

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

EE0007822– NoiseSpotter: A cost-effective, real-time acoustic characterization and localization system

Kaus Raghukumar Integral Consulting Inc.

kraghukumar@integral-corp.com July 18, 2022

Project Overview

Project Summary

NoiseSpotter® helps efficiently evaluate potential acoustic effects of marine energy (ME) projects. NoiseSpotter® **geolocates** sources of sound, allowing for the ability to discern ME device sounds relative to other confounding sounds in the environment, while providing location estimates of nearby marine mammals for **environmental mitigation** purposes. The NoiseSpotter® also measures acoustic **particle velocity** that can help address growing concerns about particle velocity effects on fishes and invertebrates.

Intended Outcomes

- A major outcome of this work is the development of a low-cost, real-time acoustic measurement system to monitor and characterize ME devices and ambient environmental sounds
- Characterization of ME noise requires distinguishing device sounds from
 ambient environmental sounds using geolocation techniques
- The final project product is a 3D array of acoustic particle velocity sensors coupled to a surface buoy for near real-time telemetry of acoustic data digests to a cloud-based server.

Project Information

Principal Investigator(s)

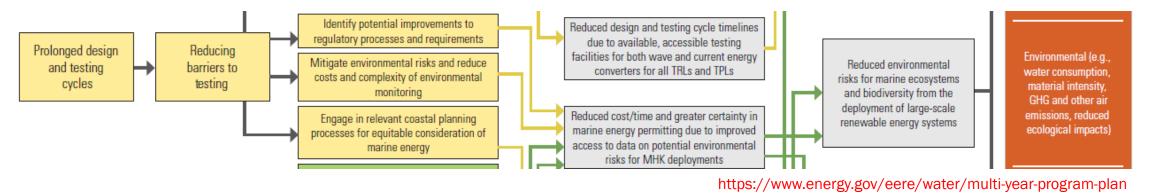
- Kaus Raghukumar
- Grace Chang
- Craig Jones

Project Partners/Subs

- Proteus Technologies
- Sandia National Labs
- Noise Control Engineering
- HT Harvey and Associates

Project Status

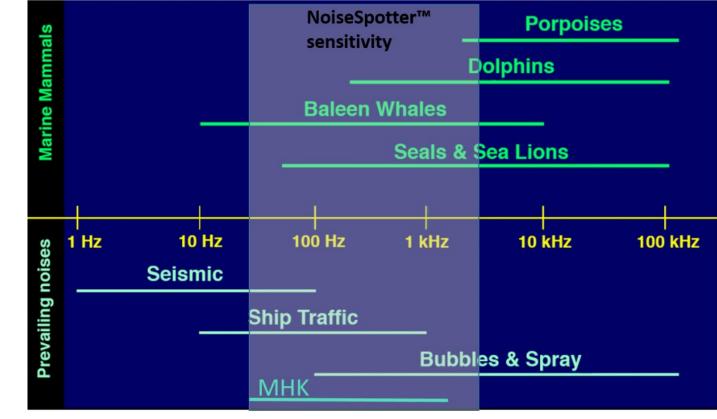
Sunsetting


Project Duration

- December 2016
- December 2022

Total Costed (FY19-FY21)

Project Objectives: Relevance


Relevance to Program Goals:

The technology provides a technical basis for marine energy developers seeking to reduce environmental monitoring costs and **mitigate** concerns about the potential for ME device noise to alter marine mammal or fish behavior.

Project Objectives: Approach

- MHK sounds are low-intensity and overlap in frequency with other anthropogenic and natural sounds
- Implemented directional acoustic sensing to discriminate sounds of interest
- Implemented real-time telemetry to aid in rapid decision-making
- Modular and lightweight for easy deployment/recovery

Adapted from www.dosits.org

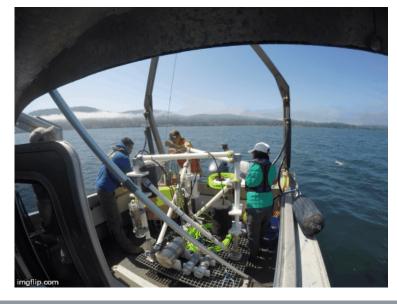
Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- A low-cost, real-time acoustic measurement system to monitor and characterize marine energy devices and ambient environmental sounds
- 3D array of acoustic particle velocity sensors coupled to a surface buoy for near real-time telemetry of acoustic data digests to a cloud-based server

Outcomes:

- Developed a patented acoustic monitoring technology
- Directional characterization of sound from an operational WEC (CalWave)
- Characterization of acoustic particle motion from seismic surveys and its impact on the behavior of fishes and invertebrates.


Project Timeline

	FY2017 BP1		FY2018 BP2			FY2019-2021 BP3						
												Q12 -
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q21
First round In-water testing plan												
Preliminary hardware design												
Baseline and initial testing with known source												
Technical and cost improvement plans												
Second round in-water testing												
Flow noise removal system development												
Data logger and power system hardware												
Location estimation algorithm development												
Integrated standalone NoiseSpotter powered with on-board storage												
tested in-water												
Technical and cost performance analysis update												
Finalize VSA design												
Real-time data telemetry software demonstration												
Creation of data digests on board NW												
Third round field testing in energetic environment at CalWave WEC												
Evaluation of quantitative metrics for baseline, initial, second round												
testing and state-of-the-art												
Final reporting												

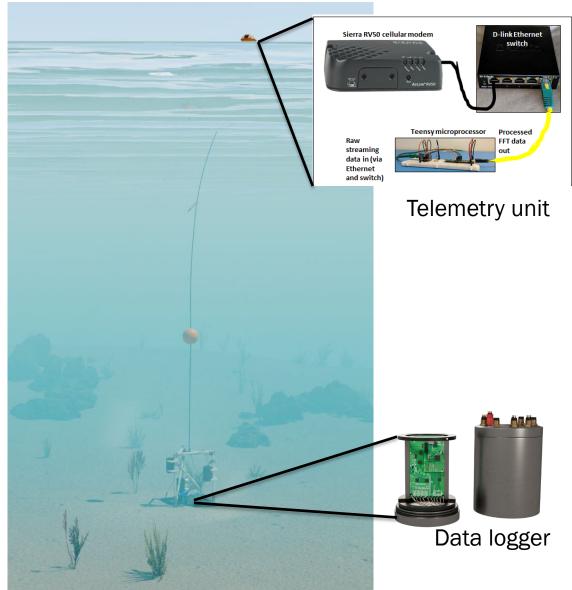
FY17-18

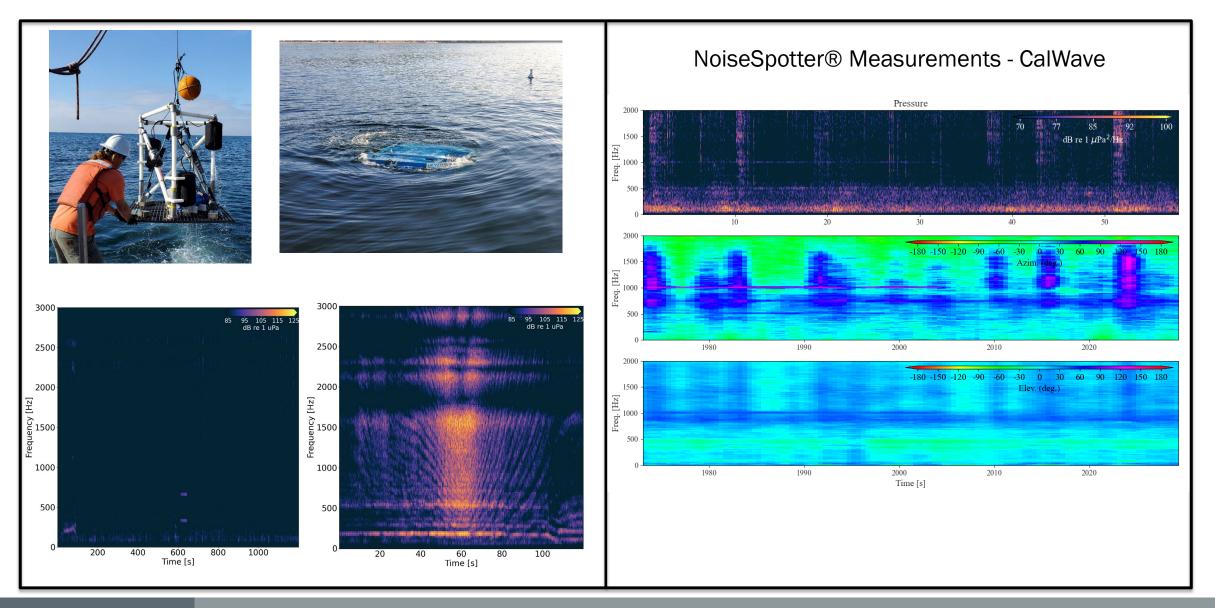
- •
- •
- Demonstrated baseline and initial system performance Developed and refined plans for performance and cost improvements Designed and tested integrated NoiseSpotter® with low-power, low-noise data logger Demonstrated location estimation using NoiseSpotter® data ۰
- •
- FY19-21 ٠
 - Conducted multiple operational deployments
 - Completed final project demonstration
 - Completed final technical and cost performance analysis
 Published paper on NoiseSpotter® performance

 - Patented acoustic monitoring technology •

Project Budget

Total Project Budget – Award Information				
DOE	Cost-share	Total		
\$746K	\$200K	\$946K		


BP1	BP2	BP3 (through FY21)	Total Actual Costs
(12.1.16 - 11.30.17)	(12.1.17 - 11.30.18)	(12.1.18 – 9.30.21)	FY17-FY21
Costed	Costed	Costed	Total Costed
\$210K (original)	\$420K (original)	\$315K (original)	\$946K (original)
\$184K (2019 Mod)	\$388K (2019 Mod)	\$373K (2019 Mod)	\$946K (2019 Mod)
\$184K (actual)	\$388K (actual)	\$356K (actual)	\$928K (actual)

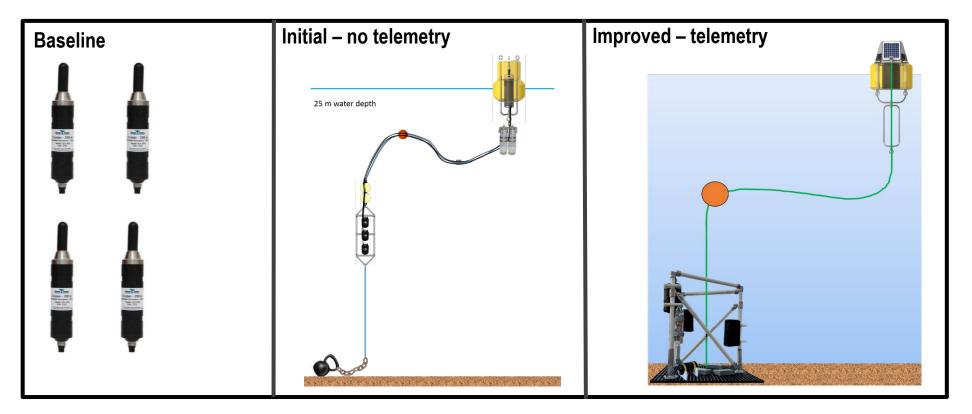

- Three ~12-month no-cost extensions were requested in September 2019, October 2020, and October 2021 to accommodate BP3 in-water field testing in an energetic environment with an operational wave energy converter (WEC).
- The first available opportunity for in-water field testing with an operational WEC was in November 2021 at Scripps Research Pier in San Diego, CA with the CalWave device.

End-User Engagement and Dissemination

- NoiseSpotter® introduced to regulators and stakeholders at multiple conferences
 - Marine Energy Technology Symposium (2018, 2019)
 - Offshore Technology Conference (2019, 2020)
 - Underwater Acoustics Conference and Exhibition (2019)
 - European Wave and Tidal Energy Conference (2019)
 - Effects of Noise on Aquatic Life (2019)
 - Ocean Sciences Meeting (2020)
- Industry and regulator needs surveyed and addressed during MHK Alt Markets Workshop in December 2017. Survey goals:
 - Ensure NoiseSpotter® hardware and operations are appropriate for marine energy developers
 - Evaluate utility of data output for baseline site characterization and operational deployments
- NoiseSpotter® is patented technology (USPTO No. 11,156,734) and registered trademark (U.S. Trademark No. 6,442,313)
- NoiseSpotter® is currently offered as a service that includes deployment, recovery and delivery of QA/QC'ed data with optional analysis
- Interested clients include offshore wind service providers and the U.S. Navy

- Vector sensor array with real-time telemetry
 - 3D pressure and particle motion measurements
 - Acoustic characterization and source localization
 - Data digests transmitted in real-time with <5% data drop-out
- Tested and validated in multiple environments
 - Tidal regions (velocities of 3-5 knots/1.5- 2.5 m/s)
 - Wave-rich regions (wave heights 2 m @ 15 s)
 - 200 m water depth (no telemetry), 75 m (with telemetry)
- Technical specifications
 - Frequency range (50 Hz to 3 kHz)
 - Sampling frequency (20 kHz, 16-bit depth)
 - Array spacing (1 m horizontal, 25 cm vertical)

Technical Performance Analysis


Technical Performance Category	Final Score	Target Score
Detection frequencies	2	2
·	20 Hz – 20 kHz broadband, 50 Hz – 3	40 Hz to 5 kHz
	kHz particle motion	
Detection sensitivity	1	1
	-194 dB – 230 dB	-194 dB – 230 dB
Ambient noise removal	1	1
	Beamforming methods across multiple	Coherent processing across multiple
	sensors suppresses	sensors suppresses
	incoherent ambient noise	incoherent ambient noise
Horizontal flow noise removal	1	2
	Flow noise shields reduce flow noise by	Flow noise reduction of 2 dB at <200 Hz
	>15 dB at <200 Hz and <1 dB signal loss	and <1 dB signal loss at >1 kHz
	at >200 Hz	
Vertical flow noise removal	1	1
	<5° movement in pitch, roll, and yaw.	<5° movement in pitch, roll, and yaw.
	Shock-mounted sensor configurations;	Shock-mounted configuration decouples
	bottom-mounted platform configuration	buoy from surface wave motions
Data logger noise	2	2
	NoiseSpotter® signals comparable to	NoiseSpotter® signals comparable to
	broadband acoustic recorder (BAR)	BAR
Signal losses		
	<2 dB signal loss	<2 dB signal loss
Data quality		
	Zero dB degradation in signal to noise	Zero dB degradation in signal to noise
Cleak	ratio	ratio
Clock	U All concern symphronized to CDC clock	0 All concerts overabranized to CDS clock
	All sensors synchronized to GPS clock	All sensors synchronized to GPS clock
	during start-up; all three sensors are	
	logged synchronously	

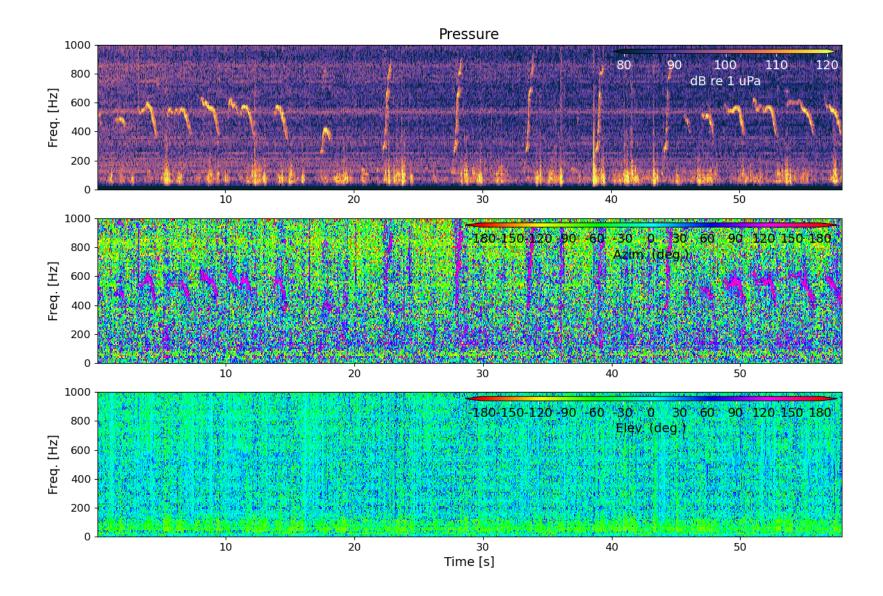
0- no issue 5- moderate issue 10- severe issue

Technical Performance Analysis

Technical Performance Category	Final Score	Target Score
Location estimation accuracy	1	4
-	Bearing estimates to within 2 m	Bearing estimates <100 m
Data presentation and interpretation	1	1
	Data digests @ 140 kB/digest for	Short data digests for decision-making;
	decision-making	peak exceedance levels, RMS sound
Onboard data storage	1	pressure, location estimates
Oliboard data storage	2 TB	48 GB/day @ 25 kHz for 40 days
Data communication	2	2
	- 10 Mb/s throughput, cellular range:	6 kb/s transmission of key data metric
	coastal, <1% data drop-outs, automatic	digest, satellite range: unlimited, <1%
	data queuing, automatic system re-	data drop-outs,
	establishment	automatic data queuing, automatic
		system re-establishment
Power budget	3 2.6.W: however Neize Spotter® in	3 2 W of electrical newsringluding ecoustic
	3.6 W; however NoiseSpotter® is designed with custom rechargeable 516	2 W of electrical power including acoustic sensors, analysis, storage
	Ahr battery packs	
Operations	4	2
•	2 personnel and vessel assistance (e.g.,	2 personnel for deployment/recovery; no
	A-frame) for deployment/recovery	vessel assistance
Operational duration	1	2
• · · · · ·	Autonomously for 35+ days	Autonomously for 7 days
Operational environments	0 Annu intend waters, hawkens, and	
	Any: inland waters, harbors, surf zone,	Any: inland waters, harbors, surf zone,
	coastal ocean, open ocean; low to high energy	coastal ocean, open ocean; low to high energy
Cost	2	2
	<\$35,000	<\$35,000

0- no issue 5- moderate issue 10- severe issue

Cost performance analysis:


Baseline (broadband autonomous hydrophone)

Initial (NoiseSpotter®, no telemetry): 20% savings over baseline

Improved (NoiseSpotter® with telemetry): 50% savings over baseline

- U.S. Patent No. 11,156,734 and U.S. Registered Trademark No. 6,442,313
- NoiseSpotter® is the only commercial particle motion sensor array with real-time telemetry
- Peer-reviewed publications:
 - Chang, G., G. Harker-Klimeš, K. Raghukumar, B. Polagye, J. Haxel, J. Joslin, F. Spada, and G. Staines. 2021. Clearing a path to commercialization of marine renewable energy technologies through public-private collaboration. Front. Mar. Sci., 8, 669413. doi: 10.3389/fmars.2021.669413.
 - Raghukumar, K., G. Chang, F. Spada, and C. Jones. 2020. A vector sensor-based acoustic characterization system for marine renewable energy. J. Mar. Sci. Eng. 8(3):187. doi:10.3390/jmse8030187.
 - Raghukumar, K., G. Chang, F.W. Spada, and C.A. Jones. 2019. NoiseSpotter: A rapidly deployable acoustic monitoring and localization system. D. Vicinanza et al. (eds), Proc. of the 13th European Wave and Tidal Energy Conference, Naples, Italy.
 - Raghukumar, K., G. Chang, F. Spada, C. Jones, J. Spence, S. Griffin, and J. Roberts. 2019. Performance characteristics of a vector sensor array in an energetic tidal channel. pp. 653–658. J.S. Papadakis (ed), Proc. of the Fifth Underwater Acoustics Conference and Exhibition, Crete, Greece.
 - Raghukumar, K., G. Chang, F.W. Spada, and C.A. Jones. 2019. Performance characteristics of the NoiseSpotter: An acoustic monitoring and localization system. A. Cooper and P. Gibbs (eds), Offshore Technology Conference, Houston, TX. doi:10.4043/29425-MS.

NoiseSpotter® Operational Measurements - ONR

