2^{ID} ENERGY STORAGE GRAND CHALLENGE SUMMIT

Storage Innovations 2030

Storage Innovations 2030

Ben Shrager

General Engineer, Office of Electricity, U.S. Department of Energy

Patrick Balducci

Manager, Power Systems and Markets Research, Argonne National Laboratory

Thomas Mosier

Group Lead, Energy Systems, Power & Energy Systems, Idaho National Laboratory

Storage Innovations 2030

Ben Shrager, DOE OE

Patrick Balducci, ANL

Thomas Mosier, INL

DOE has supported 30+ storage technologies

rage	chemical	Li-Ion & Li-Metal	Chemical		High-Temperature Sensible
		Na-Ion			Heat
		Na-Metal		a	Phase Change
		Lead Acid		erm	Low-Temperature Storage
		Zinc		두	

Needed: A specific, actionable roadmap to develop, scale, and deploy the most promising technologies that will meet the 2030 Long Duration Storage Shot goal.

Crosscutting	Power Electronics	Power Electronic Systems	Flexible Gen	Flexible Generation	Thermochemical
					Desiccant
					Ramping
					Behind-the-Meter Generation Plus Storage

Statutory Directive for Strategic Planning

Needed: A specific, actionable roadmap to develop, scale, and deploy the most promising technologies that will meet the 2030 Long Duration Storage Shot goal. Department of Energy Research and Innovation Act, 2018:

- "develop a planning, evaluation, and technical assessment framework for setting objective longterm strategic goals and evaluating progress"
- "identify programs that may be more effectively left to the States, industry, nongovernmental organizations, institutions of higher education, or other stakeholders."

Consolidated Appropriations Act, 2021:

- "Energy storage strategic plan" ... "develop a 10year strategic plan for the program"
- "include metrics that can be used to evaluate storage technologies"

Storage Innovations 2030

Developing industry consortia and enhancing collaboration

Strategizing & accelerating the future of energy storage

Quantifying the benefits of RD&D activities for mature technologies

Enabling emerging technologies

Storage Innovations 2030 SI – Flight Paths Strategizing & accelerating the SI - Framework future of energy storage

SI - Prize

Storage Innovations 2030

Strategizing & accelerating the future of energy storage

Energy Storage 2030 – Framework and Preliminary Results for Lithium-ion and Lead Batteries

Patrick Balducci¹, Thomas Mosier³, Venkat Durvasulu³, Crystal Ferels¹, Nigel Becknell², Ben Shrager⁴, Hill Balliet³

DOE Storage Summit September 28, 2022

¹Argonne National Laboratory ³Idaho National Laboratory ²NanoGraf Corporation ⁴U.S. Department of Energy

Framework outline

Lead Acid Results

Li-ion Results

Synthesis

Our Objective is to Identify Portfolios of Innovations That are Efficient at Achieving LCOS Reductions

"Portfolios" are sets of interventions by DOE (e.g., specific R&D activities, demonstrations, loans for scale-up)

We are Implementing a Framework to Develop These Intervention Portfolios

Identify individual innovation opportunities

Step 1: Assess R&D trajectory status quoStep 2: Assess gaps with respect to improving technology cost/performanceStep 3: Define DOE interventions that could be relevant to energy storage gapsStep 4: Assess potential impacts of DOE interventions

Assess portfolios of interventions

Step 5: Implement Monte Carlo model Step 6: Evaluate portfolios of interventions

Analyze modeled outcomes

Step 7: Conduct suitability evaluations Step 8: Report on metrics

Innovations Distilled from Interviews Used for Portfolio Analysis Innovation Category Innovation

Lead-acid

03601011			Paw materials sourcing	Cathode material mining
		1		Domestic sourcing of Lithium
Innovation Category	Innovation			Anode material production
	Mining and motallurgy		Supply chain	Mining permitting
Raw materials sourcing	improvements			Co-locating manufacturing and mines
0	Alloying in lead sources			Solid-state electrolyte improvements
Supply chain	Supply chain analytics			Anode innovations
	Novel active material		Advanced material development	Electrode and electrolyte innovations
	Improving paste additives - carbon			Atomic-level cell dynamics studies
Advance material development	Improving paste additives -		Fundamental material research	
			Technology components	Sensor and monitoring technologies
	Novel electrolytes			Foundational manufacturing R&D
	Re-design of standard current			Manufacturing process scale-up
	collectors		Manufacturing	Data-driven manufacturing improvements
Technology components	AGM-type separator			Manufacturing workforce development
	Minimizing water loss from the			Controls to improve cycle life
	battery		Donloymont	Deployment policies
Manufacturing	Advanced manufacturing for		Deployment	Demonstration
	lead-acid batteries			Deployment efficiency
	Scaling and managing the energy			Recycling defective cells
Deployment	storage system		End of life	Recycling degraded cells
	Demonstration projects			Impurities reduction technique
End of life	Enhancing domestic recycling			Rapid battery health assessment

Li-ion

Innovation

Innovation Category

Lead-acid Battery Results

Some Innovation Portfolios Substantially Reduce LCOS

Achieving This Dramatic LCOS Reduction Would Require a Dramatic Improvement to Cycles

Manufacturing Innovations Required for Deep Cost Reductions but Other Innovations Yield High ROI

Significant Number of High Impact Portfolios Cost Less than \$150M

Lithium-ion Battery Results

Deepest LCOS Reductions Require Significant Intentionality

Storage Block and Cycles Key to Achieving Deepest LCOS Reductions

Deployment and Advanced Materials Are Key to Highest Impact Portfolios

Li-ion Innovation Portfolios Are Expensive, but Majority Cost Less Than \$1B

Lead-acid Innovation Driven by Materials and Components; Li-ion by Deployment and Materials

We're Applying Framework to Broader Set of Technologies as Part of a Report to Congress

- Report will demonstrate composition and impact of portfolio investment approach to reducing energy storage LCOS.
- Will look across Energy Storage Grand Challenge use cases.
- We would appreciate speaking to everyone in the audience with subject matter expertise on these technologies!

Technologies

- Lead-acid
- Li-ion
- Supercapacitors
- Flow batteries
- Pumped storage hydropower
- Compressed air energy storage
- Flywheels
- Sodium-ion
- Thermal
- Hydrogen

Contact information

Patrick Balducci pbalducci@anl.gov 503-679-7316

Thomas Mosier thomas.mosier@inl.gov 971-219-4534

Storage Innovations 2030

SI – Flight Paths

Strategizing & accelerating the future of energy storage

American-Made Challenges

Energy Storage Innovations Prize

American-Made Challenges

• The American-Made program is designed to incentivize innovation through prizes, training, teaming, and mentoring.

- Fast-track product development timelines from years to months, speed innovator progress, and create partnerships that connect entrepreneurs to the private sector and national laboratories.
- This program is funded by the U.S. Department of Energy and administered by the National Renewable Energy Laboratory.

Energy Storage Innovations Prize

- Next month: seeking next-generation technology innovations for grid-scale, long duration energy storage.
- Innovators with emerging technology innovations can compete for a portion of the \$300,000 cash prize.
- The Energy Storage Innovations Prize supports Department of Energy goals to foster development of new technologies that meet grid reliability, equity, and decarbonization objectives.

Sign up for updates: https://www.herox.com/storageinnovations

A M E R I C A N MADE U.S. DEPARTMENT OF ENERGY

Storage Innovations 2030 SI – Flight Paths Strategizing & accelerating the future of energy storage

SI – Flight Paths

- Today's pitch sessions will inform which technologies are selected for Flight Paths.
- Subsequent process will seek industry consortia and input.

Flight Paths Output: Which R&D innovations are best suited for collaborations and partnerships?

Flight Paths & SI Timeline

Sign up for updates: https://www.herox.com/storageinnovations

A M E R I C A N MADE U.S. DEPARTMENT OF ENERGY

Flight Paths & SI Timeline

