Reducing Barriers to Testing

Lauren Ruedy - Marine Energy Technology Manager
July 20, 2022
Outline

• Activity Area Overview
 – Challenges Addressed by the Activity Area
 – Strategy Informed through Stakeholder Engagement
• Strategy
 – MYPP Performance Goals
 – MYPP Objectives
• Implementation and Progress
 – MYPP Research Priorities
 – Key Accomplishments
 – Future Work
• Agenda Overview
• Reviewer Introductions
Reducing Barriers to Testing aims to expedite marine energy design and testing cycles by supporting test facilities and development of instrumentation hardware and software, for system performance as well as environmental data collection.
Challenge: Prolonged Design and Testing Cycles

- Limited access to test infrastructure at various scales for rapid iterative design improvements.
- Expensive, time-consuming permitting processes with extensive requirements for environmental monitoring driven by high perceptions of risk.
- Limited transferability and utilization of accurate information about siting and deployment of marine energy technologies and complicated coordination with existing users of ocean spaces and waterways.
Stakeholder Informed Strategy

Laboratory Facilities

2019 PROJECT PEER REVIEW

• TEAMER
• National Laboratory outreach

Open Water Testing

2019 PROJECT PEER REVIEW

• PacWave
• lessons learned articles
 • client handbook: https://pacwaveenergy.org/for-clients/

Environmental Monitoring & Instrumentation

2019 PROJECT PEER REVIEW

• Triton webinars & workshops
 • https://www.pnnl.gov/projects/triton/news
• Environmental Compliance Cost Analysis working groups
Reducing Barriers to Testing – MYPP Goals

- Complete a minimum of 100 technical support actions under the Testing Expertise and Access for Marine Energy Research (TEAMER) initiative in collaboration with U.S. universities and national laboratories.
- Develop a U.S testing network of at minimum 30 facilities, including a range of capabilities across traditional marine energy research facilities as well as new incumbent facilities with interdisciplinary expertise including non-grid applications.
- Identify testing infrastructure gaps, including needs for non-grid applications, at universities and the national laboratories and, as appropriate, address those needs through infrastructure upgrades and development of new capabilities.
- Commission, initiate testing, and gain accreditation for the PacWave grid-connected, open-ocean, wave test facility.
- Demonstrate the improved technical performance of seven environmental monitoring technologies in relevant marine energy environments while opportunistically collecting data on acoustic outputs, electromagnetic field signatures, benthic habitats, and marine organism interactions with marine energy devices.
Reducing Barriers to Testing - MYPP Objectives

- Significantly reduced timelines of design iterations for developers and researchers working in the marine energy industry, ultimately accelerating the iterative R&D process.
- Validate cost and performance of devices through industry standards, providing confidence to regulatory, investor, and insurance communities.
- Adoption of best practices for environmental monitoring technologies resulting in more consistent data collection across projects and greater confidence in the conclusions about the level of risk of specific environmental concerns.
Support robust and sustained laboratory testing access and support available via TEAMER

FY2021

Both Current and Wave Energy

FY2025
MYPP Research Priorities – Open Water Testing

Complete PacWave construction → Commission facility → Achieve PacWave test facility accreditation

Design a mobile test vessel (MTV) for current energy converters (CECs) → Build and commission MTV

Establish the Atlantic Marine Energy Center (AMEC)

Evaluate the need for a grid-connected CEC facility

FY2021 – FY2025

Current Energy Wave Energy Both Current and Wave Energy
MYPP Research Priorities – Environmental Research & Instrumentation Development

- Conduct impacts analysis of single devices
- Research impacts of arrays
- Demonstrate monitoring technology improvements
- Collect environmental data
- Develop and validate environmental models
- Provide methods and instrumentation recommendations

FY2021

- Environmental Impacts Data and Research
- Monitoring Tools and Technology

FY2025
Key Accomplishments – Testing Infrastructure Access and Development

- **TEAMER Program Launched**
 - Sept 2019: POET Selected as Network Director
 - May 2020: TEAMER went live with RFTS1
 https://teamer-us.org/
 - Oct 2021: Support available for field testing activities
 https://teamer-us.org/open-water-testing/

- **Infrastructure Investments for Marine Energy Research**
 - 7 projects awarded across 5 DOE national labs
 - FOA2080 A014 awarded to 3 NMRECs
Key Accomplishments – Testing Infrastructure Access and Development

• Atlantic Marine Energy Center (AMEC) established in Aug 2021
 – https://www.amec-us.org/

• PacWave continued advancement toward commissioning as an accredited, grid-connected, pre-permitted US wave energy test facility
 – Feb 2021: BOEM issued research lease to OSU
 – March 2021: FERC issued license to OSU
 – June 2021: construction of the underground components commenced
 https://pacwaveenergy.org/constructionupdates/
Key Accomplishments – Environmental Research & Instrumentation Development

- OES-Environmental 2020 State of the Science Report
- Marine Energy Toolkit Launch
 - https://marineenergy.app/
- Triton TFiT testing complete and monitoring recommendations published
- 2 novel monitoring technologies validated in relevant marine energy environment
 - Integral Benthic Habitat Mapping
 - Integral NoiseSpotter
- 5 SBIR projects to develop Low-cost, user-friendly tools for Marine Energy Sites
Future Work

• Testing Infrastructure Access and Development
 – TEAMER
 • RFTS7 closed July 16, RFTS8 applications will be due Oct 14
 – Infrastructure Upgrades
 • Finalize design, assembly, and ready access to national laboratory testing assets
 • Finish remaining upgrades at NMRECs
 • Continue outreach and capabilities development at AMEC
 – PacWave
 • May 2022: completed construction of underground components and Driftwood Beach State Recreation Site reopened to public
 – MTV
 • RFI released in Feb 2022 to collect potential user input

• Environmental Research & Instrumentation Development
 – Remaining instrumentation testing at WETS and final reports from Triton/T-Fit in 2022
 – March 2022 Instrumentation Workshop
Agenda Overview – July 20

<table>
<thead>
<tr>
<th>START (ET)</th>
<th>END (ET)</th>
<th>PRESENTATION TOPIC</th>
<th>ORGANIZATION</th>
<th>SPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 AM</td>
<td>10:40 AM</td>
<td>Reducing Barriers to Testing Activity Area Overview</td>
<td>WPTO</td>
<td>Lauren Reudy</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>11:20 AM</td>
<td>Triton Initiative</td>
<td>PNNL</td>
<td>Joe Haxel, Garrett Staines</td>
</tr>
<tr>
<td>11:20 AM</td>
<td>11:30 AM</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30 AM</td>
<td>11:55 AM</td>
<td>Rapidly Deployable Acoustic Monitoring and Localization System Based on A Low-Cost Wave Buoy Platform</td>
<td>Integral Consulting Inc.</td>
<td>Kaustubha Raghukumar</td>
</tr>
<tr>
<td>11:55 AM</td>
<td>12:20 PM</td>
<td>Long-Range Target Detection and Classification System for Environmental Monitoring at MHK Sites</td>
<td>Biosonics, Inc.</td>
<td>Tim Acker</td>
</tr>
<tr>
<td>Time</td>
<td>Time</td>
<td>Title</td>
<td>Location</td>
<td>Presenter</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>12:20</td>
<td>1:00</td>
<td>LUNCH BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>1:25</td>
<td>Improvements to Hydrodynamic and Acoustic Models for Environmental Prediction</td>
<td>SNL</td>
<td>Jesse Roberts</td>
</tr>
<tr>
<td>1:25</td>
<td>1:50</td>
<td>National Lab and University Collaboration for MHK Instrumentation and Data Processing Tools</td>
<td>NREL, PNNL, SNL</td>
<td>Rebecca Fao</td>
</tr>
<tr>
<td>1:50</td>
<td>2:15</td>
<td>Network Director for The Testing Expertise and Access for Marine Energy Research (TEAMER) Program</td>
<td>Pacific Ocean Energy Trust</td>
<td>Matt Sanders</td>
</tr>
<tr>
<td>2:15</td>
<td>2:40</td>
<td>Reviewer Debrief</td>
<td></td>
<td>Reviewers</td>
</tr>
</tbody>
</table>
Agenda Overview – July 21

<table>
<thead>
<tr>
<th>START (ET)</th>
<th>END (ET)</th>
<th>PRESENTATION TOPIC</th>
<th>ORGANIZATION</th>
<th>SPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 AM</td>
<td>10:25 AM</td>
<td>Enabling Cost Effective Electricity from Ocean Waves: PacWave</td>
<td>Oregon State University</td>
<td>Burke Hales</td>
</tr>
<tr>
<td>10:25 AM</td>
<td>10:50 AM</td>
<td>National Marine Renewable Energy Center Infrastructure Upgrades</td>
<td>University of Washington</td>
<td>Brian Polagye</td>
</tr>
<tr>
<td>10:50 AM</td>
<td>11:15 AM</td>
<td>Current Turbines Mobile Testing Vessel</td>
<td>Idom, Inc.</td>
<td>Alvaro Garcia</td>
</tr>
<tr>
<td>11:15 AM</td>
<td>11:45 AM</td>
<td>Reviewer Debrief</td>
<td>Reviewers</td>
<td></td>
</tr>
</tbody>
</table>
Reviewer Introductions

• This will be a slide that introduces the review panel and thanks them.
• I will insert this slide after you send your draft to me and Tim.
Q&A