

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

DE-EE0008635 – Device Design and Robust Periodic Motion Control of an Ocean Kite System for Marine Hydrokinetic Energy Harvesting

Chris Vermillion North Carolina State University

Email: <u>cvermil@ncsu.edu</u> Wednesday, July 20, 2022

Project Overview (Graphical)

The concept:

Cyclic operation demands *periodic* optimal control.

The experimental validation process:

Progressive experimental prototyping enables early risk reduction.

Project Overview

Project Summary

- *Overarching goal:* Develop a kite design, open-source optimal control strategy, and open-source modeling tools for winch-based power generation.
- Research need: Kites can yield an order of magnitude greater power/mass than stationary tidal and current devices, yet open-source kite design/control research was previously absent in the U.S. MHK R&D portfolio
- *Unique features:* All modeling and control results are open-source and experimentally validated at 3 scales water channel, pool, and open water

Intended Outcomes

- Expected outcome 1: Experimentally validated underwater kite dynamic model
- *Expected outcome 2*: Optimal control algorithms for cyclic flight path and spooling profile optimization
- *Expected outcome 3*: Open-water validation of optimal control algorithms
- *Expected outcome 4*: Development of a U.S. Blue Economy technology-tomarket pipeline for underwater kites

Project Information

Principal Investigator(s)

Chris Vermillion (NC State University)

Project Partners/Subs

- Co-PIs at NC State (Kenneth Granlund, Andre Mazzoleni)
- University of Maryland (Hosam Fathy)
- North Carolina Coastal Studies Institute (Michael Muglia)
- Florida Atlantic University (Gabriel Alsenas, Bill Baxley)

Project Status

Ongoing

Project Duration

- Start date: May 1, 2019
- End date: October 31, 2022

Total Costed (FY19-FY21)

\$1,596,279

Project Objectives: Relevance

Project Objectives: Approach

Dynamic model development:

Key takeaway: The dynamic model fuses a (i) 6 degree-of-freedom kite dynamics model, (ii) multi-link tether model, (iii) optional floating platform model, and (iv) environmental model into a single Simulink-based open-source framework.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | WATER POWER TECHNOLOGIES OFFICE

Project Objectives: Approach

Economic iterative learning control (ILC) for cyclic path and spooling optimization:

 b_k = Flight control "basis" parameters at cycle k

J = Economic performance index (cycleaveraged power)

p = Vector of available measured variables

Key takeaway: ILC is used to update key flight control parameters from one spool-out/spool-in cycle to the next, in order to maximize an "economic" metric (lap-averaged power).

Project Objectives: Approach

Progressive experimental validation:

Water channel testing (~10cm wingspan, 2019-2020):

Open-water tow testing in Lake Norman (~1m wingspan, 5-mile fetch, 2021-2022):

Key takeaways:

- Water channel platform used to validate the dynamic model
- Pool testing platform used to validate the closed-loop tracking controller
- Open-water platform used to validate iterative learning and periodic optimal control approaches

Project Objectives: Expected Outputs and Intended Outcomes

Expected Outputs:

- Validated, open-source kite dynamic model
- Validated, open-source iterative learning controllers for cyclic path and spooling optimization
- Dissemination through 10+ publications
- Invention disclosures for key IP
- At least one follow-on project utilizing kite technology (e.g., powering observational equipment, powering an autonomous underwater vehicle)

Expected Outcomes:

- Increased ease of developing underwater kite technology in the U.S. (due to open-source models and controllers)
- Closed-loop control performance benchmarks for kite-based energy systems
- Increased engagement of industry and national labs in underwater kite development

Project Timeline

FY 2019			
	FY 2020		
Q2: Project start			
Q3: Fully implemented kite + tether dynamic model	Q2: Demonstration of non- adaptive/non-optimal control	FY 2021	
	performance Q3: Demonstration of control performance improvement under ILC	Q1: Experimental kite and pool-based tow mechanism fabrication Q2: Initial pool-based tow tests	
	 Q4. Water channel-based experimental validation Go/no-go: Demonstration of techno- economic potential based on developed/validated modeling tools 	Q3: Complete pool-based tow tests 04: Prep for FY 2022 open-	
		water tests	

Project Budget

Total Project Budget – Award Information				
DOE	Cost-share	Total		
\$1,894,654	\$473,882	\$2,368,536		

FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
\$135,949	\$597,037	\$863,293	\$1,596,279

- Expenditures through present total \$1,904,612
- No-cost extension granted through October 31, 2022 (will enable investigation into enhanced PTO/winch designs and further tech-to-market pipeline development)
- All originally budgeted costs are expected to be spent by the end of this no-cost extension
- The team has received follow-on funding (>\$3M) from Martin Defense Group (via the DARPA Manta Ray program) to develop kites for powering autonomous underwater vehicles

End-User Engagement and Dissemination

- Stakeholder group 1: Blue Economy kite technology adopters
 - Entered into >\$3M contract with Martin Defense Group to develop a kite for powering an autonomous underwater vehicle (AUV)
 - Actively seeking other DoD opportunities and Minesto collaborations for early-stage underwater kite adoption
- Stakeholder group 2: National laboratories (e.g., NREL, Sandia)
 - PI Vermillion went on a "wild west dissemination tour" in May, 2022 to NREL and Sandia
 - NREL is contemplating collaborative work to further develop kite dynamic modeling tools
- Stakeholder group 3: Academic research labs
 - Research has been widely disseminated through over 20 peer-reviewed publications
 - Simultaneously, invention disclosures (and one provisional patent to-date) have been filed to protect key IP prior to publication

Performance: Accomplishments and Progress (Summary)

Outputs:

- Kite dynamic model validated against water channel, pool, and open-water data
- Iterative learning control performance evaluated in open water
- Over 20 accepted peer-reviewed publications
- 3 invention disclosures with one provisional patent so far
- Follow-on funding secured to develop kite technology to power autonomous underwater vehicles (with Martin Defense Group, via the Manta Ray program)

Outcomes:

- Team's dynamic model and controllers are available worldwide
- Presently engaging with NREL regarding the formalization of kite modeling software/fusion with KiteFAST for airborne wind
- Underwater kite technology is now a highly active U.S. research area

Performance: Accomplishments and Progress (Details)

Sample scaled, open-water model validation efforts – 0.8m span kite, 1.25 m/s flow – Key takeaway: Experimental results closely match model predictions.

Performance: Accomplishments and Progress (Details)

Sample scaled, open-water controller validation efforts – 0.8m span kite – Key takeaway: <u>Iterative learning enables 30 percent performance improvement</u> <u>beyond manual tuning.</u>

Performance: Accomplishments and Progress (Details)

Sample full-scale performance projections – 10m span kite – <u>Key takeaway:</u> <u>Tens of Watts at small scale translate to 100-200kW at full scale.</u>

Future Work

Future

Enabling foundational research:

- KiTEcon: A unified resource, dynamic, and economic tool for kite techno-economic assessment
- Path optimization for ultra-long tether operation
- Morphing wing designs for variabledepth operation
- High-efficiency power take-off (PTO)

Bringing the technology to market:

- Manta Ray program (Martin Defense Group) + additional DoD opportunities
- Ongoing Minesto discussions
- Seeking SBIR/STTR opportunities

