

Welcome to the Dept. of Energy's "Building-Integrated Photovoltaics: Beyond the Shingle" Workshop!

Please help yourself to coffee and snacks. We will begin at 8:10am.

Agenda Overview

8:00a - 8:15a	Breakfast/Introductions			
8:15a - 8:45a	SETO/BTO BIPV RFI Report G. Stefopoulos (SETO), M. Lafrance (BTO)			
8:45a - 9:15a	Barriers & Strategies for Integrating Architectural Solar – A U.S. Market Perspective Chris Klinga, Stan Pipkin (ASA)			
9:15a - 10:15a	Industry Panel Discussion GAF Energy, Mitrex, Next Energy Technologies, Toledo Solar			
10:15a - 10:30a	Break			
10:30a - 10:45a	Boots on the Ground: Solar Roof Contracting Today Amy Atchley (Starling RFS)			
10:45a - 11:00a	Let's Talk About BIPV Resilience Dr. Mengjie Li (UCF)			
11:00a - 11:50p	R&D Panel Discussion EPRI, Penn State, NREL, LBL, Sandia			
11:50a - 12:00p	Concluding Remarks			

Challenges and Opportunities for Building-Integrated Photovoltaics SETO/BTO Request for Information Report

Solar Energy Technologies Office / Building Technologies Office

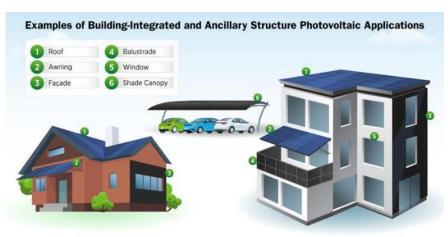
RE+ BIPV Workshop - September 22, 2022

Outline

- Background
- RFI overview
- Responses and learnings
- Workshops
- Further discussion

Background

- Building-sited distributed PV was about 30% of new solar capacity installed in 2020
- Roof-mounted systems are currently the dominant design
- Other approaches and technologies could provide a competitive value proposition
 - Providing better potential given the building aspect ratio
 - Combining redundant parts
 - Reducing overall system costs
 - Improving efficiencies


Background

Building-applied PV (BAPV)

Building-integrated PV (BIPV)

- ☐ Conventional PV modules
- Fully-functional building
- Electricity generation

- Specialized PV modules
- Integral part of building
- Electricity generation and building function

RFI Details

- Collaborative DOE RFI between SETO and BTO
- March 7 to April 1, 2022
- 37 responses from a variety of stakeholders
- Focus on current state of the industry, challenges and barriers, gaps, and R&D needs
- Summary report at https://www.energy.gov/eere/solar/summary-challenges-and-opportunities-building-integrated-photovoltaics-rfi

RFI Details – Focus areas

State of the industry and key domestic markets

Product requirements

Key barriers and perceptions

RDD&C needs and opportunities

Stakeholder engagement processes

Market Segments and Opportunities

Products

- Roofing
- Covering/Shading Elements
- Glass products
- Vertical products

Customer Segments

- Commercial buildings
- Residential buildings
- Government, education, healthcare
- Agriculture and greenhouses

Domestic Manufacturing

- Proximity to market
- Building products typically produced close to consumption
- Cost/emission reductions

Key Product Requirements

Performance

Cost

Aesthetics

Reliability, durability, and safety

Process integration

Supply chain integration

Key Barriers and Perceptions

Technical	Costs
Barriers	Performance
26	Aesthetic considerations
	Technical complexity in installation, operation, and maintenance
	Certification and permitting challenges
Resource	Availability of products, product and supply chain reliability
	Expertise shortage and lack of educational resources
	Lack of sales, estimation, and other decision support tools
	Lack of financial incentives specific to BIPV
Awareness and collaborations	Technology awareness by designers and end-users
	5 , 5
	Existing silos in operating and business models of various affected groups
	Disconnects between partnering groups and affected industries
Research and	Lack of fundamental research
Development	Lack of demonstration projects
collaborations Research and	Expertise shortage and lack of educational resources Lack of sales, estimation, and other decision support tools Lack of financial incentives specific to BIPV Technology awareness by designers and end-users Existing silos in operating and business models of various affected groups Disconnects between partnering groups and affected industries Lack of fundamental research

RDD&C Needs

Product	Testing facilities and demonstration projects
demonstration	Availability of data
Models and	Production cost modeling
tools	Energy yield modeling
	Installed system cost modeling with consideration for O&M costs
	Comprehensive assessment of benefits
Performance	Improved BIPV product designs – aesthetics, installation, O&M
improvements	Efficiency and energy yield improvements
	Thermal management improvements
	Installation and maintenance processes
	Systems integration

Stakeholder Engagement and Outreach

Underrepresented ^A	Architectural community
groups	Construction industry
N	Manufacturers and product implementation teams
F	Power-electronics companies
7	Trade associations and organizations
L	Local/state regulators
	Investors
Outreach	Publishing case studies
mechanisms	Supporting and promoting demonstration projects
E	Establishing dedicated BIPV conferences, trade shows, workshops, and other educational opportunities
(Creating a steering committee to make recommendations for specific certification standards for BIPV
F	Providing funding opportunities for research and commercialization of BIPV solutions
I	Instituting BIPV rebate programs or financial incentives
(Creating a coordinated national effort, like establishing a U.Sbased consortium
F	Promoting early-stage innovation

Purpose of Workshop

- Bring together various BIPV stakeholders from industry, academia, and research entities
- Create a forum for discussion and exchange of views and ideas
- Understand the current status and needs of the industry
- Receive input that would guide future DOE plans and activities

DOE BIPV Workshops

RE+

- https://www.re-plus.com/power/
- Thursday, September 22, 2022, 8:00 12:00p

Greenbuild International Conference and Expo

- https://informaconnect.com/greenbuild/
- Tuesday, November 1, 2022, 9:00 12:00p

Buildings XV

- https://www.ashrae.org/conferences/topical-conferences/2022buildings-xv-conference
- Thursday, December 8, 2022, 1:00 5:00p

Questions and Further Discussion

George Stefopoulos georgios.stefopoulos@ee.doe.gov

US DOE BIPV Workshop - Building Technology Office

Marc LaFrance US DOE

Advanced Technology and Energy Policy Manager RE+ Conference, 22 September 2022

Core functions of building envelopes

- Keep the rain out
- Keep the heat out in summer
- Keep the heat in the winter
- Maintain a view to the outdoors
- Provide safe and comfortable space
- Avoid mold, bugs and rot
- Reduce chances of condensation
- Ventilate indoor pollutants
- Avoid infiltration of outdoor pollutants and latent loads

Building envelope infrastructure example – standards and ratings

Fenestration:

- Simulation of U-factor, Solar Heat Gain Factor and Visible transmittance - ISO 15099
- U-factor testing ASTM C 1363, C1199, NFRC 102
- Solar Heat Gain Testing NFRC 201
- Spectral Optical Property ISO 9050, ASTM E903, NFRC 300, 301
- Air Leakage ASTM E283, NFRC 400

Wall Insulation

• ASTM C 518, C 177

Wall System

ASTM C1363, ASTM C1155

Air Leakage

Spectrophotometer

<u> </u>	nitial	Weathered	
Solar Reflectance	0.00	Pending	
Thermal Emittance	0.00	Pending	
Rated Product ID			

Licensed Seller ID Number

Classification

Production Line

Cool Roof Rating Council ratings are determined for a fixed set of conditions, and may not be appropriate for determining seasonal energy performance. The actual effect of solar reflectance and thermal emittance on building performance may vary

Manufacturer of product stipulates that these ratings were determined in accordance with the applicable Cool Roof Rating Council procedures.

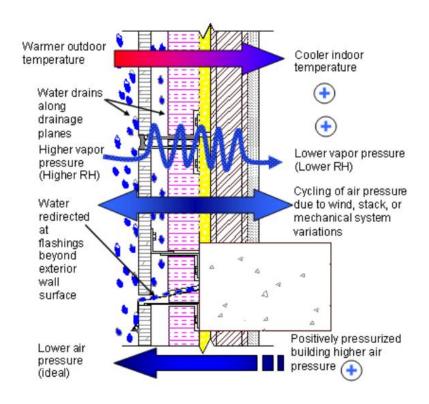
World's Best Window Co.

Millennium 2000+ Vinyl-Clad Wood Frame Double Glazing · Argon Fill · Low E Product Type: Vertical Slider

ENERGY PERFORMANCE RATINGS

U-Factor (U.S./I-P)

Solar Heat Gain Coefficient


ADDITIONAL PERFORMANCE RATINGS

Visible Transmittance

Air Leakage (U.S./I-P)

product performance. NFRC ratings are determined for a fixed set of environmental conditions and a

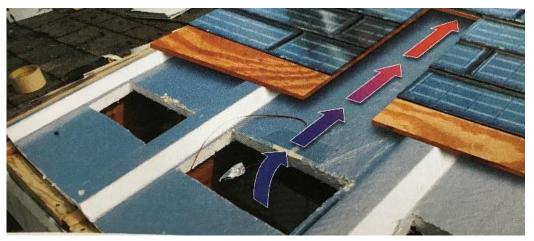
Wall systems – complex moisture and air management

BIPV needs to ensure core functions are maintained

Courtesy: Whole Building Design Guideline

Roofing conventional PV vs BIPIV

Conventional


- Shades roof from heat gain
- Allows panels to cool to produce higher output
- Not always aesthetically pleasing to some

BIPV

- Higher cell temperatures, lower output
- Increase in heat flux to attic/plenum compared to cool roofs
- Generally greater aesthetics

Above Deck Ventilation – lower peak cooling

Example of BIPV with high efficiency

Key Benefits

- Highest output PV
- Cells allowed to cool
- Optimized sun angle
- Shades windows from sun

Concerns

- Aesthetically less appealing
- Window cleaning is more difficult/costly

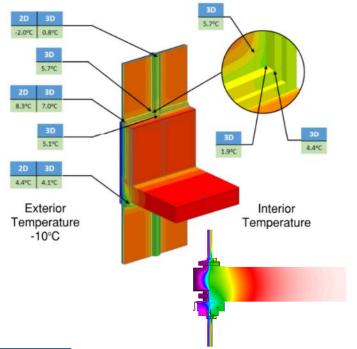
Source: "Transition to Sustainable Buildings, Strategies and Opportunities to 2050", IEA 2013

Thermal Performance of Spandrels in Glazing Systems

Issues:

- Thermal-bridging of aluminum framing
- Differing construction of opaque wall areas vs. transparent areas
- Lack of consensus in thermal modeling

Needs:


- Higher performing spandrel systems to meet more stringent codes
- Thermal modeling consensus based on validation and experimentation

Outcome:

 Design Guidance document with best practices and recommended modeling procedures

To learn more, contact Anne Ellis aellis@pankowfoundation.org

SPONSOR

Charles Pankow Foundation

PARTNERS

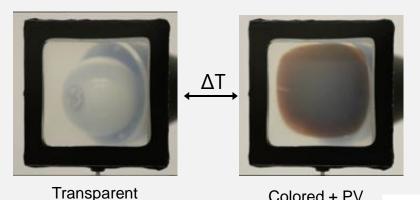
Department of Energy

Lawrence Berkeley National Lab

Oak Ridge National Laboratory

ENGINEERING TEAM

Morrison Hershfield


RDH Building Science

Simpson Gumpertz & Heger Inc.

Perovskite materials for photovoltaic windows project

Thermochromic PV

Dynamic solar heat gain control + PV generation

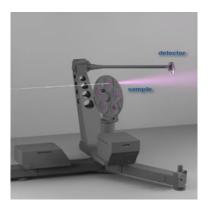
Colored + PV

- Generates electricity and modulates solar heat gain for significant building energy savings
- Proof of concept demonstrated.
- NREL holds > 10 patents on the technology
- Durability improved
- Significant investment makes them market viable in ~5 years

Lance Wheeler, PhD NREL

Neutral color semitransparent PV

High efficiency without sacrificing aesthetics



- >6% geometric efficiency with >30 visible light transmittance and neutral gray color
- Compatible with current glazing and lamination processes
- Investment makes technology market viable in ~3 years.

National Laboratory expertise and advanced facilities

LBNL Flexlab

LBNL Goniophotometer

NREL Differential Thermal Cycling Unit

ORNL Guarded Hot Box

PNNL Lab Homes

Resources and contact info

US DOE – Pathway to Zero Energy Windows – Advancing Technology and Market Adoption - <u>Pathway</u> to Zero Energy Windows: Advancing Technologies and Market Adoption (nrel.gov)

US DOE - Opaque Envelopes: Pathway to Building Energy Efficiency and Demand Flexibility Key to a Low-Carbon, Sustainable Future

Opaque Envelopes: Pathway to Building Energy Efficiency and Demand Flexibility

Grid-interactive Efficient Buildings Technical Report Series Windows and Opaque Envelope Grid-interactive Efficient Buildings Technical Report Series: Windows and Opaque Envelope (energy.gov)

LBNL Core Window Lab – Primer videos and resources

<u>Outreach | Windows and Daylighting (lbl.gov)</u>

P Marc LaFrance, CEM
Advanced Technology and Energy Policy Manager
US Department of Energy
1000 Independence Ave, SW
Washington, DC 20585-0121
marc.lafrance@ee.doe.gov
Cell 240-474-2177

Barriers & Strategies for Integrating Architectural Solar – A U.S. Market Perspective

Christopher Klinga
Architectural Solar
Association

- Technical Director of the Architectural Solar Association
- Principal at SolMotiv Design.
- Past experience with Lighthouse Solar and Lumos Solar
- B.S. in Mechanical Engineering from the University of Colorado in Boulder, CO.
- NABCEP PV Installer certification
- Licensed professional engineer in Colorado and Texas.

Stan PipkinArchitectural Solar
Association

- US Regional Manager of the Architectural Solar Association
- Owner of Lighthouse Solar and Pipkinc.
- Master of Architecture from the University of Texas.

1_Klinga_Pipkin_ASA - RE+ BIPV Workshop.pdf

BIPV Industry Panel Discussion

Moderator: Jennifer
DiStefano
Contractor to the
U.S. Dept. of Energy

Danial Hadizadeh Mitrex

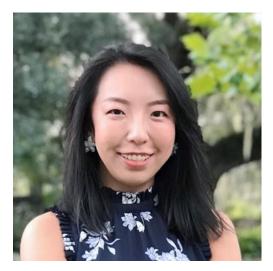
Mark Hartel Toledo Solar

Corey HovenNext Energy Tech

Scott Lowry GAF

BREAK 10:15 - 10:30am

Boots on the Ground: Solar Roof Contracting Today



Amy Atchley Starling RFS

Amy Atchley is a solar roofing contractor in Sonoma County, CA. Amy is also the cofounder and COO of "Starling Roofing for Solar". Starling makes an award winning solar-roofing-system, giving solar roofers a product advantage to go with their business model advantages.

2 Atchley Starling - RE+ BIPV Workshop.pdf

Let's Talk About BIPV Resilience

Dr. Mengjie LiUniversity of Central Florida

Dr. Li is a research scientist at Florida Solar Energy Center and University of Central Florida. She has a background of high efficiency solar cell fabrication, and is currently focused on degradation pathway analysis of PV modules and improving energy and community resilience with renewable energy solutions. She will discuss the role of BIPV in improving energy resilience and the current state-of-art in BIPV durability and reliability characterization research.

3 Li UCF - RE+ BIPV Workshop.pdf

BIPV R&D Panel Discussion

Moderator: **Jeff Cook**, NREL

Laurie Burnham Sandia Nat. Lab

Nadav Enbar EPRI

Jacob JonssonLawrence Berkley Nat. Lab

Simon Miller Penn State Univ.

Lance Wheeler NREL

Thank you! Join us at upcoming DOE BIPV events

- 1. Greenbuild Conference November 1-3, 2022 San Francisco, CA
 - DOE BIPV Workshop on Tuesday, 11/1, 9am-12pm

- 2. Buildings XV Conference December 5-8, 2022 Clearwater Beach, FL
 - DOE BIPV Workshop on Thursday, 12/8, 1-5pm

For questions about our BIPV workshop series, please reach out to George at georgios.stefopoulos@ee.doe.gov.

Learn About Upcoming Funding Opportunities

EERE Funding Opportunity Updates

Promotes the Office of Energy Efficiency and Renewable Energy's funding programs.

SETO Newsletter

Highlights the key activities, events, funding opportunities, and publications that the solar program has funded.

SIGN UP NOW:

energy.gov/solar-newsletter

Thank you!

Thank you!

George Stefopoulos

georgios.Stefopoulos@ee.doe.gov

Jennifer DiStefano

jennifer.distefano@ee.doe.gov

Marc Lafrance

marc.lafrance@ee.doe.gov