National Petroleum Council Study

"Prudent Development – Realizing the Potential of North America's Abundant Natural Gas and Oil Resources" (September 2011)

Onshore Gas Topic Paper Update

October | 2013

NPC Onshore Gas Topic Paper #1-8 Update

Revisiting the Onshore Gas resource cases

- Case 1 (low) no longer fits historical trends

- Three more years of data is available since the National Petroleum Council study was performed (<u>www.npc.org</u>)
- Gas production performance continues to be very strong despite falling prices
- From a "bottom-up" point of view:
 - New discoveries have been (and continue to be) made
 - Associated gas has become much more significant
 - More recent studies, like the PGC and EIA/ARI, continue to increase their gas resource estimates which are now consistent with the NPC, MITei, and RSTG data used in the original study
- The following slides provide additional "top-down" points of view

Supply Stack Curves

Excerpt of Figure 17, with cumulative production through YE2012

data sour

Based on updated market and production data, Case 1 no longer fits historical trends

U.S. Plus Canada Onshore Natural Gas Resource Estimates

Relationship of conventional to unconventional resources Excerpt from Appendix A - annotated

Conventional vs Unconventional Recoverable Resource

Figure A4: Conventional vs. Unconventional Recoverable Resource * SJB - San Juan Basin GRB - Green River Basin * U-PB - Uinta-Piceance Basin * APPB - Appalachian Basin BWB - Black Warrior Basin * WRB - Wind River Basin IB - Illinois Basin

Source: Old, Holditch, Ayers, and McVay, 2008 (SPE 117703)

From Slide 6: Could Grow up to 10,000 TCFG over time <u>EXPLANATION:</u>

*Basins with significant new unconventional discoveries since 2008 are likely to increase the unconventional fraction to >90% (or 10 times the conventional recoverable resource).

Based only on conventional recovery to date of ~1,000 TCFG (Slide 6); ultimate unconventional recovery could be ~10,000 TCFG.

Note that this is over twice the Case 3 estimate of ultimate recoverable resource (4,656TCFG from Slide 4).

Various Gas Remaining Resource Estimates Excerpt Table 2 – Annotated and Updated with latest EIA and PGC Figures

Estimates of Remaining Resource¹

							Total					Cana	ida	Canada			Onshore
	Data	0	0	T . 14	Ohala	0.0014	Lower		T	Proved		Onshore no	on-	Offshore	Total	Total North	non-Arctic
Organization	Date	Offshore	Conventional	light	Shale	СВМ	48	AK	Total US	reserves	All US	Arc	tic	and Arctic	Canada	America	N.A. Total
USGS/MMS/EIA	1997		657	308		50	1,015	223	1,238								
USGS/MMS/EIA	2009		454	276		71	801	362	1,163	245	1,408						
NPC	1999		881	230	52	74	1,252	303									
NPC	2003		691	190	35	58	974	294	1,268	184	1,452	3	97		397	1,849	
PGC	2001		7	42		98	840	251	1.091								
PGC	2006		ģ	61		166	1,127	194	1,321	211	1,532						
PGC	2008		863		616	163	1,642	194	1,836	238	2,074						
PGC	2012	131	1,	392		158	2,181	194	2,384	305	2,689						
ICF	2009		693	174	631	65	1.563	294	1.857	245	2,102						
INGAA	2008		904	174	385	65	1,528	302	1,830	204	2,034	5	608		508	2,338	
NEB	2009											6	27		627		
CSUG	2010											1,0	20		1,020		
	00.0040																
	Q2 2010			1		- 1	TT A	1 .							1,185	4,035	
MITELU.S. P10 ⁻²	Q2 2010	N	ote that u	pdated	PGC	and	EIA o	lata	are in		2,850						
Millel Pmean -	Q2 2010	th	e range o	F NPC	MIT	ei and	RST	'G d	ata sets	2	2,100				800	2,900	
MITELO.S. P90 ²	Q2 2010		ie range o		, 1911 10		1101	UU		`	1,500					6	
MITel Canada P90 2	Q2 2010									_		<u> </u>			460	1,960 °	
RSTG Onsh Gas Case 3 ³	Q3 2010		120	523	1,658	142	2,443					1,1	18				3,561
RSTG Onsh Gas Case 2 ⁴	Q3 2010		120	523	1,198	142	1,983					9	07				2,890
RSTG Onsh Gas Case 1 5	Q3 2010		120	523	514	142	1,299					6	602				1,901
ANGA	Q1 2010		692	438	1 759	70	2 959	294	3 253	245	3 498	1.0	26			4 524	
	0040		050	000	.,		4,004	404	4.005		4,005	.,.				.,•= .	
GTI Current	2010		958	223	32 53	49 77	1,321	484 530	1,805	INC.?	1,805						
GTTAUVAILLEU	2010		1,002	337	55	11	1,520	550	2,056	IIIC. ?	2,050						
NPC Survey High	Q4 2010	375	440	550	1,800	150	3,315	345	3,660	inc.	3,660	1,0	25	230	1,255	4,915	3,965
NPC Survey Medium	Q4 2010	260	290	350	1,000	120	2,020	210	2,230	inc.	2,230	6	95	175	870	3,100	2,455
NPC Survey Low	Q4 2010	160	215	200	700	90	1,365	130	1,495	inc.	1,495	3	570	130	500	1,995	1,575
EIA / ARI	Q2 2011				862					273							
EIA ⁷ /ARI	Q2 2013		1,469		1,161				2,630	302	2,932						
EIA ⁷	Q2 2013		1,469		539				2,007	302	2,309						

footnotes:

1 No adjustments have been made for interim production betw een years

2 MITei's figures as published

3 NPC RSTG Onshore Gas Sub-Group, sourced from detailed dataset from the MITei Report prepared by ICF; \$20/mcf supply cost cut-off assumed; High "Advanced" (2007) Tech Case

4 NPC RSTG Onshore Gas Sub-Group, sourced from detailed dataset from the MITei Report prepared by ICF; \$20/mcf supply cost cut-off assumed; Mean "Advanced" (2007) Tech Case

5 NPC RSTG Onshore Gas Sub-Group, sourced from detailed dataset from the MITei Report prepared by ICF; \$20/mcf supply cost cut-off assumed; Mean "Current" (2007) Tech Case

6 Sum of U.S. and Canada; but not really a valid statistical function

7 includes 5% shrinkage factor

NPC Onshore Gas Update – References

- Tierney, Wilson, Carrell, Forman, Kelly, McMahon, Mortensen, and Sterling. (2011) Paper #1-8, Onshore Natural Gas Topic paper by the Onshore Gas Sub-Group of the Resource and Supply Task Group of the National Petroleum Council <u>http://www.npc.org/Prudent_Development-Topic_Papers/1-</u> <u>8 Onshore_Natural_Gas_Paper.pdf</u>.
- Monez, Ernest J.; Jacoby, Henry D.; Meggs, Anthony J.M. et al; MIT Energy Initiative. (2010). "The Future of Natural Gas, Interim Report" ISBN 978-0-9828008-0-5. Retrieved from http://web.mit.edu/mitei/research/studies/report-natural-gas.pdf.
- Meggs, Anthony J.M.; MITei, 2010 emails on supply and cost information.
- Hugman, Bob., ICF International, 2010 emails regarding details of supply and cost information.
- Hubbert, M. K. (Mar. 1956). Nuclear Energy and the Fossil Fuels. Presented at the spring meeting of the Southern District, San Antonio, TX.
- Hubbert, M. K. (1982). Techniques of Prediction as Applied to the Production of Oil and Gas. S.I Gass, ed., Oil and Gas Supply Modeling. National Bureau of Standards Special Publication 631. pp. 16-141.
- Old, S., Holditch, S.A., SPE, Ayers, W.B., McVay, D.A., Texas A&M University. (2008). PRISE: Petroleum Resource Investigation Summary and Evaluation. Society of Petroleum Engineers. SPE 117703.
- USGS/MMS/EIA. (1997).
- USGS/MMS/EIA. (2009).
- National Petroleum Council. (Dec. 1999). Meeting the Challenges of the Nation's Growing Natural Gas Demand.
- National Petroleum Council. (Sept. 2003). Balancing Natural Gas Policy- Fueling the Demands of a Growing Economy.
- Raymond, Lee R. (2007). HARDTRUTHS- Facing the Hard Truths about Energy, National Petroleum Council.
- Potential Gas Committee, 2001. Potential Supply of Natural Gas in the United States (Report of the Potential Gas Committee, December 31, 2000) Golden, Colorado, Colorado School of Mines, Potential Gas Agency.
- Potential Gas Committee, 2007. Potential Supply of Natural Gas in the United States (Report of the Potential Gas Committee, December 31, 2006) Advanced Summary: Golden, Colorado, Colorado School of Mines, Potential Gas Agency.
- Potential Gas Committee, 2009, Potential Supply of Natural Gas in the United States (Report of the Potential Gas Committee, December 31, 2008) Advanced Summary: Golden, Colorado, Colorado School of Mines, Potential Gas Agency.
- ICF, 2009.
- Vidas, Harry and Hugman, Bob. (2008). Availability, Economics, and Production Potential of North American Unconventional Natural Gas Supplies. The INGAA Foundation, Inc.
- National Energy Board. (2009). 2009 Reference Case Scenario: Canadian Energy Demand and Supply to 2020.
- CSUG, 2010. Canadian Society for Unconventional Gas (now Resources) <u>www.csur.ca</u>
- ANGA, 2010. America's Natural Gas Alliance <u>www.anga.us</u>
- GTI Current, 2010. Gas Technology Institute <u>www.gastechnology.org</u>
- NPC Survey Results, (2010-11). <u>www.npc.org</u>
- EIA (June 2013). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States