2.3.2.601 – Triton

Joe Haxel and Garrett Staines
Pacific Northwest National Laboratory

joseph.haxel@pnnl.gov
garrett.staines@pnnl.gov
July 20, 2022
Project Overview

Project Summary

Triton is focused on reducing barriers to testing marine energy (ME) devices through research and development of technologies and approaches that improve our understanding of potential environmental effects.

- **FOA Support** provided technical, permitting, and logistical support for DOE funded environmental monitoring technology developers.
- **Triton Field Trials (TFIT)** explored and field-tested and made recommendations for commercially available technologies used to monitor collision risk, underwater noise, electromagnetic fields, and changes in habitat at diverse marine energy sites.
- **Environmental Technology Development (EMTD)** improves the efficiency of collecting and processing large datasets from underwater video and acoustic cameras used to study collision risk around turbines and mitigate potential impacts during collision events with turbine sensors and controls.
- **Researching Stressor Receptor Interactions (RSRI)** researches receptor (fish or mammal) response to ME stressors and develops mitigation strategies for interactions.

Intended Outcomes

Recent outcomes from Triton are:

- Increased TRLs of DOE supported technology developers for commercial use at ME sites.
- Published open access peer-reviewed TFIT recommendations for field tested cost-effective monitoring technologies and methodologies available to the ME community.
- Application of the peer-reviewed TFIT recommendations to improve data transferability between ME device types and sites and build evidence-based data supporting regulatory decisions.

Project Information

- **Principal Investigator(s)**
 - Joe Haxel (PI)
 - Michael Richlen (PM)

- **Project Partners/Subs**

- **Project Status**
 - Ongoing

- **Project Duration**
 - Project Start Date: 1 October 2018
 - Project End Date: 30 September 2024

- **Total Costed (FY19–FY21)**
 - $5,147,176.00
Project Objectives: Relevance

Relevance to Program Goals:

• DOE WPTO’s Multi-year Program Plan calls for improved technical performance and adoption of best practices of environmental monitoring technologies. This will result in more consistent data collection and greater confidence in results about the risks of specific environmental concerns in alignment with WPTO’s Marine Energy Program Activity 3, Reducing Barriers to Testing and Sub-activity 3, Environmental Research and Instrumentation Development.

Triton has addressed this by:

1. Supporting environmental monitoring technology developers (FOA Support).
2. Developing peer-reviewed, open access best practices for environmental monitoring around ME installations (TFiT).
3. In-house technology development and partnering with commercial technology developers (EMTD)

In the future, Triton will continue with a focus on technologies for monitoring stressor receptor interactions and implementing cost effective, consistent, and transferable data collection and analysis at marine energy sites. (RSRI)
Project Objectives: Approach

- **FOA Support**
- **Technology Baseline Testing**
- **Technology Demonstration**
 - WETS Deployments
 - BioSonics
 - UW – DAISY
 - UW – AMP
 - WHOI
- **Technology Improvement**

- **Triton Field Trials (TFit)**
 - All studies published in JMSE Special Issue
 - **Field Tests**
 - Electromagnetic Fields
 - Changes in Habitat
 - Collision Risk
 - Underwater Noise
 - **Desktop**
 - TFit Overview
 - Anthropogenic Light
 - Stressor/Receptor Modeling Review
 - Changes in Habitat
 - Technology Review
 - Communication Framework

- **Environmental Monitoring and Technology Development (EMTD)**
 - Integrated Collision Detection and Mitigation
 - Collision Risk Data Collection and Processing
 - Fish Mesocosm

- **Communications Outreach and Engagement**
 - Triton Stories
 - Newsletter
 - Website
 - Social media
 - Triton Talks Webinar Series
 - Stakeholder outreach and engagement

- **Researching Stressor/Receptor Interactions (RSRI)**
 - Tethered Balloon Trial for Marine Animal Observations
 - Acoustic Particle Motion and Flow Noise Mitigation
 - Probability of Encounter Model (PoEM)
Triton FOA Support Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- **Technology Baseline Testing:** Provided pre-permitted testing location and logistical support for Awardees to test baseline performance of their technology.
- **Technology Improvement:** Continued testing location and logistical support as well as provided technical support for technology advancement.
- **Technology Demonstration:** Secured two testing locations (including permitting and contracting) for Awardees to demonstrate technologies in an energetic location around ME devices.
- Two Awardees have completed Baseline Testing, Improvement, and Demonstration. Four are anticipated to complete final testing in 2022.

Outcomes:

FOA Awardee support increased the technology readiness levels of devices, advancing their progression toward commercial use for environmental monitoring by the ME community (Performance Goal in MYPP).
Triton FOA Support Project Timeline

FY 2019
Successful technology comparison with permitting and logistical on-water support to characterize underwater noise with UW-DAISY, Integral NoiseSpotter, and a technology developer from Oregon State University. (Chang et al., 2021)

FY 2020
Supported UW-DAISY at PNNL Sequim with permitting, logistical and technical support for Technology Improvement field test.

Collaborated with CalWave Power and Scripps Institution of Oceanography planning and permitting for Integral NoiseSpotter Technology Demonstration testing.

FY 2021
Completed support of FOA Awardee Integral NoiseSpotter for their Technology Demonstration at Scripps Institution of Oceanography around the CalWave device.
Triton FOA Support Performance: Accomplishments and Progress

<table>
<thead>
<tr>
<th>Project</th>
<th>Technology Baseline Testing</th>
<th>Technology Improvement</th>
<th>Technology Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral NoiseSpotter</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* All permitting and on-water support contracts in place for demonstration testing at the Wave Energy Test Site (WETS) in Hawaii in FY22/23 around operational WECs. Waiting for WEC deployments.
Triton TFiT Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

• Triton focused Special Issue in the Journal of Marine Science and Engineering detailing TFiT activities and results including ten peer-reviewed, research articles describing:

 1. Field testing and validation of commercially available environmental monitoring technologies

 2. Development and evaluation of data collection methods

Outcomes:

• Open access, best practices special issue, promotes data transferability between ME projects with recommendations for consistent and standardized technologies as well as methods for environmental monitoring data collection and analysis.
2019

• Site selections for testing

• Acquired commercially available technologies and finalized methodologies for data collection

• Permitting/authorization requirements for field testing
Triton TFiT Project Timeline

2020
- Finalized test plans
- **Electromagnetic Field** sensor tests in Sequim Bay

2021
- Turbine **Collision Risk** tests at the Portsmouth Memorial Bridge and Tanana River
- **Underwater Noise** hydrophone testing in Sequim Bay channel, Portsmouth Memorial Bridge and Scripps
- **Changes in Habitat** testing in Sequim Bay and Scripps Institution of Oceanography

Eaves et al., 2022
Triton TFIT Performance: Accomplishments and Progress

- Successful technology field testing and validation
- Four field test papers
- Six literature reviews
- Culminating in 10-paper special issue in the open access Journal of Marine Science and Engineering

Special Issue: **Technology and Methods for Environmental Monitoring of Marine Renewable Energy**

Triton FMS/EMTD Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

Fish Mesocosm (FMS)
- Juvenile Salmon Acoustic Telemetry System (JSATS) technology successfully 3D tracked juvenile sablefish in Sequim Bay tidal channel
- Marine Technology Society/Institute of Electrical and Electronics Engineers (MTS/IEEE) presentation and conference paper

Environmental Monitoring Technology Development (EMTD)
- Advanced data collection sensor package: sonar, acoustic camera, and video camera (Collision Risk Data Collection – CRDC)
- Improved commercially available acoustic camera software for data processing (Collision Risk Data Processing – CRDP)

Outcomes:

- JSATS tracking technology demonstrated fine-scale fish movement that informs collision risk at ME project sites reducing uncertainty for fish interactions
- Sensor suite package ready for field testing that will reduce data accumulation while monitoring for collision risk – reducing data storage, analysis requirements, and associated costs
- Acoustic camera data software improvements will reduce time for processing of large volumes of data, improving efficiency and reducing costs
Triton FMS/EMTD Project Timeline

FY 2019
- **FMS pilot study completed**
 - Successful JSATS fish tagging/tracking
 - MTS/IEEE paper and presentation

FY 2020
- FMS was discontinued due to lack of installed turbine,
 Remaining funds were rescoped to CRDC/DP
- **Collision Risk** data collection and processing (CRDC & CRDP)
 aimed to reduce large data volume accumulation and improve efficiency for processing methods

FY 2021
- Successful sensor suite bench and tank testing and preparation for in-water field testing in 2022.
- Improved available acoustic camera data processing software to inform **Collision Risk**
Triton EMTD Performance: Accomplishments and Progress

• FMS pilot study in-water testing complete
 – Demonstrated that individual fish movements in an energetic tidal channel can be observed using JSATS tagging technology and can inform collision risk around tidal turbines.

• EMTD
 – Successful proof of concept testing of sensor suite and data archiving software leading to in-water field testing in 2022
 – Enhanced functionality of commercial software that reduced large acoustic camera data volumes by an average of 35% compared to the original method
End-User Engagement and Dissemination

- Multi-pronged approach to communication, outreach, and engagement to target audiences
- Target audiences were mapped in collaboration with the WPTO, Triton team, and OES-Environmental, to include:
 - ME Stakeholders
 - Research Partners
 - General Audiences
 - Stakeholders are engaged directly via workshops/webinars, newsletter, and surveys; feedback is used to refine communications efforts and inform research decisions
- Project information and results are strategically disseminated on multiple channels to reach each target, including peer-reviewed journals, monthly newsletter, website, social media, Triton Stories blog, and webinars
- Channels and content are refined on an ongoing basis based on metrics and feedback

https://www.pnnl.gov/projects/triton
Project Budget

<table>
<thead>
<tr>
<th></th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>Total Actual Costs FY19–FY21</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOA Support</td>
<td>$972,626</td>
<td>FOA Support</td>
<td>$452,432</td>
<td>$536,068</td>
</tr>
<tr>
<td>TFiT</td>
<td>$322,110</td>
<td>TFiT</td>
<td>$928,646</td>
<td>TFiT</td>
</tr>
<tr>
<td>FMS/EMTD</td>
<td>$406,811</td>
<td>FMS/EMTD</td>
<td>$106,181</td>
<td>FMS/EMTD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RSRI Scoping</td>
</tr>
<tr>
<td></td>
<td>$1,701,547</td>
<td>$1,487,259</td>
<td>$1,958,370</td>
<td></td>
</tr>
</tbody>
</table>
Future Work – Researching Stressor Receptor Interactions (RSRI)

Research focused on animal interactions with ME devices and associated stressors

Tethered Balloon System (TBS): partnership with Sandia NL to monitor wildlife interactions with ME devices using a diverse optical and thermal payload

Probability of Encounter Model (PoEM): collect smolt outmigration data to develop a probability model that informs collision risk for fish with current energy converters

Acoustic Particle Motion (PM): researching underwater noise effects for fish and invertebrates

Flow Noise (FN): research flow noise mitigation strategies to improve acoustic sensor measurements in energetic ME environments
Triton RSRI Project Objectives: Expected Outputs and Intended Outcomes

Outputs:
- Filling data gaps around animal interactions with ME devices and associated stressors
 - **TBS**: a non-invasive, aerial, optical and thermal sensor package for use with tethered balloon systems (or other aerial platforms) to track and monitor wildlife behavior around ME devices
 - **PM**: experimental results of behavioral and physiological effects of acoustic particle motion from ME devices on fish and invertebrates
 - **FN**: an evaluation of several materials and flow shield designs including recommendations for performance in high flow environments
 - **PoEM**: a probability model that informs collision risk for fish with current energy converters made available to the ME community

Outcomes:
- **TBS**: new aerial technology methods and sensor applications will improve understanding of animal interactions with ME devices
- **PM**: research will improve understanding of underwater noise effects from ME projects for fish and invertebrates.
- **FN**: mitigation research will enable high quality, longer-term, fixed station acoustic time series data collection in high current environments for improved characterization of underwater noise coupled with short-term measurements of drifting systems
- **PoEM**: will advance understanding of collision risk for fish with current energy converters through data driven modeling tools available to the ME community
FY 2021 included development of the scope and planning of the RSRI projects and tasks

FY 2022

<table>
<thead>
<tr>
<th>TBS</th>
<th>Sensor validation and initial flight from land, over water in a coastal area</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>Subject matter expert and regulator workshop to identify data gaps and research needs; sensor procurement</td>
</tr>
<tr>
<td>FN</td>
<td>Design and test several flow shields and materials in the tidal channel at PNNL-Sequim</td>
</tr>
<tr>
<td>PoEM</td>
<td>Data collection of smolt outmigration at a CEC site for model development and validation</td>
</tr>
</tbody>
</table>

FY 2023

<table>
<thead>
<tr>
<th>TBS</th>
<th>Operational flights in open water from the Scripps Institution of Oceanography pier and a vessel offshore San Diego, California targeting free-ranging animals (whales, dolphins, pinnipeds, fish, and seabirds).</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>Data collection at two ME sites to gather baseline and operational measurements of particle motion around ME devices</td>
</tr>
<tr>
<td>FN</td>
<td>Application of the best performing flow shield design from the FY22 experiment at a more energetic ME site to validate performance in higher currents</td>
</tr>
<tr>
<td>PoEM</td>
<td>Model development and data integration complete and model released for use by the ME community</td>
</tr>
</tbody>
</table>

FY 2024

<table>
<thead>
<tr>
<th>TBS</th>
<th>Transition the winch system and balloon to an autonomous buoy platform for testing in the bay at PNNL-Sequim</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>Tank experiments – dose response exposures of ME recorded particle motion (FY23) with measurements of physiological stress and behavioral observations of fish and/or crabs to evaluate effects of PM on animals</td>
</tr>
</tbody>
</table>