sector is undergoing a transformation through the introduction of on-demand mobility and 
vehicle automation thanks to a variety of emerging mobility technologies [1]. These advances, combined with 
electrification, could create new synergies that would provide high-quality, low-cost, and energy-efficient 
mobility at scale [2]. However, the adoption of plug-in electric vehicles has been relatively slow for several 
reasons, including technological uncertainty, slow charging, range anxiety, and higher capital costs than other 
types of vehicles [3]. This is especially true in the freight industry, with a particular focus around heavy-duty 
truck electrification and operations. While there is still a great deal of uncertainty around the exact impact that 
automated vehicles will have on the transportation system in the coming decades [4],[5] many believe that they 
could soon become a significant part of the transportation system, dramatically disrupting conventional modes 
of mobility in the process.  

Overall, the urgent need to decarbonize the transportation sector combined with falling battery prices has 
spurred industry and policy interest in long-haul truck electrification. Understanding the charging behavior and 
resulting loads from freight electrification will be crucial for smooth operation of the electric grid and will 
have far reaching impacts on the environment in the form of GHG emissions and air pollution. As such, this 
project has aimed to assess the benefits of heavy-duty truck electrification and emerging vehicle electrification 
opportunities in micro-mobility markets using the Grid-Integrated Electric Mobility Model (GEM). This 
national model simultaneously optimizes the provision and operation of shared heavy-duty autonomous and 
electric vehicles (SHAEVs) to provide electrified goods mobility alongside an economic dispatch of power 
generation [6],[7]. 

Increasing levels of renewable energy are being added to the electric grid while vehicle electrification is on the 
rise. The impacts of integrating these technologies require new analytical methodologies that couple 
capabilities across the transportation and power sectors. This project has further developed the GEM model to 
explore the dynamics and impacts of an integrated intelligent transportation–grid system in which mobility is 
served by either privately owned electrified trucks or SHAEVs, charging is responsive to costs on the grid, and 
power resources are dispatched in merit order to serve electricity demand.  

Objectives 
The purpose of this project was to leverage the existing GEM Model and develop new methodological 
capabilities that enable the simulation of future electrified and autonomous freight transportation systems and 
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micro-mobility and to quantify some of the national impacts of electrified mobility-grid interactions. The 
impacts include electricity consumption and peak electricity load, charging infrastructure needs and costs, 
power plant operation costs in unmanaged as well as smart charging scenarios, fleet size and vehicle range 
requirements, vehicle miles traveled (including estimates of demand rebound and mode shifting for passenger 
travel), grid infrastructure upgrades necessary to support the growing loads from transportation applications, 
and the impact on greenhouse gas emissions of the EV-grid systems. 

Approach 
The project developed an optimization model that solves for the cost-minimizing dispatch of privately-owned 
and shared heavy-duty vehicles (HDVs) for operation and charging, the allocation of SHAEVs to serve goods 
delivery, the investment and construction of an SHAEV fleet and supporting charging infrastructure, and the 
economic dispatch of electric power plants for the U.S. bulk electricity grid. The power sector was included by 
coupling GEM to the Grid Operation Optimized Dispatch electricity model [8]. This combined model treats 
the size of the SHAEV fleet and the amount of charging infrastructure as continuous decision variables 
(relaxing the problem from mixed-integer convex optimization to quadratic programming), allowing for 
variable vehicle ranges and charger levels. The model minimizes the total system costs (i.e., operating costs 
and capital costs) by choosing the timing of vehicle charging subject to the constraint that mobility demand is 
always served, the constraint that energy is always conserved, and the constraint that generation assets on the 
grid are dispatched in merit order. Shared autonomous and electric vehicle (SAEV) fleet planning costs are 
simultaneously minimized by amortizing the cost of the fleet and charging infrastructure to a daily time-period. 
Furthermore, we also incorporate aspects of micro-mobility into the system by focusing on first-mile/last-mile 
travel markets electrification, wherein aspects of fleet size, charging range and battery capacities are 
considered within the optimization framework. We note that a similar algorithm developed for SAEVs in 
earlier GEM model developments are incorporated into the formulation for both SHAEVs and micro-mobility.  

The scope of the GEM model is the contiguous US, and the mobility demands for 13 regions are explicitly 
modeled. In addition to developing the optimization model, the project team developed a set of empirically 
derived inputs and assumptions for the model application illustrated in Figure I.11.1. Some of the assumptions 
were also developed through detailed, agent-based simulation modeling using the Routing and Infrastructure 
for Shared Electric Vehicles (RISE) model and from simulations completed by the NREL using Electric 
Vehicle Infrastructure Projection (EVI-Pro) tool. 
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Figure I.11.1 Sources of data (blue), data processing (dark red), models (light red), intermediate data (grey), and model 

outputs (yellow) in the overall modeling and processing workflow. Source: LBNL 

Results 
Figure I.11.2 (a) shows the privately owned truck vehicle activity by time of day, wherein the plot clearly 
demonstrates the larger share of moving vehicles than charging profiles, which contributes to a 
disproportionate usage of the vehicle fleet based on human-operated ineffectiveness in the system as compared 
to what would be optimal for supply-demand constraints related to vehicle charging distributions.  

Figure I.11.2 (b) shows that automated trucks, on the other hand, optimally manage and increase efficiency in 
the system, meaning moving away from continuous movement and charging of vehicles to, instead, matching 
the supply-demand constraints. Overall, the results suggest that SHAEVs are less likely to idle and make fleet 
operations more efficient than privately owned trucks.  

Figure I.11.2 (c) for the SHAEV fleet, decreases by 56% as the fraction of mobility demand met by SAEVs 
increases from 0% to 100%. The decrease in total overall cost is due to the higher utilization of fleet vehicles 
versus private vehicles. As S increases, the relative cost per vehicle is higher as the average battery capacity is 
slightly larger. The fleet turnover is also faster, due to higher utilization, as S increases. 

Figure I.11.2 (d) shows the optimal fleet size of SHAEVs and privately-owned EVs. This figure decreases by 
almost an order of magnitude from ~200 M vehicles in the S = 0% case (these 200M vehicles are “active” 
vehicles used on a typical weekday and represent ~56% of the current stock of U.S. HDVs) to ~50M vehicles 
in the S = 100% case. This occurs because the utilization of the SHAEV fleet is about 12 times higher than that 
of private trucks due to increased time spent moving, the higher payload (i.e., amount of goods) capacity per 
trip, and faster recharging times.  
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Figure I.11.2 (e), also decreases substantially as the fraction of mobility demand met by SHAEVs increases: 
Peak demand is 161 GW at S = 0% and is almost halved (~89 GW) when S = 100%. The dramatic increase in 
the SHAEVs’ contribution to peak power between S = 50% and 75% can be understood as follows: when S = 
50%, the SHAEV loads can still “valley fill” within the private EV load, whereas when S = 75% the SHAEV 
load becomes dominant throughout the day. The peak demand increases from S = 75% to 100%. This result 
seems counter-intuitive but reflects further system cost reduction opportunities through the expanded charging 
scheduling available to a full SHAEV fleet. The increase in demand charge cost is outweighed by the reduced 
vehicle purchase cost of private vehicles.  

Figure I.11.3 shows results for key outputs from electrification of micro-mobility (i.e., e-bikes) scenarios in the 
GEM model averaged over time (i.e., the selection of days that we simulated) and geography, displayed across 
the full range of the fraction of passenger demand satisfied by bike-to-car trip shares.  

These scenario results demonstrate that as the share of bike trips increase from 0% to 100% the cost of total 
ownership (i.e., fleet and infrastructure cost) increases significantly, particularly due to the increase in the 
number of bike chargers (refer to Figure I.11.3 (a) and (b)). However, the results also demonstrated decreases 
in overall peak power demand and GHG emissions with 100% replacement of LDVs by e-bikes for short-
distance trips.  

Conclusions  
The configuration of the freight system in which SHAEVs serve goods delivery has substantial benefits over 
one that relies on privately-owned electrified trucks or gasoline-powered vehicles. Overall, the project results 
suggest that freight automation increases operating efficiency by reducing total costs, leading to faster goods 
delivery within the transportation system. Lowered GHG emissions, an additional benefit, would also result. 
From an economic standpoint, system costs are significantly reduced through sharing and automation, while 
fuel and operational costs remain much lower than those of gasoline vehicles today. From an electric power 
grid operator’s perspective, SHAEVs can smooth out large amounts of the variability in electricity generation, 
which would significantly improve both the efficiency and emissions rate of fossil generation while 
simultaneously leading to more optimal utilization of solar and wind resources (thanks to the flexibility in 
charging times). Finally, the overall GHG emissions from the mobility system are shown to decrease 
substantially with a large penetration of SHAEVs, even though GHG emissions are not explicitly modeled in 
the GEM optimization model. 

Similarly, project results suggest that electrification of micro-mobility would decrease the overall peak power 
demand and GHG emissions, though these benefits would accrue alongside an increase in total ownership 
costs.  
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Figure I.11.2 Truck Electrification Panel: (a) private trucks activity, (b) automated trucks activity, (c) infrastructure cost, (d) 
fleet size, and (e) peak power demand vs. fraction of SAEV trips (S). Source: LBNL     
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                                              (c)                                                                                                    (d) 

Figure I.11.3 Electrification of Micro-mobility Panel: (a) total ownership cost, (b) number of chargers, (c) peak power 
demand, and (d) consequential GHG emissions vs. fraction of bike to car trips (S). Source: LBNL 
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Project Introduction  
The DOE VTO invests in quality data and information, both current and historical, regarding all levels of 
transportation technologies to inform analysis, analysis-supported activities, and relevant stakeholders. VTO 
has supported the analysis of light-duty market trends in order to assess the potential benefits of VTO-
supported technologies and to evaluate program activities. Major challenges include the lack of readily 
available historical data in the U.S. and other markets, along with a limited geospatial understanding of 
advanced vehicle sales trends, mobility trends and consumer choice within the U.S. A systematic examination 
of regional electric drive (E-drive) vehicle purchase trends and mobility usage patterns enable high-quality 
support and guidance for national impacts analyses (e.g., potential energy and emission reduction) and 
infrastructure deployment. At the same time, understanding the aggregate impact of electric vehicles is 
important when exploring electricity use and petroleum consumption. Electric utilities are working to 
understand the resulting changes in electricity generation, demand, and required infrastructure. Meanwhile, the 
growth of electric vehicles can offset petroleum consumption by conventional internal combustion engine 
vehicles, impacting oil prices and extraction described by the Organization of the Petroleum Exporting 
Countries in 2018 along the way.  

Advanced vehicle technologies covered in this study include electric drive vehicles, shared mobility (e.g., 
transportation network companies, bikeshare, scooter share, etc.), and connected and automated vehicles. 
Electric-drive vehicle technologies include HEV, PHEV, and BEV.  

Objectives 
The main objective of this project is to synthesize and improve upon the available data on electrification and 
mobility technologies in order to evaluate the impacts of these new technologies. The project includes the 
following tasks: 

• Electric-drive vehicle sales and announcement tracking 

• New mobility technologies tracking  

• PEV national and regional impact assessment 

• E-drive vehicle and battery supply chain tracking 

• High fidelity PEV technologies characterization 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/yzhou@anl.gov
mailto:Jacob.Ward@ee.doe.gov
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• Sensors for highly automated vehicles (FY 2020 and FY 2021 only). 

This project provides quality data and information on electrification and new mobility technologies to the VTO 
Analysis Program and external researchers. Deliverables include monthly and annual public facing reports, 
with selected data published on the Argonne website. 

Approach 
There are six tasks under this project. The following sub-sections describe the method for each task separately. 

E-drive vehicle sales and announcement tracking: This task involves collecting E-drive vehicle sales data 
by make and model from various resources and at different points in time. The research team summarizes the 
observed market trends and technology evolution of E-drive vehicles in a monthly report that is then 
distributed to DOE, lab researchers and public subscribers. Argonne also publishes selected data on the 
following webpage: https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates [1].  

This task also examines announcements made by automobile original equipment manufacturers (OEMs) and 
key suppliers on projected deployment of technologies which have the potential to impact energy usage and 
petroleum consumption. The focus is on the U.S. market, but worldwide announcements are included as 
appropriate and put into the proper context. This task tracks announcements about electric vehicles, connected 
and autonomous vehicles technologies, and deployment of new mobility technologies.  

PEV national and regional impact assessment: In this task the research team conducts a national-scale 
evaluation of plug-in PEVs on an annual basis and summarizes the evaluation in a public-facing report. This 
report includes national-scale metrics such as aggregate electricity consumption and gasoline consumption 
reduction, and vehicle-level metrics such as average vehicle performance. This report also shows the evolution 
of PEV characteristics such as sales-weighted electric range and energy consumption per mile. This 
information is also used to inform numerous analyses inside and outside of DOE; for example, this data is used 
to estimate the number of batteries available for recycling in the United States and the quantities of specific 
materials (e.g., cobalt) used. This task will also inform evaluations of regional similarities and differences 
within the homogeneous PEV market, specifically regionally variable PEV energy consumption profiles (to be 
completed in FY 2022). Historical nationwide sales data can be linked with state-by-state registration data and 
knowledge about OEM sales decisions (e.g., the “compliance car” approach in which some car models appear 
designed mostly to meet a local regulation and are subsequently distributed in limited markets) in order to 
assess the regional impacts of electric vehicles, including electricity consumption, emissions, consumer costs, 
and other metrics.  

E-drive vehicle Li-ion battery supply chain tracking: Using the PEV sales data collected as part of Task 1, 
this task involves summarizing the historical battery cell and pack production by manufacturer and production 
location of the PEVs sold in the U.S. An additional task activity is the tracking of other usage of lithium-ion 
batteries in HEV and other applications, based on data availability. 

New mobility technologies tracking: This task involves collecting market and usage data on new mobility 
technologies in order to establish an ongoing database of such data and to uncover insights and trends from 
these technologies that present energy challenges and opportunities. Data is compiled and shared on a variety 
of new mobility technologies, including but not limited to e-bikes, e-scooters, Transportation Network 
Companies (TNC), and connected and autonomous vehicles . This data is collected at both an aggregate level 
(e.g., how many markets have TNC service, how many rides are being taken nationwide) and at a more 
detailed level (e.g., TNC data for the Chicago metropolitan area), depending on source availability.  

Sensors for highly automated vehicles: In this task, the research team provides a comprehensive overview of 
current and emerging automated vehicle hardware, creating the foundation for a range of further technology 
development and energy impact assessment research. Beyond the in-depth assessment of current automated 

https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates
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vehicle hardware, previously alluded to, this task examines the agencies/companies engaged in the space to 
better understand current and upcoming sensor and processing system capabilities. 

High fidelity PEV technologies characterization: Leveraging both published U.S. Environmental Protection 
Agency (EPA) certification data and data collected via Argonne’s dynamometer facility, this task involves 
providing detailed efficiency metrics based on EPA Corporate Average Fuel Economy drive cycle test results. 
Various aspects of efficiency (including rolling resistance, road load at 65 mph, drive cycle energy, drive cycle 
powertrain efficiency, among others) are broken out separately to see how each plug-in vehicle model achieves 
its relative energy efficiency. FY 2021 work focused on finding the best EPA data source and calculating the 
efficiency of each plug-in vehicle model from 2011 to 2021. Vehicle models that underwent several 
generational changes will be highlighted by tracking the year-by-year changes in efficiency aspects and 
examining which refinements likely brought about those changes.  

Results 
Over 306,000 plug-in electric vehicles were sold in the United States in 2020, a 4% decrease from 2019. Sales 
of all-electric BEVs grew 4% to 239,000, while PHEV sales decreased by 25% to 67,000. Relative to the total 
light-duty vehicle (LDV) market, total PEV shares grew from 1.9% in 2019 to 2.1% in 2020, as overall LDV 
sales dropped by nearly 15% in 2020. Through 2020, a total of more than 1,700,000 PEVs have been sold, 
61% of which have been BEVs. In 2020, the continued decline in PHEV sales coupled with growth in BEV 
sales, particularly the Tesla Model 3, led to BEVs comprising 78% of the PEV market. Total gasoline 
displacement by year is graphed in Figure I.12.1. In 2020, 500 million gallons of gasoline were offset by 
PEVs, with 72% of this total offset by BEVs. In 2019, the average on-road BEV offset 460 gallons of gasoline, 
and the average PHEV offset 260 gallons. Cumulatively, through 2020, PEVs have offset over 1.9 billion 
gallons of gasoline, 1.26 billion gallons by BEVs and 640 million gallons by PHEVs. A report released in FY 
2021 by the research team [2] documents the details of the methodology used to estimate vehicle miles 
traveled, weighted efficiency, and the resulting gasoline displacement. 

 
Figure I.12.1 Gasoline displacement by LDV PEVs by year. Source: ANL 
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The majority of PEVs sold in the U.S. have been assembled in the U.S. and use battery packs built in the U.S. 
The majority of the component battery cells have come from the U.S., Japan, and South Korea. Other 
manufacturing locations include Germany and Belgium (vehicles and packs), Poland and Hungary (cells), and 
Mexico and Canada (vehicles). Figure I.12.2 uses a Sankey diagram to show the supply chain in terms of the 
production locations of battery cells, battery packs, and vehicle assembly for PEVs sold in the US. The Sankey 
diagram format makes it easy to track the flow of production from one location to another (i.e., from left to 
right in the graphic) over several steps of the supply chain. The figure indicates total Li-ion battery capacity (in 
MWh) supplied to the market by each production location between 2010 and 2020. During this time, a total of 
approximately 75.9 GWh (75,900 MWh) of battery capacity was installed in PEVs sold in the U.S. Of that 
total, 65.8 GWh was installed in PEVs that were assembled in the U.S. Of the total battery capacity installed 
over this period for the U.S. market, 67.4 GWh of battery packs and 39.1 GWh of battery cells were assembled 
in the U.S. 

  

 
Figure I.12.2 Total capacity (MWh) of Li-ion batteries supplied to the U.S. PEV market by production location, 2010–2020. 

Source: ANL 

The analysis for the third task listed above evaluates shared mobility technology usage in the context of 
household income and average number of household vehicles by census tract. Figure I.12.3 shows census 
tracts that are above the 90th percentile in trips per capita by scooters, bikes, TNCs, or some combination of 
the three modes, alongside a second graphic that displays median income ranges by census tract. Note that the 
scooter pilot area, the only part of the city for which we have scooter usage data, does not span the entire city. 
The scooter pilot area is shown in both maps by the dotted black lines. Census tracts with high mobility usage 
are generally correlated across all three mobility types and are highly correlated with high income. While not 
shown in this figure, the analysis also found that census tracts with higher household income and fewer 
household vehicles tend to have higher TNC usage per capita, and similar trends are seen with bikeshare and 
scooter share usage. 
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Figure I.12.3 Census tracts with over 90th percentile in trips per capita by scooters and bikes, TNCs or combination of the 

three (left); Median Income ranges by census tract (right). Source: ANL 

Addressing the fourth task listed above, highly automated vehicles are a new mobility technology that holds 
great promise but also great uncertainty. One area of uncertainty is the capability of required hardware that is 
needed to drive safely, including computational needs and sensors. Cameras are low-cost and high-resolution 
optical sensors that capture images of light. Lidar utilizes laser light to measure distances through a process 
called ranging and is seen as a high-quality and high-range sensing option, though one with a relatively steep 
cost. Radar uses radio waves to measure range, angle, and velocity of surrounding objects. Ultrasonic sensors 
utilize high frequency sound waves to map out their short-range surrounding environment and are excellent for 
proximity detection regardless of environmental conditions. As shown in Figure I.12.4, sensors have grown 
exponentially in performance and efficiency, though power draw has also increased over time. 

 
Figure I.12.4 Representative performance for a visual recognition microchip designed for autonomous vehicles. Source: 

ANL 
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Addressing the final task above, in FY 2021, several new BEV models entered the market. The new EPA 
certification results were gathered and entered into the powertrain efficiency calculation code, resulting in an 
updated database of vehicle efficiency metrics for all BEVs in EPA’s certification database. Tracking the 
trends can lead to insights into the state of current technology and possibly predict trends into the future. As 
noted in the previous year’s update, vehicle range is rapidly increasing, and this makes for expected increases 
in energy consumption resulting from added weight of the larger batteries required. However, this analysis 
separates increases in vehicle energy requirements from added weight from efficiency achievements in the 
powertrain by looking at powertrain efficiency calculations (defined as positive cycle energy at wheel / 
alternating current (AC) energy consumption over a given cycle). There were significant jumps in powertrain 
efficiency between 1st generation and later generation models from the same OEMs (around model year (MY) 
2016 and 2017) and, in aggregate, this has created an upward trend in powertrain efficiency over a timespan 
starting from MY 2011 to around MY 2018 or MY 2020. 

Somewhat concerning, with the updated data, not only can we see vehicle economy (energy consumption / 
distance) worsening in model aggregate (i.e., due to added range and larger vehicles), but the powertrain 
efficiencies appear to have begun a downward trend for both the urban and highway tests. The updated 
“powertrain efficiency” results are seen in Figure I.12.5 below. In the urban test, the MY 2022 models have 
dropped compared to earlier years. In the highway test, the trend appears to have started in 2020. These trends 
suggest that, with range, weight, and power all increasing, without substantial increases in powertrain 
efficiency, the trend towards increased energy consumption across the overall PEV fleet is likely to continue 
and perhaps even accelerate. 

 
Figure I.12.5 “Powertrain Efficiency” results showing drop in aggregate model efficiency. Source: ANL 

Tesla is doing a good job of mitigating added battery weight with high powertrain efficiency. The company is 
also mass-producing a smaller Model 3 and Model Y (the latter with a very high calculated chassis economy—
i.e., the mechanical energy per unit distance required to drive the vehicle). Other OEMs are now entering the 
market with larger, SUV-sized vehicles. This should be expected as battery costs go down, battery pack size 
increases, and vehicle sizes also increase—this latter factor lowering chassis economy and thus worsening 
overall energy consumption. 

Conclusions   
PEV sales remain approximately 2% of the U.S. LDV market in 2020. Over 1.7 million PEVs have been sold, 
driving 52 billion miles on electricity since 2010, thereby reducing national gasoline consumption by 0.42% in 
2020 and by 1.9 billion gallons, cumulatively, through 2020. Most BEVs sold in the United States are 
manufactured in the U.S., while most PHEVs are imported. The batteries used in PEVs sold in the U.S. have 
been largely domestically sourced. In terms of total battery capacity since 2010, over half of all cells have been 
produced in the U.S., as have nearly 90% of all battery packs.  
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New mobility options are growing in cities nationwide, but their use is not distributed evenly across all 
demographic segments. High mobility usage is centered in high income areas despite these areas also having 
good public transit accessibility. 

With increasing electric range, vehicle size, vehicle weight and power, the overall vehicle economy (energy 
consumption / distance) is worsening and powertrain efficiencies decreasing. The most efficient PEVs are 
four-wheel drive models because this is achieved by adding another motor. This is a pattern that stands in 
contrast to what is seen within the conventional car fleet, which achieves four-wheel drive by adding more 
gears. 
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Project Introduction 
The benefits of advanced vehicle technologies are traditionally assessed using standardized drive cycles. Those 
cycles aim to represent average driving conditions and, as such, cannot take into consideration all the variety of 
vehicle usage found in the real world. In this project, we use a transportation system model to generate all 
drive cycles within a geographical area. Advanced vehicle technologies as defined by the DOE VTO are then 
used to define energy consumption for different timeframes and under different scenarios. 

Objectives 
During the first year of performance in FY 2020, the project focused on light-duty passenger vehicles and defined 
powertrain distributions that provide the lowest cost of driving. This year, one objective was to extend the analysis 
to commercial vehicles. The analysis differentiates between medium- and heavy-duty vehicles as their 
corresponding duty cycles show distinct characteristics that impact the value of electrified powertrains in each sub-
sector. A second objective was to study the relationship between the penetration of plug-in electric vehicles and the 
number of available public charging stations. This second objective focuses on light-duty passenger vehicles and is a 
collaboration between Argonne and NREL. 

Results 
Estimated cost of driving for different powertrains across medium- and heavy-duty applications 
POLARIS [1], a mesoscopic transportation system model, provides trip information by defining average speed 
on network links. The speed information is then fed into SVTRIP [2], which uses a stochastic approach to 
develop 1 Hz dynamic vehicle speed profiles for each MDHDV within the Chicago metropolitan area. The 
Autonomie [3] tool, a detailed vehicle level model, is then used to determine the energy consumption and cost 
of each vehicle across five distinct powertrains:  

• Conventional 

• Integrated Starter Generator 

• HEV 

• PHEV 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/arousseau@anl.gov
https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/Jacob.Ward@ee.doe.gov


Analysis Technologies 

70 Assessing Vehicle Technologies Office Benefits in a Transportation Energy Ecosystem (Argonne National 
Laboratory)  

 

• BEV. 

Each vehicle is assigned a Vehicle Miles Traveled (VMT) annual value based on a VMT distribution as defined in 
the TEDB [4]. Annual VMT is used to determine the amount of energy consumed on an annual basis for each 
vehicle. In future studies, when route algorithms are fully implemented in POLARIS, VMT will be inferred directly 
from the POLARIS routes. The POLARIS trip dataset used in this study is as follows: 

• Medium-duty (MD) 

o 5072 trips 

o Average trip distance = 6.2 miles 

o Average trip speed = 35 mph 

• Heavy-duty (HD) 

o 5012 trips 

o Average trip distance = 37 miles 

o Average trip speed = 46 mph. 

MD BEV are sized for 150 miles all-electric range while HD BEV are sized for 500 miles all-electric range. 
MD PHEV are sized for 75 miles all-electric range while HD PHEV are sized for 250 miles all-electric range. 
Cost of driving is determined for each vehicle as follows: 

Cost of driving ($/mile) = manufacturer’s suggested retail price (MSRP) – residual value + energy 
cost)/distance 

Where: 

• MSRP = Manufacturing cost * 1.2 (Retail Price Equivalent) 

• Residual value assumes 15% depreciation over the service time 

• Energy cost = discounted cost of energy over the service time 

• Distance = VMT multiplied by service time 

• Ownership period is set to five years for HD and 15 years for MD 

• Discount rate of 4%. 

For each vehicle, the powertrain that provides the lowest cost of driving is selected. Figure I.13.1 highlights the 
share of powertrains that provide the lowest cost of driving. Results are split between HD (Class 7 and 8 tractor 
trailer combinations) and MD (Class 3 through 6 single unit). The analysis assumes three different timeframes: 
current term (CT), short term (ST), mid-term (MT), and long term (LT) and two levels of technology achievement: 
low and high. “Low” assumes minimal progress in technology advancements and “high” represents a situation 
where the VTO targets are met. The level of electrification increases in future scenarios due to reduction in 
technology cost over time, in particular the reduction in battery cost. Results also indicate that the level of 
electrification is significantly higher in MD compared to HD. For HD, conventional, integrated starter generator, and 
hybrids still represent a significant share of powertrains even in future scenarios, the only exception being the long-
term high scenario. This indicates that further technology improvement would be required in the heavy-duty 
segment to increase the share of plug-in electric vehicles. Figure I.13.2 shows the corresponding VMT share and 
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highlights that the VMT share of PHEV and BEV is significantly higher than the corresponding powertrain share. In 
other words, PHEV and BEV tend to drive more than vehicles with lower levels of electrification. PHEV and BEV 
are preferred when VMT is high because the energy cost is lower, and they need the longer VMT to compensate for 
the higher purchase price.  

 
Figure I.13.1 Powertrain share for each timeframe and technology level. Source: ANL 
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Figure I.13.2 VMT share per powertrain type across timeframe and vehicle technology. Source: ANL 

Interaction between the number of public charging stations and the number of plug-in electric vehicles 
POLARIS models the interaction of traveler behavior (i.e., activity generation, activity scheduling, destination 
choice, mode choice, route choice, etc.) and supply-side response (traffic congestion, transit vehicle loads). 
Energy consumption estimation is usually done in a post-process step where outputs from POLARIS are fed 
into SVTRIP and Autonomie. However, if a BEV battery gets low and needs to be charged, this would affect 
the activities of the driver as he may decide to go to a charging station or cancel activities that he had 
scheduled and that in turn would affect traffic conditions. For POLARIS to model those effects, it needs to 
keep track of battery state of charge (SOC) in real time as the simulation runs. The charging behavior of a 
traveler and the electricity consumption of BEVs are then integrated in POLARIS. The decision to charge is 
affected by the current SOC, distance to the nearest charging station, home charger availability, and potential 
scheduling conflicts. A ML model is used to estimate the link-by-link energy consumption of an EV based on 
vehicle and network characteristics. 

Overall system performance is dependent on the market penetration of EVs, home charger availability, the 
location of charging stations, plug types, and the number of plugs. In this project, we have focused on two cases: 

• High EV ownership, low home charging availability 

• High EV ownership, high home charging availability. 

Vehicle ownership assumptions come from the SMART 1.0 consortium, which defined vehicle fleets for 
different scenarios of technology development and market adoption. NREL has determined home charger 
availability based on housing type and scenario. See Table I.13.1 for details. 
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Table I.13.1 EV and Home Charger Ownership Based on Housing Type and Scenario 

Scenarios High EV Ownership –  
Low Home Chargers 

High EV Ownership –  
High Home Chargers 

Housing Type Multi-Unit Single-Unit Multi-Unit Single-Unit 

EV Ownership 21% 79% 21% 79% 

Home Charging 5% 61% 50% 100% 

As an initial case study, the high ownership – low home chargers scenario (the one likely to result in most 
public charging) was run unconstrained in POLARIS and has been labeled “S0”. “Unconstrained” means that 
vehicles have access to unlimited charging whenever and wherever they want at an infinite transfer rate 
(charging takes no time). This initial case is run to inform NREL’s EVI-Pro [5] of the charging demand 
(location, time, and amount of energy charged). In turn, EVI-Pro provided POLARIS with three different 
Electric Vehicle Supply Equipment (EVSE) configurations. The “Medium – 100%” scenario represents a 
situation where the number of plugs and stations match the expected demand for charging. In the “Low – 70%” 
scenario, the charging capacity is 30% under the expected charging demand while in the “High – 130%” case, 
the charging capacity exceeds the charging demand by 30%. See Table I.13.2 for details.  

Table I.13.2 EVSE Siting from EVI-Pro 

Charging Supply Levels Stations 
Plugs 

Level 2 (7 kW) DCFC (50 kW) 

Low – 70& 2,781 22,888 8,278 

Medium – 100% 3,979 32,723 11,934 

High – 130% 5,379 42,884 18,329 

With the given charger configurations, six additional scenarios were run: 

• High EV ownership, low home charging availability 

o Low EVSE supply (S1) 

o Medium EVSE supply (S2) 

o High EVSE supply (S3) 

• High EV ownership, high home charging availability 

o Low EVSE supply (S4) 

o Medium EVSE supply (S5) 

o High EVSE supply (S6). 
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Figure I.13.3 Public charging amount by scenario. Source: ANL 

Figure I.13.3 shows the charging amount per scenario in MWh. As public charging availability increases (S1 
to S3, and S4 to S6), the public charging amount increases. Moreover, public charging decreases slightly due 
to higher home charging availability in scenarios S4 through S6 (relative to the corresponding scenarios, S1 
through S3). Another interesting metric to look at is charger utilization rate, calculated as follows: 

 
As seen in Figure I.13.4, the home charger utilization rate remains relatively constant around 35%, which 
corresponds to a utilization of approximately eight hours. As expected, the public charging utilization rate is 
much lower. Moreover, the utilization rate decreases as the station availability increases. 

 
Figure I.13.4 Home and public charging amount by scenario. Source: ANL 
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Conclusions 
This analysis has shown that: 

• Based on the cost of driving for medium- and heavy-duty trucks, the share of electrified powertrains 
increases over time but, in all cases, a powertrain mix provides the lowest cost. 

• To offset their higher cost, PHEV and BEV should be used on longer routes to benefit from their 
lower operating cost. 

• As the availability of public charging increases, the total amount of public charging increases. 
However, the charger utilization rate decreases. 

• Availability of home chargers reduces public charging slightly while increasing home charging. 
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Project Introduction  
This analysis was motivated by the loss of transit ridership in the Chicago area over the past several years, a 
trend that overlaps with the introduction of TNCs in the region. There is an apparent correlation between the 
two, which has led to speculation that TNCs have caused transit ridership loss. However, many other factors 
outside of TNC ridership could be driving transit ridership loss, including changes in populations, shifting land 
use patterns, transit service changes, macro-economic factors, and more. This team developed regression 
models for analyzing the impact of ride-sharing services on transit demand. 

This work builds on the previous analysis of Ward et al. [1]. That research team analyzed the effect of TNC on 
transit ridership and vehicle ownership across the U.S. during the 2011–2017 period. Similar to our results, 
Ward et al. [1] determined that there is no effect of TNC on transit use on average. However, they did suggest 
that there are local effects in the areas with both significant transit ridership and high income. Ward et al. [2] 
and Ward et al. [3] analyzed 2005–2015 data and found out that vehicle registrations declined by 3% on 
average as a result of TNC entering the transportation market.  

In this project TNC and transit data collected in Chicago at a monthly time resolution was analyzed using 
community area (CA) as spatial units of analysis. The analysis of non-overlapping spatial areal units has been 
analyzed in statistics, agriculture, and epidemiology [4], [5], [6],[7]. 

Objectives  
The main objective of this study was to analyze the impact of ride-sharing services on transit demand. A 
methodological framework was developed, using regression models, which allows for the disaggregate 
analysis of long-term transit ridership data. Data from multiple sources, including transit boardings and 
alightings and TNC demand in the City of Chicago, were used. The model developed allowed for disaggregate 
analysis of long-term transit ridership data from Chicago between 2010 and 2020, before and after the 
introduction of TNC services, along with TNC trip patterns to determine relationships between TNC ridership 
and transit ridership in similar parts of the city. 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/jauld@anl.gov
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Approach  
Multiple data sources were used in the analysis. The TNC open data provided by the city of Chicago contains 
the number of trips, on an hourly basis, between each origin/destination CA. Each trip record in the TNC open 
data has information regarding trip origin and destination, date, and other attributes of the trip, such as fare, 
distance, and whether it was a shared ride. The resulting dataset had 794, 179 rows and ranged from 2018-11-
01 to 2020-02-29.  

The transit boarding and alighting data were obtained from the Chicago Transportation Authority. The 
estimates are based on the Automatic Passenger Count data, fare card transaction data, and internal Chicago 
Transportation Authority modeling and were obtained through a Non-Disclosure Agreement. The data was 
further processed to remove extreme data and it was aggregated spatially at the CA level. The analysis period 
includes the TNC data period, and the counts were aggregated by month for bus service and rail service (L-
System) independently. 

In addition to the TNC and transit data, a time-dependent dynamic traffic assignment router is used to provide 
estimates of cost and level of service variables across different modes [8]. This router is part of POLARIS, a 
large-scale agent-based model that relies on transportation demand and supply models to synthesize and 
simulate person and freight travel across large regions such as the Chicago Metropolitan Area [9]. Five random 
location points within each CA were selected, and the router was estimated for the OD matrix of the study area 
(corresponding to 77 CAs). Measures such as travel time, wait time, and monetary cost were estimated for 
different modes, including walking, biking, bus, rail, car, and TNC. 

We used a model proposed by Bernardinelli et al. [10], which represents the spatio-temporal pattern in the 
mean response with spatially varying linear time trends. We assume that the data is Gaussian. The model 
estimates autocorrelated linear time trends for each CA (corresponding to the areal unit), which is appropriate 
if the goal of the analysis is to estimate which areas are exhibiting increasing or decreasing (linear) trends in 
the response over time.  

Results  
The model, with y as TNC counts (Poisson) and predictor variables, bus and rail average daily counts on log-
scale, is shown below: 

The main highlights from the model are: 

• Bus and rail move in the same direction as TNC 

• When bus goes up 1% TNC goes up 0.23% 

• When rail goes up 1% TNC goes up 0.39% 

• Overall, the time trend is slightly negative; α=-0.08 

• Tau2.int, which is spatial random effect variance (𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖2 ), 
is large (a large fraction of variance is not explained by 
variance in bus or rail) 

• tau2.slo, which is temporal trend variance (𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠2 ), is low, which corresponds to our initial observation 
that there is not much change in data over time (for the observed time period) 

• rho.int, which is the strength of the spatial correlation, is high (𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 = 0.73) 

• There is no local effect on the trend, as most of the local effect coefficients δ are around 0. 

Table I.14.1 TNC Count Model 

 Median 2.5% 97.5% 
(Intercept) 0.8069 0.1768 1.4466 

log(bus) 0.2332 0.1837 0.2796 
log(rail) 0.3932 0.3489 0.4402 
Alpha -0.0847 -0.1069 -0.0605 

tau2.int 3.3423 2.2283 5.3536 
tau2.slo 0.0406 0.0237 0.0712 
rho.int 0.7319 0.3979 0.9496 
rho.slo 0.4749 0.1174 0.8667 
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Also, we can look at the random spatial effects 𝜙𝜙𝑘𝑘 (correlations), not captured by the main effects, shown in 
Figure I.14.1 (a). We can see that spatial effect is stronger in the central and northern parts of the city. This 
means that both bus and rail ridership are highly correlated in these areas. Another hypothesis considered in 
this analysis is that temporal analysis of flows between CAs will lead to discovering effects of specific areas. 
We modeled the flows using a gravity model, which is a class of log-linear regression that has been previously 
shown to be effective in traffic flows modeling [11], [12], [13]. Specifically, we used the observed TNC origin 
and destination flows as our observed data set and used the POLARIS-estimated area-to-area generalized 
travel cost as our inputs. Results shows a large variation on the random effect of a destination on the number of 
the TNC trips while controlling for generalized cost and TNC. Thus, we expect the random effect to be of non-
trivial size for each of the destinations, as shown in Figure I.1.1 (b).

                                              (a)                                                                                                (b) 

Figure I.14.1 Random spatial effects of (a) trip counts and (b) trip flow. Source: ANL 

Conclusions  
The project team developed regression models for analyzing the impact of ride-sharing services on transit 
demand using data from multiple sources, including transit boardings and alightings and TNC demand in the 
City of Chicago. The models allowed for disaggregate analysis of long-term transit ridership data from 
Chicago between 2010 and 2020, before and after the introduction of TNC services, along with TNC trip 
patterns to determine relationships between TNC ridership and transit ridership for similar areas. 

The main results suggest no significant change in transit ridership data over time for the observed period. 
Moreover, neither global (region overall) nor local (area-specific) trend coefficients were found to be 
significant, meaning there is not enough evidence in the data to suggest that there is any time trend in the TNC 
ridership counts. The strength of the spatial correlation is high, which is likely explained by key unobserved 
variables. For example, the high and low-income areas are clustered, and thus the usage of the TNC is 
clustered as well. In addition, an origin-destination flow temporal analysis to discover the effects of specific 
areas was developed. The results confirmed the finding of the analysis performed using only out-flow data. 
Adding the control for the generalized travel cost (as estimated by the POLARIS router) did not reduce the size 
of the random effects of each of the areas, which tells us that the generalized cost did not have explanatory 
power for explaining the TNC counts.  
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Project Introduction 
The DOE VTO has played a critical role in enabling electrification and reducing fuel consumption in the 
automotive sector. However, the off-road vehicle sector accounts for 8% of transportation fuel, and that share 
is likely to increase over time as on-road vehicles move towards electrification. DOE can play a key role in the 
off-road vehicle market by providing tools that can be used by academia and the industry to evaluate the 
impact of advanced technologies. The need for a pre-competitive simulation tool was also identified during a 
2019 DOE-led workshop at Argonne that included OEMs and suppliers to this market. 

The objectives of this project were to: 

• Provide a pre-competitive simulation platform to OEMs, suppliers and academia to evaluate 
technologies 

• Quantify the potential fuel savings of selected applications resulting from electrification 

• Facilitate collaboration within the industry. 

While Autonomie has traditionally been used for on-road vehicles, we are now developing features, models, 
and processes to facilitate the modeling of off-road vehicles. This work focuses on wheel loaders and 
excavators with the intention of building model capabilities that could be used to simulate a wide variety of 
off-road applications. 

Approach 
Currently, Autonomie [1] is centered on models of on-road vehicle powertrains that move a vehicle forward 
along a defined vehicle speed profile. This project expands those capabilities by adding models that represent 
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the multiple functions that off-road vehicles can perform using the power generated by the powertrain. More 
specifically, we are adding fluid power system models to simulate the duty cycles of hydraulic systems used to 
extend arms, rotate cabins, and extend buckets. The project focuses on new vehicle control and powertrain 
architectures that can provide fuel savings over current architectures. We partnered with the University of 
Helsinki [2],[3] which has a long history of modeling off-road applications, to integrate models into 
Autonomie. The construction and agriculture markets are respectively the number 1 and number 2 energy 
consuming markets in off-road vehicle applications. Within the construction market, excavators and wheel 
loaders are respectively the number 1 and number 2 biggest energy consumers. In this project, we model 
excavators and wheel loaders as a starting point towards developing off-road modeling capabilities in 
Autonomie. 

Duty cycle 
While the passenger car market is split into defined categories (i.e., compact, SUV, pickup truck, etc.), the off-
road vehicle market is loosely defined, with each OEM defining categories based on its own offerings, and 
while standardized drive cycles exist to evaluate the fuel consumption of passenger cars, no standardized 
vehicle level duty cycles exist to define off-road applications. In addition, the multitude of moving parts makes 
it difficult to define a complete vehicle level cycle. The EPA defines engine-only duty cycles for wheel 
loaders, excavators, and other applications, but does not specify how the engine power is used in the vehicle 
[4]. The Japan Construction Mechanization Association [5] provides a detailed outline of an excavator duty 
cycle that can be used to determine fuel consumption. Working with an OEM that has run and collected data 
on such a test to validate the duty cycle and component behaviors would be a possible next step for this 
project. 

Through a literature review [6],[7],[8], a representative duty cycle was identified for the excavator. An 
excavator duty cycle can be broken down into four independent motions: (1) arm motion, (2) bucket motion, 
(3) boom motion, and (4) cabin motion. 

A duty cycle can be identified for each independent motion for a typical excavator job: loading up material 
from one location and dumping it at another location. The actual motion of the vehicle itself is not considered 
in this study, as typically the excavator is not moving, and little energy is spent in vehicle motion. 

Figure I.15.1 shows the duty cycle as a function of time, and Figure I.15.2 shows the total duty cycle power 
demand repeated over time. 

 

 

 

 

 

  

 

Figure I.15.1 Power demand for duty cycle. Source: ANL       Figure I.15.2 Overall power demand for duty cycle. Source: ANL 

While there is no standardized and regulatory vehicle level duty cycle for wheel loader and off-road machines 
in general, a wheel loader duty cycle commonly used to assess vehicle level fuel consumption is the V-cycle, 
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which describes the repetitive back and forth vehicle motion carried out as the vehicle loads material in the 
bucket and dumps it in a truck. A synthetized vehicle speed profile for the V-cycle is shown in Figure I.15.3. 

 
Figure I.15.3 V-cycle vehicle speed profile. Source: ANL 

Modeling 
Excavators 
Modeling off-road vehicles in Autonomie poses a few challenges. A primary input to Autonomie is a vehicle 
speed profile that serves as the base to determine powertrain power demand. In the case of an excavator, the 
vehicle is at a standstill while vehicle functions are executed by an arm, a boom, a bucket, and a rotating cabin. 
A baseline model of the excavator was implemented in Autonomie and exercised over the selected duty cycle. 
Hydraulic components such as hydraulic cylinders, valves, pumps, and motors were also implemented in 
Autonomie. The driver model was modified as the driver does not just follow a vehicle speed trace but also 
runs stationary functions. The model uses a 9.3 L diesel engine (232 kW) and a centralized hydraulic system. 

Engine power, speed and torque to support the hydraulic functions are shown in Figure I.15.4. The engine 
power closely follows the hydraulic power. The current engine control in Autonomie, based primarily on how 
passenger car engines behave, shows relatively high engine speed fluctuations as it operates the engine at its 
most efficient point for a given power demand in order to minimize fuel consumption. Engine behavior in off-
road machinery is such that the speed remains relatively constant, and the torque varies to match the power 
demand. Working with OEMs and having access to field data would be necessary to validate and adjust the 
engine speed control accordingly. 
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Figure I.15.4 Engine power, torque, and speed. Source: ANL 

The excavator was hybridized by electrifying the cabin rotation. The hydraulic system used for the cabin rotation 
in the conventional system is replaced by an electric machine and a 4 kWh 540V li-ion battery. When the cabin 
slows down, regenerative energy is captured through the electric motor and stored in the battery. Figure I.15.5. 
highlights the power of the four hydraulic functions. The amount of energy recovered remains relatively small 
compared to the overall energy spent, and the fuel savings in this example is approximately 5%. 

 
Figure I.15.5 Arm, boom, bucket, and cabin power profile in the hybrid excavator. Source: ANL 

Wheel loaders 
Autonomie was originally designed to move a vehicle along a predefined speed profile without obstacles. In 
the case of the wheel loader, the modeling of the penetration of the bucket into a pile of material is of 
particular interest as it is akin to modeling a vehicle running into an obstacle, a case study that never occurs in 
the modeling of light-, medium-, and heavy-duty on-road vehicles. This power required to load up the bucket 
could not be accounted for in the way the driver model was originally set up and required modifications. The 
extra loading force itself is modeled in the vehicle loss model where other losses are accounted for (i.e., tires, 
grade, aerodynamics). 



Analysis Technologies 

84 Off-Road Vehicle Energy-Saving Potential (Argonne National Laboratory)  

 

The hydraulic component models used to represent the lift and tilt motion are similar to the hydraulic 
components used in the excavator model. The conventional powertrain uses an automatic transmission with a 
torque converter illustrated in Figure I.15.6. The hybrid version developed in this project replaces the torque 
converter with an electric machine geared to the transmission input as well as a clutch to mechanically connect 
the engine to the gearbox. We used a high voltage li-ion battery as a storage device. 

 
Figure I.15.6 Wheel loader schematic in Autonomie. Source: ANL 

The combination of reduction in torque converter losses, the capture of regeneration energy, and the change in 
engine operations provides a 15% reduction in fuel consumption over the cycle. Figure I.15.7. highlights how 
the hybrid powertrain engine operates in an area of higher engine efficiency compared to the conventional 
powertrain. 

 
Figure I.15.7 Wheel loader engine operations. Source: ANL 

Conclusions 
In this project we developed representative Autonomie models for an excavator and a wheel loader. For each 
machine we developed a baseline version (i.e., conventional powertrain) as well as a hybrid version that 
provides fuel savings compared to the baseline. Hydraulic models were developed and integrated into 
Autonomie to support the modeling of the working functions of the machines. Those models include hydraulic 
pump, valve, actuator, and cylinder models.  

Early in the project we presented our research at the Center for Compact and Efficient Fluid Power - CCEFP 
2020 Summit. While our results were limited at the time, feedback was positive, and participants highlighted 
the benefit of a public tool to quantify the benefits of electrification. 
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Wheel loaders and excavators cover a very wide range of functions, duty cycles and power requirements, and 
the lack of standards makes it difficult to accurately represent these machines. The lack of publicly available 
data is such that models cannot be easily validated. Engagement with the industry would be required to 
continue this effort and to increase the level of fidelity in the models and their predictions. 

Future work could focus on other ways to reduce energy consumption. While an electrical system may not 
always be able to replace a hydraulic system, decoupling the hydraulic system from the engine offers 
opportunities for further energy savings. For example, a hydraulic pump that is continuously tied to the engine 
will spin and generate losses even when it does not need to generate hydraulic power. Also, fuel cell battery 
hybrid systems could replace engine-based powertrains in large machines where full electrification may not be 
feasible due to the large energy requirement. 
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Project Introduction  
Over the last decade the use of EVs in the U.S. has grown significantly. Accompanying the growing numbers 
of EVs on the roads is growth in electricity demand to meet EV charging needs, calling public attention to 
electricity delivery capacity constraints inherent in the US’s aging grid infrastructure. If these supply-side 
limitations are not managed effectively, the U.S. transition from fossil-fueled vehicles to clean electric 
resources could be disrupted.  

This project has developed a methodology to address the following four key questions of interest to DOE 
related to the impacts that EVs are likely to have across the energy grid distribution systems.  

1. When (i.e., which year), where, and how many EVs will be adopted in the U.S.? 

2. How will EVs in the U.S. be charged? 

3. Given some prospective answers to the above question, what would be the EV hosting capability of a 
given distribution system circuit? 

4. How could one expand the hosting capability to accommodate more EVs and what would be the 
potential measures and cost? 

This project is a continuation of the previously completed Phase I project, which focused on the bulk power 
system [1]. 

Objectives  
This project has three objectives:  

• High-spatial resolution EV Adoption Modeling: This project establishes a new EV adoption 
modeling methodology, at the household level (i.e., unique street addresses), for estimating the 
likelihood of EV adoption. This methodology should estimate the likelihood of EVs being charged at 
a neighborhood level. The spatial results of projected EV adoptions are then referred to a power flow 
simulation capability which estimates potential condition-specific power flow violation problems of 
the distribution system at the circuit/feeder level. 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/michael.kintner-meyer@pnnl.gov
mailto:jacob.ward@ee.doe.gov
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• Development of tools for estimating EV hosting capabilities: The project has developed a 
methodology and programming scripts for estimating EV hosting capabilities at the circuit feeder level 
to aid distribution system planners perform capacity forecasts.  

• Testing of methodology for a Distribution Feeder of SCE: In collaboration with Southern 
California Edison (SCE), PNNL tested the methodologies and tools described above on a single 
distribution system circuit selected by SCE engineers.  

Approach  
Two distinct modeling approaches have been developed or applied: 

• EV adoption model: PNNL used a Bass market adoption model framework and fitted it with highly 
spatially disaggregated data such that EV adoption could be estimated at the street address level of 
granularity. Model inputs included EV registration data, household income data, home assessment 
data, and (if applicable) incentive information. The output of the model is probabilities of EV adoption 
by address within any given geographic domain (again, down to as specific as the street address level).  

• The EV adoption impact analysis is based on an established AC power flow simulation model 
(GridLAB-D) that simulates the 3-phase power flow in a distribution system given load 
characteristics. The EV adoption model transferred data to the GridLAB-D model in order to identify 
any potential violations of the American National Standards Institute standard for reliable and safe 
distribution system operations.  

PNNL has demonstrated the two methodologies developed for a distribution feeder in SCE’s service area and 
discussed the results with the utility.  

The overall methodology is shown in Figure I.16.1. 

 
Figure I.16.1 EV Adoption modeling approach. Source: PNNL 

Results  
The EV adoption model was applied to an SCE distribution feeder with 2381 residential homes. The 
aggregated EV adoption for this area is show in Figure I.16.2. The disaggregation into 3 groups represent the 
different EV classes, with Group 1: long-range EV (similar to Tesla); Group 2: short-range EV (similar to 
Nissan Leaf); Group 3: Plug-in hybrid. 



Analysis Technologies 

88 Electric Vehicles at Scale – Phase II. Distribution System Analysis (Pacific Northwest National Laboratory)  

 

 
Figure I.16.2 Cumulative EV adoption. Source: PNNL  

Cumulative EV Adoption in SCE feeder by group of EV and year. The actual placement of EVs across 
addresses is shown in Figure I.16.3 below. The placement represents a sample of a statistical distribution of 
individual homes adopting EVs based on the aggregated EV fleet as projected in Figure I.16.2 above. 

 
Figure I.16.3 Placement of EVs across Addresses. Source: PNNL 

An example of the EV impacts analysis is shown in Figure I.16.4. The y-axis expresses the exceedance of the 
rated capacity of a secondary transformer that services 5–10 homes. The figure shows the number of service 
transformers that need to be upgraded to accommodate the increased power demands due to EV charging. If 
Smart Charging Management (SCM) strategies are applied, the transformer upgrading can be deferred. PNNL 
estimated the benefit associated with the deferment of transformer upgrading.  



FY 2021 Annual Progress Report 

 
Electric Vehicles at Scale – Phase II. Distribution System Analysis (Pacific Northwest National Laboratory) 89 

 

 
Figure I.16.4 Transformer Upgrade Plan for Every 5 Years with and without SCM. The “Count” values refer to the number of 
service transformers requiring upgrade in order to accommodate increased power demands that result from EV charging. 

Source PNNL 

Conclusions   
The key outcomes of this project were two independent capabilities, including (1) providing future year 
projections of LDV EV adoption at various levels of geographic aggregation down to the address level, and (2) 
a set of scripts and routines that enable the distribution system power flow studies to be carried out which 
estimate the hosting capability of a feeder circuit under a set of EV adoption assumptions. While the audience 
for this new analytics capability was originally assumed to be distribution system planning engineers, the EV 
adoption model also generated interest among community energy leaders and transportation planners, both of 
whom are interested in assessing the needs for public charging infrastructure that will meet the future 
transportation needs of communities (i.e., at the city and county levels). Particularly, the socioeconomic 
characterization and transparency of the adoption model has drawn the attention of community leaders, who 
can use the model to analyze how future investment in public charging infrastructure can benefit underserved 
populations, including via targeted placement of public infrastructure that ensures the achievement of equity 
goals and objectives.  

EV adoption model. The adoption model estimates annual sales figures for three groups of EVs (i.e., long-
range EVs, short-range EVs, and PHEVs) in a certain geographic footprint. The footprint can be as large as a 
state and as small as the geographic boundary of a distribution system feeder circuit. The inputs to the model 
are (1) vehicle registration data, by year, (2) household income, by census block, and (3) housing assessed 
value and characteristics in single versus multi-family homes, by address. Given these input data, the EV 
adoption model estimates the annual adoption of EVs by groups within the given footprint, and the propensity 
for adoption each year by address.  

This new capability can thereby be used to: 

• Study the locational aspects of how EV adoption might occur in a community without any policy 
intervention and how different socioeconomic groups might be affected; and 

• Design incentives, such as free electricity, buy-downs through rebate programs, or providing access 
such as public charging stations to target certain populations.  
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Hosting capability estimations. This estimation uses a sequence of power flow simulations to model the 
operations of the electric distribution system under the new (forecast) EV load conditions. PNNL’s GridLab-D 
was used to demonstrate the power flow simulations, with the model fed by new EV loads as provided 
statistically by the EV Adoption Model (in this case, propensity of EV adoption by address). The estimation 
results allow planning engineers to set a risk threshold that characterizes the risk exposure of future EV loads 
exceeding any operating conditions. The outputs of hosting capability estimations are (1) an estimate of the 
maximum number of EVs that can be accommodated in a particular footprint that also specifies in which future 
year that limit is expected to be reached given an adoption rate; and (2) the specific asset/component in the 
distribution circuit that is inadequate or deficient for safe operation and thus needs to be updated to meet the 
adoption rate. An engineer can then explore upgrade strategies to address the limiting set of assets or even 
control strategies for EV load to remediate the limiting condition.  

Demonstration of the new capabilities. PNNL demonstrated the capabilities on a single feeder in the SCE 
service area as an illustrative example. The research team used California Department of Motor Vehicle 
registration data, home value assessments and house characterization, and household income data. With these 
inputs, a projection of personally owned light-duty EV market adoption, by address, was performed. The 
results were then fed into a power flow model to simulate potential violations against American National 
Standards Institute standards and engineering guidelines. The power modeling can identify the location of each 
violation and its time and frequency of occurrence. 

With these outputs, the distribution planner is able to determine EV hosting capabilities and distribution 
upgrade strategies if more EVs are expected in the future. The combination of the EV forecasting and the 
power flow modeling tools provides all of the analytical instruments that distribution system engineers would 
need to analyze impacts related to a growing EV fleet in the distribution system. PNNL also demonstrated how 
to estimate the upgrade deferral that would result from the application of SCM as well as the other potential 
benefits of SCM such as mitigating voltage violations.  

Key Publications  
Sridhar S, Holland C, Singhal A, Kintner-Meyer M, Wolf Katherine, “Distribution System Planning for 
Growth in Residential Electric Vehicle Adoption.” IEEE PES GEM 2022. Conference paper. 
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Project Introduction 
This project seeks to analyze heavy-duty freight movement and to estimate the transmission and distribution 
impacts of electrification of these vehicles. Currently Class 7 and 8 electric tractor trucks are available in 
prototype form, with commercial models expected to be available in the near future. These tractors can be 
connected to existing trailers and could quickly become part of the freight transportation system. A key 
question is the potential difficulty and cost of installing infrastructure to recharge these vehicles, which may 
require “slow” charging (up to 20–100kW per plug) to charge overnight or “fast” charging solutions, 
potentially 1+megawatts per plug for en-route extreme fast charging. Clusters of truck chargers at warehouses 
or truck stops may require tens or hundreds of megawatts per site, which will require significant service 
expansion and upgrades to electricity distribution systems. 

Objectives  
The objective of this project is to help developers, utilities and stakeholders better understand the key factors, 
opportunities and challenges associated with aligning heavy duty electrification needs with optimized least-
cost grid solutions that benefit all parties, from developers, to utilities, and society overall. This objective will 
be accomplished by leveraging cutting-edge electrification and grid analytics to demonstrate new techniques to 
characterize electrification needs, align the need with the existing grid capacity, assess various electrification 
solution options where capacity is not available, and optimize for least-cost and reliability. This project will 
identify dominant cost factors and sensitivities associated with the electrical system reinforcement costs 
needed to serve these demands, which is a critical first step towards determining least-cost solutions to supply 
the energy needs of an electrified heavy duty transportation sector while optimizing the benefits through lower 
utility rates and decreased carbon emissions. 

Approach  
The planned analysis includes the following sub-steps: 

Model heavy-duty freight transportation within a limited region – This step is being performed by 
NREL with input from the Electric Power Research Institute (EPRI). Data from the NREL Fleet DNA 
database, the FAF, and other sources will be used to model freight transportation within a representative, 
but limited region. Previous analyses sponsored by DOE VTO are being leveraged to estimate charging 
infrastructure requirements and charging loads for depot or en-route charging of Class 7 and 8 electric 
tractor trucks. The analysis is occurring within the service territories of three utilities in the mountain 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/malexander@epri.com
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west/southwest region, Xcel Energy (Colorado), Salt River Project (Arizona), and Tri-State (Wyoming, 
Colorado, Nebraska, and New Mexico). This area has a large population, has a significant amount of 
freight flow in, out, and through the region, and has relatively isolated cities so that an analysis boundary 
can be defined. 

Sample sites for significant charging loads – The transportation modeling has been used to identify two 
(2) types of sites for charging loads; warehouses/distribution centers (depot charging) and truck stops (en-
route charging). Warehouses and distribution centers will be potential sites for overnight or off-duty 
charging, which has longer duration and lower power levels. Truck stops will be sites for higher-power 
charging in the middle of a freight trip. A sample of three (3) specific physical sites has been selected and 
load shapes have been estimated from the transportation modeling representing various fleet charging 
scenarios.  

Quantify the grid impacts, infrastructure needs and costs to accommodate these transportation 
loads – Due to the high load density of these new charging facilities, most distribution and sub-
transmission systems are ill-equipped to support such increased demand at service points where these 
types of loads (truck stops and warehouses/distribution centers) are typically connected. Grid conductor 
and transformer thermal capacity ratings and voltage limits could easily be exceeded unless the proper 
analytics are performed to assess the grid impacts and evaluate potential solutions. EPRI has developed 
tools for performing such analyses—Distribution Resource Integration and Value Estimation, or DRIVE, 
and the Transmission Hosting Capacity Tool—which will be leveraged to efficiently perform this analysis. 
While these tools have traditionally been used for assessing generation impacts, these tools are also well-
suited for adaptation to consider charging loads as well. 

The identified charging sites have been mapped to the existing electrical system and appropriate expansion 
needs will be identified based on system models and guidance from participating utility partners. Capital 
and operating costs associated with each option will be determined in relation to different levels of electric 
truck in-use fleet shares. This is important since low shares may not require upgrades, but high shares will 
likely require significant upgrades, including transformers and wire upgrades – and potentially even 
substations. The tipping point in electric truck deployment that triggers upgrades is site-specific, but no 
analyses currently exist to inform on underlying factors, as cost models based on small pilot projects do 
not represent the non-linearities of scaling up to fleet-level or regional coverage. At the end of this step, 
the challenges, and costs of expanding electricity service at the proposed sites should be known and can 
inform future charging system and utility designs to support the electrification of this segment of 
transportation. 

Evaluate modified charging and localized storage to support least-cost expansion alternatives – 
Flexibility in the design and operation of charging infrastructure offers the potential to optimize the 
relationship between the transportation and electrical systems, benefiting all stakeholders. Siting of local 
energy sources or storage can also provide additional design and operational flexibilities that may offer the 
ability to further optimize these systems. As appropriate for each type of heavy-duty charging site, profiles 
representing alternative charging will be derived and evaluated against time-based capacity calculations 
for each system expansion design. Leveraging tools such as EPRI’s Distributed Energy Resources Value 
Estimation Tool, or DER-VET, the application of optimally sized energy storage to further modify the 
demand profiles and reduce overall costs will also be evaluated. The outcome of this effort will be an 
increased understanding of how the system charging design, electric system expansions options, and 
distributed energy resources can be leveraged together to optimize a least-cost solution that benefits all 
stakeholders.  

Results 
This project is approaching the end of budget period 1, with two budget periods to go. Relative to the approach 
discussed above, the freight modeling and site selection has been completed, and quantification of grid impacts 
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has begun. The grid impacts modeling performed so far is using simplified tools to confirm that the data is 
complete and appropriate for detailed analysis next year. Sample output is presented below, showing line 
rating and line loading (without vehicle charging) for a sample circuit. In the next year, we anticipate 
completing this grid impacts analysis, calculating total costs, and evaluating alternative approaches to achieve 
lower costs. 

 

Figure I.17.1 Sample output from DRIVE modeling of line rating and line loading. Source: EPRI 

Conclusions   
This project is on target to meet the technical objectives for the year and, once complete, should provide 
interesting and valuable insights for a variety of stakeholders into the cost of heavy-duty electric vehicle 
charging infrastructure, including key factors, opportunities, and challenges associated with aligning heavy 
duty electrification needs with optimized least-cost grid solutions. 

Acknowledgements 
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Project Introduction 
Micromobility services (emerging personal mobility modes based on very small vehicles, typified by bike 
sharing and scooter sharing) have been booming over the past several years, as companies have flooded 
American cities with scooters and bikes. The industry has now entered a phase of rationalization in search of 
profitability, even as many cities are scrambling to manage the impacts of these vehicles and ensure that their 
benefits are available to all. Industry, local governments, researchers, and DOE need a tool that can screen 
cities and neighborhoods to identify areas where there is a high opportunity for micromobility to gain market 
share, improve accessibility, and/or improve mobility energy productivity relative to incumbent modes. This 
will allow micromobility resources to be deployed in numbers and locations that deliver benefits to residents 
and cities while maintaining high utilization of industry assets. 

Objectives 
The objective of this project is to develop a new analytical tool that uses real-world data to estimate energy use 
and associated impacts of micromobility services. The micromobility Screening for City Opportunities Online 
Tool (SCOOT) will be an extensible framework for assessing census tract-level demand for, and benefits from, 
micromobility services in all metropolitan statistical areas (MSAs) across the United States. SCOOT will 
integrate new and previously collected data to evaluate and display the market potential, accessibility, energy 
productivity, and emissions savings associated with micromobility services. The framework will be readily 
adaptable to alternative models of trip generation and mode choice, different levels of geographic aggregation, 
and user-specified assumptions about the cost and availability of micromobility vehicles. The modeling system 
will be implemented in an online tool accessible to the public, and the underlying code will be open source in 
order to facilitate further development by DOE, national labs, or the private sector.  

Approach 
The tasks to develop SCOOT are spread over two budget periods. Budget period 1 (October 2020 – December 
2021) has focused on gathering necessary background information, assembling data, and building the 
constituent sub-models. Activities in budget period 2 (January – December 2022) will focus on integrating 
these sub-models into the SCOOT framework, validating its outputs, and implementing it as an online tool. 

More specifically, work over the past 12 months has included: 

• Review of prior literature related to trip generation, mode choice, mode substitution, and 
environmental impacts related to micromobility services. 

https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/dwhm@uw.edu
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• Inventory of publicly available micromobility ridership data from each of the top 20 American cities 
by population, and from a sample of 20 more out of the next 80 largest American cities. 

• Design of a stated preference / revealed preference questionnaire that links micromobility use with 
price, access distance, socio-demographics, local land use, and availability of compatible 
infrastructure (e.g., bike lanes). 

• Estimation of statistical models of the number of daily trips each individual generates and the 
distribution of trip lengths. 

• Generation of a synthetic population to represent travelers across census tracts in all American MSAs. 

Efforts in the remainder of budget period 1 will focus on completing the necessary components for SCOOT. 
Specifically, this will include administering the stated preference / revealed preference questionnaire via an online 
survey and estimating a model of mode choices including micromobility options, conditional on attributes of the 
mode, individual, and environment. Moving into budget period 2, work will shift to integrating the constituent 
models into the SCOOT framework. The framework will be applied to the synthetic population to predict the utility 
of each mode and the number of micromobility trips based on individual attributes, local land use, and infrastructure 
data. Predicted trip counts will be validated against publicly available data. Calculations of accessibility, mobility 
energy productivity, and GHG emissions will be conducted, each with and without micromobility available. Finally, 
the SCOOT framework will be implemented into an interactive, web-based tool, tested, and refined. 

Results  
The review of the literature identified several critical gaps in knowledge that represent priorities for 
investigation. First, dockless micromobility systems need more attention from researchers. Rich ridership data 
enabled extensive studies of station-based micromobility systems, but limited data means that less is known 
regarding the travel behavior of dockless system users, especially in American cities. Future research could 
complement the limited data from service providers and application programming interfaces with survey data 
for analyzing dockless systems [1]. Efforts are also needed to encourage collaboration with service providers 
for better data sharing strategies that enable more research to help micromobility thrive.  

Second, relationships between individual latent attitudes and the intention to use micromobility have been only 
lightly investigated. In particular, quantitatively examining the magnitudes of effects of psychometric factors 
and the social environment on micromobility mode choices and exploring how the COVID-19 pandemic may 
affect travelers’ risk perceptions and attitudes towards the use of micromobility, are possible research 
directions as well [2],[3].  

Finally, there are considerable gaps in understanding the impacts of micromobility services. Specifically, the 
performance of micromobility services is largely based on the local context; thus, disaggregate analysis using 
individual-level inputs is necessary [4]. Also, a comprehensive mode choice model and travel demand model 
should be developed to test and forecast the impact of micromobility on mode shift and transit integration 
potential under different scenarios. Moreover, most research only focuses on city-level case studies. A flexible 
modeling framework that could be applied and inferred at multiple geographic scales would provide valuable 
insights into the development and expansion of micromobility services.  

The inventory of ridership data for micromobility services undertaken as part of this study identified publicly 
available data in 8 of the top 20 largest American cities by population. An inventory covering a sample of 20 out 
of the next 80 largest cities found publicly available data in just 3 cities. Overall, across the 40 cities inventoried, 
31 had dockless scooters, 26 had docked bikeshare, and 24 had dockless bike share. Of these, five had data 
available for scooters, eight for docked bikeshare, and six for dockless bikeshare. 

Models of the number of daily trips each individual generates, and the distribution of trip lengths were estimated 
using data from the 2017 NHTS. The NHTS contains a total of 923,572 records of trips made by 219,194 
individuals from 117,222 American households. Since trip counts are small, nonnegative integers, with unequal 
mean and variance, a negative binomial count model was used to model the number of trips per day made by 
travelers. Key predictor variables include individual (e.g., race, gender, educational attainment), household (e.g., 
size, income), and residential location (e.g., density) characteristics. Model results are summarized in Table 



Analysis Technologies 

96 Micromobility Screening for City Opportunities Online Tool (University of Washington)  

 

I.18.1. For the trip length model (Table I.18.2), similar variables plus trip purposes were used to estimate the 
logged trip miles, leaving out trips that were recorded as zero miles.  

Table I.18.1 Negative Binomial Trip Count Model Where the Dependent Variable is the Number of Trips 
Made by Each Individual During the Travel Day Recorded in the 2017 NHTS 

 Estimate Standard Error P-value Significance 

(Intercept) 1.189 0.011 <0.001 *** 

Age 0.001 0.000 <0.001 *** 

Education (Reference: less than high 
 

 

High school 0.060 0.007 <0.001 *** 

Some college 0.125 0.007 <0.001 *** 

Bachelor 0.189 0.007 <0.001 *** 

Graduate 0.209 0.007 <0.001 *** 

Female 0.041 0.003 <0.001 *** 

Household Size -0.002 0.001 0.173  

Household income (Reference: <$10,000)  

$10,000-$14,999 0.020 0.010 0.041 ** 

$15,000-$24,999 0.028 0.008 0.001 *** 

$25,000-$34,999 0.029 0.008 <0.001 *** 

$35,000-$49,999 0.039 0.008 <0.001 *** 

$50,000-$74,999 0.034 0.008 <0.001 *** 

$75,000-$99,999 0.026 0.008 0.001 *** 

$100,000-$124,999 0.029 0.008 <0.001 *** 

$125,000-$149,999 0.028 0.009 0.001 *** 

$150,000-$199,999 0.029 0.009 0.001 *** 

$200,000 or more 0.052 0.009 <0.001 *** 

Household tract density (people/mile2)  

100-499 0.005 0.005 0.287  

500-999 0.019 0.005 <0.001 *** 

1,000-1,999 0.031 0.005 <0.001 *** 

2,000-3,999 0.032 0.005 <0.001 *** 

4,000-9,999 0.041 0.004 <0.001 *** 

10,000-24,999 0.031 0.007 <0.001 *** 

25,000-99,999 0.034 0.011 0.003 *** 

Nonworker 0.015 0.003 <0.001 *** 

Race (Reference: White)  

Black -0.023 0.005 <0.001 *** 

Asian -0.112 0.006 <0.001 *** 

American Indian or Alaska Native 0.030 0.016 0.071 * 

Native Hawaiian or other Pacific Islander -0.102 0.027 <0.001 *** 

Multiple 0.020 0.008 0.012 ** 
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Other -0.066 0.009 <0.001 *** 

 

Table I.18.2 Ordinary Least Squares Trip Length Model Results Where the Dependent Variable is the 
Logged Length of Each Trip Recorded in 2017 NHTS 

 Estimate Standard Error P-value Significance 

(Intercept) 0.757 0.014 <0.001 *** 

Age 0.000 0.000 0.653  

Education (Reference: less than high 
 

 

High school 0.064 0.009 <0.001 *** 

Some college 0.043 0.008 <0.001 *** 

Bachelor -0.037 0.009 <0.001 *** 

Graduate -0.097 0.009 <0.001 *** 

Female -0.085 0.003 <0.001 *** 

HHSIZE 0.036 0.001 <0.001 *** 

Household income (Reference: <$10,000)  

$10,000-$14,999 0.069 0.012 <0.001 *** 

$15,000-$24,999 0.180 0.011 <0.001 *** 

$25,000-$34,999 0.258 0.011 <0.001 *** 

$35,000-$49,999 0.348 0.010 <0.001 *** 

$50,000-$74,999 0.406 0.010 <0.001 *** 

$75,000-$99,999 0.466 0.010 <0.001 *** 

$100,000-$124,999 0.484 0.010 <0.001 *** 

$125,000-$149,999 0.512 0.011 <0.001 *** 

$150,000-$199,999 0.493 0.011 <0.001 *** 

$200,000 or more 0.473 0.011 <0.001 *** 

Nonworker -0.057 0.004 <0.001 *** 

Purpose (Reference: Home-based other)  

Home-based Shopping 0.031 0.005 <0.001 *** 

Home-based Social/Recreational -0.055 0.006 <0.001 *** 

Home-based Work 0.727 0.006 <0.001 *** 

Non-home based -0.114 0.005 <0.001 *** 

(Intercept) 0.757 0.014 <0.001 *** 

 
A preliminary synthetic population has been constructed to represent a sample of the U.S. population. This 
sample includes all individuals residing in MSAs. This was accomplished through population synthesis, a 
process by which surveyed microdata samples are reweighted to represent a set of known marginal counts for 
different geographic regions. In this case, microdata from the Census Bureau’s Public Use Microdata Samples 
(PUMS) were reweighted according to marginal counts provided by the American Community Survey (ACS), 
using the PopulationSim population synthesizer [5]. Generation of this preliminary synthetic population took 
approximately 20 minutes per MSA, or 104 hours to complete all MSAs on a standard desktop computer with 
multi-processing. The distributions of each control variable in the unweighted and synthetic PUMS data are 
compared in Figure I.18.1. 
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Figure I.18.1 Distributions of control variables in unweighted (PUMS) and synthetic (PopulationSim) datasets. Source: 

University of Washington 

Conclusions 
The key accomplishments completed so far in this project include the design of an online survey questionnaire, 
assessment of the relationship between key predictor variables and trip-making decisions, and an inventory of 
publicly available micromobility ridership data from cities across the United States. Alongside several other 
tasks completed during this period, the project activities have provided the necessary building blocks for 
achieving the key remaining objectives as the project continues into the second budget period: (i) integrating 
the SCOOT framework, which will evaluate and display the market potential, accessibility, energy 
productivity, and emissions savings associated with micromobility services, and (ii) implementing SCOOT as 
an open source, web-based tool. 

Key Publications 
Zou, T., Steinberg, W., MacKenzie, D. What Are the Determinants and Impacts of Shared Micromobility? A 
Review of Recent Literature. Transportation Research Board Paper No. 22-03270. Transportation Research 
Board 101st Annual Meeting. January 2022. 
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Project Introduction 
Increased electrification is a clear trend in regional trucking, with multiple vehicle manufacturers bringing to 
market commercially available battery electric and hydrogen fuel cell Class 6–8 trucks. On the fleet side, at 
least 70% of major truck fleet operators reported exploring purchase and implementation of electric vehicles 
for their operations as of 2018. Recently, multiple high-profile companies including PepsiCo, Walmart, 
Amazon, and the United Parcel Service have publicly committed to the purchase of electric delivery vehicles. 
Despite these commitments, companies have yet to implement these vehicles at scale due to a combination of 
range anxiety, limited charging infrastructure availability, and sparse data from in-use operation. Further, 
electric vehicle implementation has occurred disproportionately among larger fleets with more resources. With 
successful heavy-duty EV implementation being highly dependent on vehicle duty cycle, including vehicle 
mass and road grade as well as external factors like climate and traffic, any electrification recommendation 
must be tailored to the individual fleet and vehicle. To address these concerns and to enable large scale electric 
vehicle adoption this project is developing a publicly available Heavy-Duty Electric Vehicle Integration and 
Implementation (HEVII) tool to both assess heavy duty electric vehicle suitability and to identify necessary 
infrastructure improvements, both public and private. 

Objectives  
The main objectives of this project are to: (1) Conduct a vehicle duty cycle analysis representative of two 
regional Class 6–8 commercial vehicle fleets; (2) Develop a model using a novel mass prediction algorithm 
that uses fleet trajectory data to estimate EV range and applicability; (3) Develop an integrated charger 
location estimation tool to determine infrastructure requirement for fleets and municipal corridors; and (4) 
Validate the developed tool using data from in-use EV trucks operating in two metropolitan regions. 

Approach 
The developed tool will utilize existing telematics information collected from conventionally powered, heavy-
duty vehicles in regional delivery fleets combined with a vehicle model and optimization code to predict 
battery size and on-route charging locations required to complete the same desired work. The project is 
proceeding in four stages: (1) Data collection and simplified data analysis; (2) In-depth analysis and mass 
prediction; (3) Analysis of vehicle fleets and on-route charging; and( 4) in-service validation and pertinence to 
broader applications. 

The HEVII tool itself leverages multi-fidelity in-use vehicle data to provide owners with customized 
electrification requirements including battery size, charge rate, and infrastructure placement. This tool is 
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advanced compared to other available methods because it uses a physics-based vehicle model with an 
autotuning feature, predicts vehicle mass to improve electric vehicle energy use estimation accuracy, 
simultaneously identifies component sizing and charging infrastructure requirements, functions with different 
data types including sparsely collected telematics data, and is open source and available to the public. 

Results  
The project team has completed the initial task to collect data from selected vehicles in the PepsiCo fleet and to 
perform a simplified analysis on the data. The team also worked to refine two methods for determining mass 
from vehicle data sampled at sparse time resolution, a challenge for conventional techniques. A process flow 
diagram for the HEVII tool is given in Figure I.19.1. The tool takes telematics data collected from fleets of 
conventional trucks and uses them to determine vehicle mass and run analyses to determine electrification 
potential and charging infrastructure placement. 

 
Figure I.19.1 Process flow diagram of the overall HEVII tool to be developed in the project. Source: University of Minnesota 

Data collected from the PepsiCo fleet were added to test and production databases on separate PostgreSQL 
10.x servers accessible by the project team. A final schema continues to evolve as the team identifies how best 
to handle and use the data in the development of the HEVII tool. Vehicle measurements, location, speed, and 
trip records are populated in the database. Unfilled and linearly interpolated sparse time-series data, filled to 1 
Hz, are available in the database for PepsiCo vehicles and for a small number of NREL vehicles, using data 
extracted from Geotab, Inc. (Geotab) loggers. As planned, 24 baseline vehicles were selected from each of two 
locations for the development of the tool. The aggregated Global Positioning System (GPS) tracks of these 
vehicles from two months of driving are shown in Figure I.19.2. 

Mass detection is a critical factor in calculating electric vehicle energy use. Class 6–8 vehicles can have a large 
mass variation on the road depending on their payload. Figure I.19.3 shows how assuming a fixed mass for a 
truck can lead to large deviations in predicted fuel used over the course of a trip. Here NREL’s FASTSim tool 
was used to model a truck with (i) changing mass and (ii) fixed mass, with results compared to actual vehicle 
data. It is clear from the figure that if a fixed mass is used, the energy use deviates significantly over the course 
of the trip. In the given example, the model with fixed mass predicts a much higher energy use than the actual 
data, most likely due to the truck being unloaded at some point during its journey. However, if mass is allowed 
to change during the trip, the energy use can be predicted with better accuracy. 
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Figure I.19.2 Aggregated GPS traces of all 24 baseline PepsiCo trucks used in the study for a two-month period. Source: 

University of Minnesota 

 
Figure I.19.3 Cumulative fuel used by a truck over the course of a trip using the measured mass, calculated mass, and 

fixed mass. Source: University of Minnesota 

Mass is not always calculated and reported to telematics devices in vehicles and is rarely measured by a scale 
before a truck and trailer leaves a warehouse. NREL researchers have reported that mass can be calculated 
using the road load equation and known fuel use over time when telematics data are taking on a regular once 
per second (1 Hz) basis [1]. However, the cost of 1 Hz data is high for all vehicles in a fleet over the course of 
a year, with loggers costing $700 to $5,000 and cellular plans costing $30 to $60 per month per vehicle 
depending on usage. Geotab records more sparse data using curve sampling [2], which cuts down on data costs 
by reporting a value only once it changes by a predetermined level. NREL has developed a new mass 
algorithm for this project that uses only 1 Hz data collected in short 30 second windows triggered by a stop 
event. The results from the original NREL algorithm from a full set of 1 Hz data are compared to those taken 
by the new algorithm and to direct onboard observational sensor data. Figure I.19.4 shows that during periods 
where the mass is constant, the short window mass results are sometimes closer to the sensor data than the 
results taken from the full dataset. In subsequent analyses, it was found that the new 30-second algorithm 
results in similar accuracy to using the full data set, but with significantly less data transmission cost. In the 
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second year of the HEVII project Geotab will implement periodic 1 Hz data collection after stop events in its 
loggers on the 24 selected vehicles in the project. 

 
Figure I.19.4 Mass for a Class 8 truck from an onboard sensor compared to the NREL mass calculation using 1 Hz data (full 

set) and data collected in 30 second windows (short set). Source: University of Minnesota 

A second mass detection algorithm, one that uses ML approach, has also been developed as part of the HEVII 
project. Gaussian belief propagation (GBP) is a relatively new marginal inference algorithm that uses an 
arbitrary factor graph model to make probabilistic estimates according to the marginal distributions in 
historical data [3]. Once GBP is applied to fit a predictive line to the available mass data, the k-nearest 
neighbors algorithm can be used to predict the mass of new points based upon the similarity of the new point’s 
input vector to those of training points [4]. The proposed input vector for this study includes 9 parameters 
collected from PepsiCo trucks: engine speed, reference torque, engine load, velocity, acceleration, change in 
fuel level, longitude, latitude, and time of day. This approach may work effectively on curve sampled data 
collected by Geotab directly and can be trained using a smaller amount of data than other ML techniques such 
as neural networks or reinforcement learning models. The GBP method will be compared to NREL’s physics-
based approach in the second year of the HEVII project. 

The HEVII tool for evaluating EV transition potential for truck fleets is also under development. As part of 
this effort, NREL has developed preliminary methods that utilize vehicle trajectories from multiple vehicles to 
analyze and determine electrification potential. To predict fleet energy use, the trucks are simulated using the 
historical drive cycle data and a developed electric truck model. In the initial analysis, trucks were allowed to 
charge at past stops in the historical driving data. The trucks were only allowed to charge during the original 
stop duration in the given location. By simulating the drive cycles and incorporating on-route charging, the 
team was able to estimate the fleet energy usage over time. This method assumes that the routes or at least the 
drive cycles of the trucks in a fleet would remain consistent regardless of the truck powertrain. 

Preliminary research has also been conducted to develop an approach for fleet electric truck charger placement 
location. As this is the first phase for the HEVII tool, the model has been simplified to determine optimality of 
the approach. Before the optimization model can be created, the team first determined how to represent the 
geospatial data from the database to visually analyze the routes and patterns. One method would be to plot a 
series of GPS coordinates, then cluster them based on their density. Although this method is valid, it may be 
difficult to accurately classify nearby points, by trajectory, within an area. It is easier to develop a grid system 
where the points are constrained within a fixed shape and to analyze the behavior of the points within that 
region.  

The charger station location problem developed for the HEVII tool incorporates the Uber H3 open-source code 
to formulate a grid framework to view geospatial data and determine insights from the vehicle data. The H3 
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source code is a geospatial tool that assigns variably sized hexagons (scale grid) to large geographical datasets 
by changing the resolution [5]. The reason hexagons were chosen over rectangles, triangles, etc. is because 
only one distance is calculated between the center of a given hexagon and its neighbors, something that is 
computationally efficient and simplifies the analysis. The approach locally defines zones by using a hexagonal 
shape to draw over a neighborhood, city, etc. The H3 code has several functions such as the ability to index k-
nearest neighbors, combine with map application programming interface, change the resolution, etc. As shown 
in Figure I.19.5, as the resolution increases, the smaller the hexagons are within the chosen coordinates, city, 
etc. This source code can be utilized with a mapping API such as Google Maps, which allows a visual 
representation of and geographical information for each hexagon. This code includes implementing reverse 
geocoding that can be used to convert a given coordinate to a physical text address (both for look-up purposes 
and for ease of consumer use). 

 
Figure I.19.5 Example of using the GPS data from a PepsiCo truck to determine optimal charging location based on travel 
frequency at two different H3 hexagonal resolutions in combination with ranked points of interest. Source: University of 

Minnesota 

By implementing the H3 source code, the HEVII database is used to incorporate geofenced points of interest 
and vehicle driving patterns (i.e., stop duration) to develop a visual representation of the geospatial data and to 
create an optimization model with some objective function that can solve the charger station location problem . 
With this source code, the best charger locations can be determined, depending on the specific levels of 
activity (i.e., demand), such that wait times, costs, etc. are reduced. For simplicity, the initial HEVII tool 
prototype will determine charger station locations by utilizing common stop locations from the vehicle data. 
Charge delays will be reduced using multiple vehicle trajectories from a fleet to help optimize the number of 
chargers required at prioritized stations. The research team also plans to integrate a cost model (i.e., electricity 
costs, charger cost, etc.) that will account for regional differences and emission predictions into the 
optimization algorithm. 

Conclusions   
In conclusion, the open source HEVII tool is under development and is expected to be available as a prototype 
at the end of this two-year project. The project teams at University of Minnesota and NREL have developed a 
framework for the eventual tool, established two methods of mass estimation from low resolution telematics 
data, and determined a method for solving the charger station location problem. Future project work will aim 
to further refine the methods developed in the first year of the project and to create an open-source prototype 
HEVII tool for evaluation by fleets and other researchers.  
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Project Introduction 
Community charging hubs are expected to become essential for residents of multi-unit dwellings (MUDs) 
during the mass market transition to EVs due to a sparse network of public charging stations in proximity to 
such residences. 

The existing literature on EV charger deployment focuses on modeling intra- and inter-regional charging 
station siting [1],[2], often assuming universal home charging availability [3],[4]. However, less than 50% of 
household vehicles have access to dedicated parking in residences where charging installation and use could be 
undertaken [5]. Limited access to home charging opportunities could hinder the adoption [6] and use of EVs 
[7] and slow down the decarbonization of the United States light-duty transportation sector [8]. The existing 
literature fails to propose novel concepts to solve charging challenges that MUD residents may face when 
operating an EV, challenges that could serve as impediments to mass electrification and market penetration. 
Past research has primarily focused on policymaking levers for installation of chargers in MUDs (e.g., [9]) or 
assessed the financial viability of charging station business models (e.g., [10]). A comprehensive feasibility 
evaluation of the novel concept of community charging hubs for MUDs with EV charging session scheduling 
algorithms, including total energy use estimation in this setting, is lacking. This project seeks to significantly 
expand the existing literature in this domain with new computational methods while proposing tangible 
solutions to address the EV adoption and operation bottleneck that has begun to develop and is otherwise 
likely to worsen as a result of the obstacles to charging currently faced by MUD residents.  

Objectives 
A lack of home charging access could hinder the adoption and operation of electric vehicles by MUD residents 
[5]. Community charging hubs will enable (a) residents of MUDs to recharge their EVs using smart charging 
scheduling and (b) efficient sharing of charging infrastructure at MUDs. This study classifies the daily travel 
patterns of MUD residents and simulates their electric vehicle operations, leveraging open-access survey data 
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from the NHTS [11] and socio-demographic data from the ACS [12] and the American Housing Survey (AHS) 
[13]. 

Due to a lack of EV home charging data, spatiotemporal datasets of travel patterns of MUD residents are 
analyzed and classified. The objective is to capture time-of-day variations in automobile travel for MUD 
residents and create a representative repository of their travel profiles. After extracting MUD residents’ travel 
patterns with conventional vehicles, a simulation of expected EV daily operation is performed, tracking both 
the SOC and the dwell times in between trips. Granular time-of-day travel clusters of MUD residents are used 
to determine optimal charging choices (i.e., between home, workplace, and public options) that minimize costs 
under several scenarios. The outcomes of the optimal charging analysis provide insights into MUD charger 
deployment needs and estimated energy use. 

Approach 
In order to assess travel profiles and the characteristics of MUD residents, the latest data available from the 
2017 NHTS [11] and the 2019 AHS [13] have been analyzed. NHTS served as the primary database used for 
the daily travel analysis, selected for this role as it is a source regularly leveraged to infer electric vehicle daily 
mileage and charging needs in the U.S. (e.g., [14],[15]). However, this data source lacks information on 
vehicle owners’ housing type (i.e., multi-unit dwelling, single family house), which can impact assumptions 
made regarding home charging availability and access [5].  

To match the NHTS household-level travel data with the MUDs share from AHS, a statistical model that 
predicts the share of MUDs has been fitted, using a function of variables that are included in both datasets. 
Variables included in both AHS and NHTS span socio-demographic characteristics, such as income and 
location. The existing literature demonstrates that income and location characteristics are significant covariates 
in predicting the housing unit type of a household [16],[17]. The ordinary least squares method was used, with 
the resulting linear regression model leveraging income and census division variables to predict the share of 
MUD residents. Average household income is negatively associated with MUD share in a region, while each 
location’s effect is also captured in the model. The linear regression model, which is fitted with AHS data, is 
then applied using NHTS observations to estimate the share of MUDs for each observation. Finally, MUD 
residents’ travel data are synthesized by assigning a binary indicator to each household in the NHTS trip 
database based on the location and income level. The robustness of 100 simulation results has been confirmed 
by examining the time-of-day VMT distribution.  

After highlighting trends in time-of-day variation of the automobile travel patterns of MUD residents, the 
patterns are clustered in order to uncover distinctive driver behaviors. To create clusters of time-of-day travel 
patterns, aside from the variables of income, census division, and trip travel time, new covariates are generated 
including dwell time at home, dwell time at work, and dwell time at a public location, as well as VMT and 
vehicle location per time of day. Vehicle location is denoted as a categorical variable of “home”, “workplace”, 
“public”, and “driving”. A hierarchical agglomerative classification algorithm was implemented to determine 
travel behavior classes, after the normalization of all variables. 

In order to estimate the electric vehicle charging infrastructure needs of MUD residents, under assumptions of 
universal EV adoption and use, an optimization problem was formulated to determine optimal use at 
hypothesized MUD charging hubs. Such charging stations need to be deployed accounting for drivers’ 
decisions and charging availability across the different locations of trip stops during the day (e.g., MUDs, 
workplaces, public destinations). Therefore, the optimization problem was developed in order to determine 
optimal charging requirements for and charging energy use of MUD residents, and the optimal deployment of 
charging stations at MUDs. The problem’s objective function is set to minimize the driver’s charging cost, 
accounting for charging availability, and determine charging decisions of EVs and their owners. Model 
constraints are as follows: 

• Capture the charging electricity cost per unit of time for charging an MUD household’s vehicle; 
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• Present the state transition functions that update the mileage range of a vehicle at a trip’s stop; 

• Ensure that the mileage range of a vehicle is not less than the comfortable driving range; 

• Enforce that mileage range is equal to or greater than the comfortable mileage during intermediate 
trips; 

• Ensure that the charged range miles do not exceed the difference of the full range and current range; 

• Ensure that charging time does not exceed the dwell time; 

• Demonstrate that if there is charging availability at the MUD location for a vehicle then the charging 
time can be nonnegative; and 

• Ensure that charging station availability variables are binary and charging time variables are 
nonnegative. 

Results 
Shares of each residence type are available through AHS data: 71% of U.S. residential structures have one 
housing unit while 24% are multi-unit dwellings. (An additional 5% fit into neither of the above categories.) 
Thus, single-family housing is the most common housing type in the US. The greatest share of MUDs is found 
in the Middle Atlantic region (34.1%) and the lowest in the East South Central region (15.4%), as can be seen 
from Figure I.20.1. MUD shares are higher in lower income groups, while the lowest MUD shares are 
concentrated in the highest income groups. VMT among predicted MUD residents are lower than those of 
single-family unit residents. The median share of time spent at home over 24 hours of a day (as a percentage) 
is not significantly different between housing types, and for all census divisions and housing types falls within 
the 60%-70% range. More than 80% of vehicles are parked at home by 10:00 p.m., remaining that way until 
7:00 a.m. Approximately 20% of vehicles are parked at work by 9:00 a.m. Vehicles spend between 4 and 10 
hours parked at working premises. 

 
Figure I.20.1 MUDs share per census division. Source: University of Illinois at Urbana-Champaign 
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Three clusters best describe the MUD residents’ travel patterns, as seen in Figure I.20.2. Cluster 1 and cluster 2 
have similar average dwell time at home. However, these two clusters differ in terms of average dwell time at 
work and public locations. Cluster 2 spends their day primarily at home, when cluster 1, being less outgoing 
than cluster 3 drivers, spends their day primarily between home and work. The greatest share of daily travel for 
MUD residents belongs to cluster 3, for which the average dwell time at home is shorter, while the dwell times 
at workplace or public location are greater than for the rest of the drivers’ clusters. 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 



Analysis Technologies 

110 Integrated Modeling and Technoeconomic Assessment of Electric Vehicle Community Charging Hubs 
(University of Illinois at Urbana-Champaign)  

 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

 

(d) 

Figure I.20.2 MUDs share per census division. (a) Distribution of dwell time at home, (b) distribution of dwell time at the 
workplace, (c) distribution of dwell time at public locations, and (d) MUD residents VMT during the time of day. Source: 

University of Illinois at Urbana-Champaign 
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The expected deployment share of MUD charging stations is depicted in Figure I.20.3. Two scenarios are 
examined: EVs maintain 20 miles SOC as a comfortable range all day, or EV drivers ensure recharging that 
meets or exceeds the boundary of 80 miles of range at the end of the day. For a portion of residents, 
accommodating their trips with electric vehicles is infeasible, due to the strict SOC boundaries set, or due to 
the residents’ travel patterns. Accounting for the remaining residents, modeling results are reported, presenting 
the share of MUD residents who require MUD charging station deployment.  

  
(a) (b) 

  
(c) (d) 

Figure I.20.3 MUDs charging stations expected deployment shares (a) starting SOC of 20 miles, (b) starting SOC of 50 
miles, (c) starting at SOC of 20 miles and (d) at 50 miles for different locations. Source: University of Illinois at Urbana-

Champaign 

Subgraphs (a) and (b) of Figure I.20.3 show the expected deployment share of MUD charging stations, 
categorized for the three travel pattern clusters of MUD residents and drivers. On the other hand, subgraphs (c) 
and (d) show the MUD charging station expected deployment share for three different income groups (low, 
mid, and upper). Notice that C1 denotes cluster group 1 and LI, MI, and UI refer to lower income class, middle 
income class and upper income class, respectively. S1 denotes Scenario 1 of maintaining and ending the day 
with at least 20 miles of range, while S2 denotes Scenario 1 of ending the day with over 80 miles. Scenarios 
with higher state-of-charge at the beginning of each day result in a higher deployment share of MUD charging 
stations, since EVs at MUDs would require additional charging access during the day to meet the upper bound 
of the remaining driving range of 80 miles. Cluster 3 has the highest average VMT, while it also has the 
highest average dwell time at both public locations and workplace. EVs operated by drivers in cluster 3 tend to 
recharge at other stations. Since the initial range is just 20 miles in subgraph a, vehicles charge at the 
workplace and public stations to ensure that the comfortable driving range constraint is not violated. Therefore, 
cluster 3 travel needs can be satisfied with a lower MUD charging station share. However, in subgraph (b), 
under a scenario of electric vehicles starting their day with 50 miles of range, EV drivers decide to recharge at 
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home in MUD hubs given the lower cost of charging at home locations and their greater flexibility to choose 
their charging location due to their greater range availability. Generally, the more VMT that need to be covered 
during the day the greater the MUD charging stations’ share. In subgraph c, the upper income group has the 
lowest share of expected MUD charging station deployment when the EV battery needs to be significantly 
replenished (80 miles of range). This is because their dwell time at home is lower and, therefore they leverage 
public and workplace charging to meet such needs. 

With the assumed deployment of a 7.2 kW level 2 charger on MUD premises, the estimated energy use by 
MUD chargers is shown in Figure I.20.4. As can be seen in subgraphs a, b, c, the energy use in the scenario 
where EVs need to meet a driving range of over 80 miles at the end of day is higher. Cluster 3 and the upper-
income group use more daily MUD charging energy, since they cover more VMT daily. In subgraphs c and d, 
the lower-income group has the lowest energy use since vehicles cover less VMT daily and thus their charging 
time is expected to be briefer. Aggregating all the census divisions, for the scenario in which EVs start with 20 
miles of range and maintain this comfort range at all times over the day (aligned with existing literature [18]), 
average per vehicle energy use varies from 10.98 to 20.49 kWh among the three clusters and three income 
groups. For the scenario in which EVs start the day with 50 miles of range and maintain a comfort range of 20 
miles over the day, the average per vehicle energy use varies from 3.34 to 8.83 kWh. However, for the 
scenarios that require meeting 80 miles of range (i.e., SOC) at the end of the day, the average per vehicle 
energy use is substantially higher. When starting with 20 miles of range, the energy required per vehicle on a 
daily basis ranges from 43.75 to 50.67 kWh and when starting the day with 50 miles of range, the daily energy 
use per vehicle varies from 28.23 to 34.86 kWh. 

  
(a) (b) 

  
(c) (d)  

Figure I.20.4 Expected energy volume (in kWh) in MUDs chargers for (a) starting SOC of 20 miles, (b) starting SOC of 50 
miles, (c) for income classes starting SOC of 20 miles, and (d) for income classes starting SOC of 50 miles. Source: 

University of Illinois at Urbana-Champaign 
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Conclusions   
This analysis assesses the daily travel patterns of MUD residents based on the latest NHTS and AHS data. It 
presents the travel patterns of MUD residents and clusters of such residents generated by a hierarchical 
agglomerative clustering method as well as by income level categorization. Three clusters were identified, and 
their travel profiles (i.e., dwell time, VMT, etc.) are analyzed. A model is developed to estimate the need to 
deploy charging stations in MUDs and to simulate the charging decisions of MUD residents under a scenario 
of 100% light-duty vehicle electrification. For the cluster with the highest average daily VMT, charging 
availability in MUDs is the lowest when drivers start their day with 20 miles of range since they take 
advantage of workplace and public charging to meet their substantial travel needs, but is still needed since 
charging at home costs the least and dwell time at home is generally plentiful. The group from the lower 
income class requires a greater share of MUD charging but also charges less kWh daily due to lower levels of 
VMT. When an EV driver simply needs to ensure a comfortable mileage range of at least 20 miles, the energy 
used by MUD chargers could be as little as under 10 kWh, especially when the starting range is greater than 20 
miles. For EV drivers who wish to recharge their vehicles to meet 80 miles of range at the end of the day, 
however, charging availability in MUDs is indispensable as, in these scenarios, the energy use at the residential 
MUD chargers is much higher, with the exact amount dependent on the starting range. The scenario exploring 
fully charging the MUD drivers’ vehicles by the end of day (i.e., 80% SOC), consistently results in higher 
share of MUD charging station deployment, since drivers choose the cheapest home charging option to meet 
their operational needs. 
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Project Introduction 
Current estimates predict that aviation accounts for approximately 2% of total global emissions. However, this 
number is expected to rise to 12%–27% by 2050 [1]. This exponential rise in emissions is correlated with the 
steep rise in aviation demand. Air travel demand has tripled over the past 20 years and, according to pre-
COVID-19 forecasts, was expected to double in the next two decades. Significant improvements have been 
made in aircraft technology to the point that travel energy efficiency, measured in megajoules per passenger 
kilometers traveled [2], is at par with light-duty vehicles, but business-as-usual future improvement will not be 
able to offset the increase in demand. Several avenues have been identified to help decarbonize aviation, but 
each has significant challenges in terms of both technological maturity and system integration. The primary 
methods being studied by academia and industry are sustainable aviation fuels, hydrogen propulsion, and 
electrification/hybridization. This project aims to evaluate the energy impacts of the latter. The steep reduction 
in battery cost combined with increasing battery-specific energy density has contributed to a rapid move 
toward hybridization and electrification in ground transportation (both passenger and freight). This maturation 
of electric propulsion has led to increasing research and interest into its viability in an aviation context. New 
generation aircraft like the B787 are designed to be “more-electric.” This move toward replacing hydraulic and 
pneumatic systems, which were powered by engine bleed air, with more efficient electric options has signaled 
a move toward hybridization and eventual electrification. Several companies are working on fully electric 
planes, and some commercial airlines have committed to add them to their fleet. 

In recent years, startup companies and aerospace research organizations have led exploratory work into the 
design of several prototype electric vertical takeoff and landing (eVTOL) aircraft for carrying passengers in 
urban environments. The interest spawns from eVTOL aircraft showing great promise in saving commute 
times by flying over road traffic at high speeds. These aircraft can be used to create a new form of travel called 
Urban Air Mobility (UAM), which can shorten commutes and other cross-city trips dramatically. Additionally, 
this new mode of transportation may offer benefits by connecting suburban and rural communities to urban 
cores, thereby encouraging economic growth and development. 

Objectives  
The objective of this project was to evaluate at a high-level the potential energy impact of fully electric 
aircraft, both for intercity aviation and UAM under various technology improvement scenarios. This includes 

mailto:dkarbowski@anl.gov
mailto:nprabhakar@anl.gov
https://vsecorp-my.sharepoint.com/personal/mlloyd_energetics_com/Documents/Annual%20Progress%20Reports/Analysis/jacob.ward@ee.doe.gov
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identification of the aircraft for which electrification is a viable, near-term option, estimating the energy 
consumption of such aircraft, both in a baseline and an electric-case scenario, and finally, estimating the 
demand in an UAM scenario. 

Approach  
To better understand the energy impact that all-electric aircraft can have on energy consumption, a two-step 
approach was used, as seen in Figure I.21.1, for both intercity aviation and UAM: 

1. Electric aircraft modeling: Static aircraft models estimate range and energy consumption and can 
account for technological changes and efficiency improvements over time. 

2. Passenger air travel demand modeling: For intercity aviation, we relied on the Bureau of 
Transportation Statistics 2019 database [3], which contains information on all U.S. domestic flights’ 
origin-destination, distance, number of passengers, and aircraft type. For UAM, we used ACS [3] and 
Longitudinal Origin-Destination Employment Statistics (LODES) [4] datasets to develop an intracity 
commuter demand model for UAM. 

Static aircraft performance models for both intercity aviation and UAM were constructed from existing 
literature. These models were subsequently used in conjunction with the demand models to predict energy and 
mobility impacts of electrified aviation. 

 
Figure I.21.1 Overview of the approach used to analyze the energy and fuel impacts of electrification of aviation. Source: 

ANL 

Electrification of intercity passenger air travel 
The aircraft models described just above were parametrized to obtain scenarios for three timelines—2030, 
2040, and 2050—and to serve as references to characterize range and passenger capacity of the aircraft. Key 
technological assumptions like battery-specific energy, aerodynamic efficiency, powertrain efficiency, and 
power density were varied over these timelines. For each of the timelines, an electric and a conventional 
aircraft were designed for three different size classes. These classes were based on the number of passengers 
(pax) that a given aircraft can carry regardless of its range: 50 pax—20,000 kg maximum takeoff weight 
(MTOW); 100 pax—40,000 kg MTOW; 150 pax—80,000 kg MTOW. In each case, the categories served as 
constants to help calculate the different mass fractions for batteries (i.e., what percent of the total aircraft mass 
can be battery mass). The propulsive efficiency of the conventional powered aircraft was assumed to improve 
in future years, following a historical 1.5% per year increase rate. 

Once the aircraft model specifications were calculated, a flight assignment based on the Bureau of 
Transportation Statistics 2019 data was carried out. Flights that are above the range and passenger thresholds 
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of the largest aircraft (Class 3) were filtered out, while the remaining flights were deemed to represent viable 
opportunities for replacement by electric aircraft. For those remaining flights an aircraft class, depending on 
the flight distance and passenger occupancy for each departure, was then selected to carry out the flight. 

Urban air mobility 
Similarly, flight performance models for UAM vehicles were developed by using the existing literature and 
Open Vehicle Sketch Pad (OpenVSP) [5], which is a preliminary design software that can model the 
aerodynamics of a design. Two different eVTOL vehicles that are in advanced stages of design, the Joby S4 
illustrated in Figure I.21.2 and the Lilium 7-seat aircraft, were modeled. For the Joby aircraft, multiple public-
domain references [4]-[8] were employed to develop a model based on first-order physical relationships. For 
the Lilium aircraft, the modeling approach outlined in Lilium’s recent white paper [11] was directly 
implemented. 

 
Figure I.21.2 OpenVSP model of the Joby S4 aircraft in hover configuration. Source: ANL 

Case studies for the Atlanta and Chicago metropolitan areas were conducted in order to understand potential 
UAM commuting patterns. Both regions have extensive urban sprawl with densely populated suburbs and 
defined central business districts. This suggests that these cities could serve as early adopters for a commuter-
based UAM service. 

As a first step, the locations of the vertiports were determined using a vertiport placement model. This model 
provides a UAM infrastructure network that captures areas with high expected commuter demand. Following 
determination of the expected demand capture, the passenger choice model was used in conjunction with the 
LODES and ACS datasets to predict demand and usage patterns for the UAM service. Origin-destination pairs 
from the LODES dataset with the highest cost to society were identified, and their locations were clustered 
using a K-means clustering algorithm. The centroid location of each of these clusters was then used as the 
location for a vertiport. Through this method, vertiports were placed, in the model, in areas around a city and 
acted as origins or destinations for high-value commuter trips (top 100,000 highest income commuter trips). 

Three different ticket prices, each representing a different stage of UAM development, were used to calculate 
the cost of using the UAM service. The selected prices were $2.97/pax-mi, $0.98/pax-mi, and $0.47/pax-mi for 
the initial, near-term, and long-term scenarios, respectively, as determined by Uber [12]. The reductions in 
costs over time can be attributed to mature technologies that can take advantage of scaling in order to reduce 
operating and ownership costs. The cost of driving, for the purposes of comparison, was estimated using 
American Automobile Association, or AAA, 2020 average per-mile cost of $0.64/mi [13]. 

Results  
Electrification of intercity passenger air travel 
The ranges for the different timelines, propulsion types, and classes are presented below in Table I.21.1. With 
2030 assumptions, only the Class 3 aircraft is feasible when accounting for the safety and regulatory 
requirements, but its effective range is too short to be practical. Other smaller, commuter-class, viable aircraft 
could be designed with the 2030 technological assumptions, but they were not considered as part of this study 
as their large-scale impact on demand would be negligible. 
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Some collective results comparing electric aviation in 2040 and 2050 to aviation demand in 2019 are shown in 
Table I.21.2 and Figure I.21.3 below. 

Table I.21.1 Ranges for Different Aircraft Based on the Static Performance Models 

 2030 (0.5 kWh/kg) 2040 (1 kWh/kg)  2050 (1.5 kWh/kg) 

  Electric Conventional Electric Conventional Electric Conventional 

  Class 1 (50 pax) — 1,750 mi 230 mi 2,600 mi 620 mi 3,570 mi 
Class 2 (100 pax) — 1,835 mi 270 mi 2,800 mi 725 mi 3,960 mi 
Class 3 (150 pax) 110 mi 2,630 mi 460 mi 3,975 mi 1,110 mi 5,650 mi 

Table I.21.2 Collective Results Comparing Electric Aviation in 2040 and 2050 to Aviation Demand in 2019 

 2040 2050 
% of total departures 34% 65% 

% of total distance 13% 44% 
% of total passengers 26% 58% 
% of total pax-miles 3.4% 25.5% 

Fuel saved (tons) 468 million 1,207 million 
Energy used (gigajoules) 116 272 

 
 

 
Figure I.21.3 Flight assignments of electric aircraft in 2050 for three different aircraft classes that could replace aviation 
demand (assuming 2019 levels). Aircraft classes are based on the number of passengers carried (i.e., maximum takeoff 

weight varies) regardless of range. Source: ANL 
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Urban air mobility 
Figure I.21.4, which demonstrates simulated UAM usage for the long-term, high adoption case, shows a 
significant demand. At the ticket price of $0.47/mi, approximately 52% of the studied commuter population 
could be expected to use UAM travel in Atlanta, and approximately 78% of the high value commuter 
population in Chicago could be expected to use UAM travel. These patterns show a large proportion of users 
originating in the suburbs and commuting to the business districts. Additionally, the research finds that a 
significant number of trips are expected to occur between suburbs, which may not be as well connected to one 
another. The findings are encouraging signs for the viability of UAM as a transportation service. Even with a 
limited number of vertiports, large percentages of the studied populations found more utility from UAM than 
automobiles. It must be noted that these patterns have been estimated using a $0.64/pax-mi driving cost. 
Further research should factor in evolutions in driving cost in the context of greater penetration of electric 
vehicles.. Interestingly, project results show Chicago with higher adoption rates across all price ranges when 
compared to Atlanta. This could be attributed to the higher commute times experienced by residents of the 
Chicago metropolitan area. Both Chicago and Naperville, a sizeable suburb of Chicago, are ranked in the top 
10 U.S. cities with the highest commute times, as reported by the U.S. Census Bureau [14]. As a result, 
residents may be more likely to use UAM to avoid congestion during commute times. This finding suggests 
that highly congested metropolitans would serve as ideal early adopters of UAM services. This is especially 
relevant in major U.S. cities that have high-density commercial and industrial activity concentrated at locations 
away from residential zones, which cause bottlenecks in existing transportation infrastructure. 

 
Figure I.21.4 UAM adoption rates at $0.47/mi (long-term estimate). Top left: Vertiport placement for Chicago. Bottom left: 

UAM trips at highest adoption rates for Chicago. Top right: Atlanta vertiport placement. Bottom right: UAM trips in Atlanta at 
highest adoption rates. Source: ANL 
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Conclusions 
Electrification is a potential pathway for reducing aviation’s carbon footprint. In this project, the first one 
within the VTO on the topic, the project team developed a new aviation modeling framework for passenger 
travel in order to quantify the potential impact of aviation electrification, stemming from both intercity travel 
and urban air mobility.  

For intercity travel, this research has found that electrification and hybridization will first be introduced for 
short-haul aviation (<500 miles). In addition to being potentially carbon neutral, these technologies will also 
reduce the operational inefficiencies caused by using larger/longer-range aircraft for shorter flights. 
Electrification of longer flights might not be possible unless there are several breakthroughs in battery-specific 
energy (which is currently <1,500 Wh/kg). With major improvements in this area, and considering other 
technological advances, approximately a quarter of all passenger-miles could be performed on fully electric 
aircraft in 2050.  

Urban air mobility will, according to the research findings, be concentrated among high-value customers or 
trips during its first rollout. However, it has the potential to be scaled to appeal to a larger base once lower 
operational cost and higher frequency become achievable.  
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