

A twelve-year retrospective on pvlib: opensource PV performance modeling libraries

Joshua S. Stein¹, Clifford Hansen¹

With acknowledgments to Robert Andrews², Will Holmgren³, Mark Mikofski³, Kevin Anderson⁴, Adam Jensen⁵, Anton Driesse⁶

¹ Sandia National Laboratories

² Heliolytics

³ DNV

⁴ NREL

⁵ DTU

⁶ PV Performance Labs

PV_LIB, PV_Lib Toolbox, pvlib-python

In 2010 Sandia National Laboratories identified problems with PV system modeling:

- A system model requires use of many component models.
- Each researcher implemented (coded) these models in the language/tool of their choice for their personal use.
- Cross comparison between different researchers discovered that few of these implantations of the same model yielded the same result.
- To quantify the effect on system models, Sandia ran the 1st PV Performance Modeling Blind Comparison.

2010 1st Blind PV Modeling Comparison

- Weather and system design data provided for 3 systems. Modelers asked to predict power output.
- 25 contributors
- In one case differences of 15% were seen between two modelers using the same model from the same company!

How to make modeling more consistent?

Standardize modeling practice (Modeling Chain Concept)

- Each step of the chain has options for submodels
- Standardize inputs and outputs
 - Locations (lat, long, elev, tz)
 - Timeseries format conventions
- Documentation and examples

Share community software

- PV_LIB or PVLIB Toolbox for Matlab was born!
- Designed and coded by the Sandia PV group
- Offered for download on PVPMC website
- PVLIB Matlab has moved to Github
- Code base has fallen behind pylib-python and is relatively stagnant.

Stein, J. S. (2017). Energy Prediction and System Modeling. <u>Photovoltaic Solar Energy: From</u> <u>Fundamentals to Applications</u>. A. Reinders, P. Verlinden, W. v. Sark and A. Freundlich. Chichester, West Sussex UK, Wiley: 564-578.

pvlib-python origins

- In 2013 Rob Andrews (graduate student at Queen's University) proposed translating PV_LIB Matlab to python.
- Python was free to use
- Jupyter notebooks made documenting analyses easier
- PV_LIB Version 1.1 was born (renamed pvlib-python and re-versioned to 0.1).
- 31 Functions were included
- Initial tests were proposed
- Developed on Github
- Documents on readthedocs

TABLE I NS INCLUDED IN VERSION 1.1 OF PV_LIB . ALL REFERENCES ARE INCLUDED IN THE ON LINE PV_LIB DOCUMENTATION

Irradiance and atmospheric functions

inadialice and autospierte functions	
pvlib.pvl_alt2pres(altitude)	Determine site pressure from altitude
pvlib.pvl_pres2alt(pressure)	Determine altitude from site pressure
<pre>pvlib.pvl_getaoi(SurfTilt, SurfAz, SunZen, SunAz)</pre>	Determine angle of incidence from surface tilt/azimuth and apparent sun zenith/azimuth
<pre>pvlib.pvl_disc(GHI, SunZen, Time[, pressure])</pre>	Estimate Direct Normal Irradiance from Global Horizontal Irradiance using the DISC model
<pre>pvlib.pvl_aphamaris(Time, Location[,])</pre>	Calculates the position of the sun given time, location, and optionally pressure and
multip purt amonthma Location)	Calculate the solar position using the DySolar package
pvlib.pvl_spa(nne, incanon)	Determine or tratemetrial radiation from day of year
rulib pul globalinglang/Surfilt SurfAr)	Determine the three components on in plane irradiance
rulib pvl_grounddiffuno(Surffilt (UL Albado)	Estimate diffuse irradiance from around reflections along irradiance, albado, and surface.
pviib.pvi_groundarriaba(barrin, chi, Aneao)	estimate unruse inautance from ground renections given infantance, about, and surface
pvlib.pvl_makelocationstruct(latitude,)	Create a structure to define a site location
<pre>pvlib.pvl_relativeairmass(z[, model])</pre>	Gives the relative (not pressure-corrected) airmass
pvlib.pvl_absoluteairmass(AMrelative, Pressure)	Determine absolute (pressure corrected) airmass from relative airmass and pressure
pvlib.pvl_clearsky_ineichen(Time, Location)	Determine clear sky GHI, DNI, and DHI from Ineichen/Perez model
pvlib.pvl_clearsky_haurwitz(ApparentZenith)	Determine clear sky GHI from Haurwitz model
Irradiance Translation Functions	
pylib.pyl perez(SurfTilt SurfAz DHL DNL _)	Determine diffuse irradiance from the sky on a tilted surface using one of the Perez
F F	models
pvlib.pvl_haydavies1980(SurfTilt, SurfAz,)	Determine diffuse irradiance from the sky on a tilted surface using Hay & Davies' 1980 model
pylib.pyl isotropicsky(SurfTilt DHD)	Determine diffuse irradiance from the sky on a tilted surface using isotropic sky model
pvlib.pvl_kingdiffuse(SurfTilt, DHI, GHI, SunZen)	Determine diffuse irradiance from the sky on a tilted surface using the King model
pvlib.pvl_klucher1979(SurfTilt, SurfAz, DHI,)	Determine diffuse irradiance from the sky on a tilted surface using Klucher's 1979 model
<pre>pvlib.pvl_reindl1990(SurfTilt, SurfAz, DHI,)</pre>	Determine diffuse irradiance from the sky on a tilted surface using Reindl's 1990 model Data Handling
pvlib.pvl_readtmy2(FileName)	Read a TMY2 file in to a DataFrame
pvlib.pvl_readtmy3(FileName)	Read a TMY3 file in to a DataFrame
System Modeling functions	
pvlib.pvl_physicaliam(K, L, n, theta)	Determine the incidence angle modifier using refractive models
pvlib.pvl_ashraqiam(b, theta)	Determine the incidence angle modifier using the ASHRAE transmission model
<pre>pvlib.pvl_calcparams_desoto(S, Toell,[,])</pre>	Applies the temperature and irradiance corrections to inputs for pvl_singlediode
<pre>pvlib.pvl_retreiveSAM(name[, FileLoc])</pre>	Retrieve latest module and inverter info from SAM website
<pre>pvlib.pvl_sapm(Module, Eb, Ediff, Tœll, AM, AOI)</pre>	Performs Sandia PV Array Performance Model to get 5 points on IV curve given SAPM
	module parameters, Ee, andcell temperature
<pre>pvlib.pvl_sapmcelltemp(E, Wspd, Tamb[, modelt])</pre>	Estimate cell temperature from irradiance, wind speed, ambient temperature, and module parameters (SAPM)
pvlib.pvl_singlediode(Module, IL, IO, Rs,)	Solve the single-diode model to obtain a photovoltaic IV curve
pvlib.pvl_snlinverter(Inverter, Vmp, Pmp)	Converts DC power and voltage to AC power using Sandia's Grid-Connected PV Inverter model
pvlib.pvl_systemdef(TMYmeta, SurfTilt,)	Generates a dictionary of system parameters used throughout a simulation

Andrews, R. W., et al. (2014). Introduction to the Open Source PV LIB for Python Photovoltaic System Modelling Package. <u>40th IEEE PV Specialists Conference</u>. Denver, CO.

pvlib-python maturation (2014 – 2022)

The Dark Ages (2014-2018)

Will Holmgren (University of Arizona, now DNV) was researching PV forecasting and started using pvlib-python for his work.

- Principal maintainer from 2014-2018.
- Instituted Python coding standards.
- Added classes (PVSystem, ModelChain) for higher level functionality
- Added continuous integration testing
- Recruited and coached new maintainers

The Renaissance (2019-2021)

 New content added as a byproduct of other work. Examples:

- SolarForecastArbiter rework of many function APIs, publication of the primary reference 1
- SolarPerformanceInsight multiple Array capabilities

The Modern Era (present)

- Team of 6 maintainers (5 institutions)
- NumFocus affiliation
 - GSoC 2021: build-out of iotools
- Ongoing PVPMC project 2D bifacial model, parameter translation and estimation capabilities.

0.7.0v dilva pvlib v0.7.1 pvlib v0.7.2 pvlib v0.8.0 202 pvlib v0.8.1 pvlib v0.9.0 2022 pylib v0.9.1 pvlib v0.9.2

Community Growth

Google Group (user discussion, announcements)

- 600+ members
- Roughly quadrupled since 2019 workshop
- https://groups.google.com/g/pvlib-python

GitHub (code development)

- 700+ pull requests
- Code contributions from 80+ people
- https://github.com/pvlib/pvlib-python

Numbers as of 2022-07-20

GitHub Contributors

This software is made possible by contributions from people like you. You can help!

https://pvlib-python.readthedocs.io/en/stable/contributing.html

From: K. Anderson et al., pvlib python 2022 update, PV Performance Modeling and Monitoring Workshop, Salt Lake City, UT. August 23, 2022.

Known commercial users of pvlib

GREAT SNIPE ANALYTICS

POWER

FACTORS

DNV

BLACK & VEATCH

pvlib citations increase every year (<u>https://pvpmc.sandia.gov/applications/pv_lib-</u> toolbox/)

- 223 in 2021
- 193 in 2020
- 160 in 2019
- 110 in 2018
- 43 in 2017
- 27 in 2016
- 8 in 2015
- 6 in 2014
- 1 in 2013

Principles for pvlib-python's success

- Community property, not of any institution.
- Re-use is prioritized. "pv-lib" stands for "PV library."
 - Base layer of functions.
 - Higher layers of Class methods automate frequent tasks, e.g., ModelChain.
 - Free from any particular workflow (there is no GUI).
- Transparency and credibility:
 - Algorithms and models closely follow published references.
 - Open review process, full-coverage testing, compliance with python conventions, automated documentation.
- Sustained, frequent activity by maintainers.
 - github.com/pvlib/pvlib-python.git is not a "ghost town."
- A diverse team of committed maintainers.

While the software is free to use, it is not free to:

<u>Sustain</u>

- Keep software running as python and package versions change
- Engage community online Q&A, user group meetings, tutorials

<u>Maintain</u>

• Manage Issues, pull requests, code reviews, tracking engagement

<u>Develop</u>

- Add capabilities (bifacial modeling, shade/snow losses, interfaces with other tools/data)
- Improvements to speed, adapt to new hardware innovations
- Maintainers Code contributors Counting people Code Users **Maintainers** Counting lines of code Other code contributors
- SETO provides some support for pvlib through the PV Performance Modeling Collaborative project at Sandia. Other maintainers are self supported and volunteer their time to the project.

Some Benefits of Open Source pvlib-python

- Great way to find bugs and get them fixed
- People who you do not know contribute cool things.
- Your community grows
- Provides diverse opportunities for new development and leadership
- Builds international networks

Sascha Birk, PhD Student from University of Applied Science Cologne has a series of at least nine YouTube videos on using pvlib

AFFILIATED PROJECT

Google Summer of Code

pvilb-python is used all over the world

PVLib Introducción con Python - YouTube

Epylit

PvData

PVLib Introducción con **Python**. 498 views Mar 28, 2022 Taller impartido para el curso EL5854 Sistemas Fotovoltaicos de la...

YouTube · Hugo Andrés Sánchez Ortiz · Mar 28, 2022