

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

2.3.2.701 – Improvements to Hydrodynamic and Acoustic Models for Environmental Prediction

Jesse Roberts- Sandia National Laboratories

jdrober@sandia.gov;

July 20, 2022

Project Overview

Project Summary	Project Information	
• The project leverages SNL-enhanced open-source numerical models to investigate the	Principal Investigator(s)	
interaction of marine energy devices with the surrounding environment.	Jesse Roberts	
• Tools to characterize and visualize the affected wave fields, current patterns, and		
hydroacoustic soundscapes modified by ME devices have been developed.	Project Partners/Subs	
 Application of these tools can better inform stakeholders, regulators, and developers how to optimize power production and coastal resiliency while minimizing unwanted environmental effects. 	 Sandia National Laboratories Integral Consulting Montana State University H.T. Harvey and Associates Baylor University 	
Intended Outcomes		
 Tools developed by the project can be leveraged to produce quantitative and 	Project Status	
comparable metrics on the potential for marine energy device related environmental changes.	Ongoing	
• The goal is to provide not only the tools but the methods for appropriate application	Project Duration	
that meet industry standards and promote effective communication among key	• 2019	
parties.	• 2021	
• The highest-level outcome is intended to reduce permitting and regulatory costs.	Total Costed (FY19-FY21)	
	\$2,184K LATE FOR REVIEW AND FEEDBACK**	

Project Objectives: Relevance

Integrating disparate Marine Energy environmental data using a coherent framework (SEAT) provides innovative support for mitigating environmental risk and optimizing ME array design

****DRAFT TEMPLATE FOR REVIEW AND FEEDBACK****

Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- Improvements to SNL-Delft3D-CEC-FM, SNL-SWAN
 and Paracousti
 - models optimized for support of environmental assessment and ME site characterization
- The Spatial Environmental Assessment Tool (SEAT)
 - quantitative risk metrics for environmental assessment
 - spatial mapping linked with array modeling tools to support planning for risk mitigation and array performance optimization.
 - Facilitates collaboration and communication

Outcomes:

- Tools provide quantitative metrics to evaluate risk to the environment due to different array shapes, devices, and locations.
- Application of tools that can improve project planning and communication and reduce uncertainty in project risks

FY 2019			
SNL-SWAN and WAMIT	FY 2020		
validation	SEAT interface development	FY 2021	
SNL-Delft3D-CEC-FM			
development and application	Case Study development for WEC and CEC sites	ParAcousti Development and demonstrations	
ParAcousti model development for WECs	ParAcousti soundscape characterization and application	SEAT interface refinement and case study development	
In-person demonstrations of	application	Outroach and training and	
model use cases		Outreach and training and industry feedback	
	Outreach and training and industry feedback	Industry iccuback	

FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
\$580K	\$854K	\$751K	\$2,184K

End User Engagement and Dissemination

End Users	Outreach	Dissemination
 Technology Developers 	 In-person workshops and demonstrations 	 Conference Presentations
 Environmental Scientists 	 Developer Feedback 	 Peer Reviewed Publications
 Regulators Other Researchers 		 Publicly available models and tutorials via GITHUB

Performance: Accomplishments and Progress

- Development of CEC module for the open source DFlow-FM for approval by Deltares and integration into publicly maintained version of Delft3D code
- Refinement of Paracousti sound field modeling for WEC array characterization and Case Study at PacWave South
- Developing Spatial Environmental Assessment Tool interface in QGIS for evaluating ME array's environmental risk potential.
- Presented findings at the Offshore Technology Conference and held model demonstrations for potential end-users.

Spatial Environmental Assessment Tool

Stressor Layer

- Spatial Map of Modeled forces
- Represents range of conditions (24)
- Difference between conditions present and absent
- Condition weighted by probability
- Map is sum of weighted results

PacWave South WEC Array-Case Study

Risk Layer

- SEAT integrates model (CEC, WEC, or acoustic) and receptor information
- Generates spatial estimate of risk

Oregon coast

Risk Calculation

2 -10

OSM Star

PacWave South Boundary

Pacwave South-Case Study

Risk	Description	%	Covera	ge
Value	Description	4x4	8x4	16x6
<-1	Decreased Mobility	0.9	0.9	0
-1 to 0	Increased Deposition	54.5	52.6	60.1
0	No Change	43.4	45	38.8
0-1	Decreased Deposition	1.2	1.5	1.1
1	Increased Mobility	0	0	0

Pacwave South-Case Study

PacWave South Case Study: Acoustic Results

3D Sound Propagation

Noise approximated from

- 15 kW point absorbers
- 118–131 dB (re 1 µPa)

Risk Metrics

- Sound Pressure Levels (SPL) – total and octave bands
- Signal to Noise (SNR) above ambient levels
- Sensation Level (**SnL**) perception by specific marine species

Tanana River- Current Energy Converter Case Study

- Use of SNL-Delft3D-FM-CEC (unstructured grid)
- Demonstrated tool's capability to simulate range of flows and array configurations

Future work

- Disseminate a beta version of SEAT and Guidance/Use Documentation that highlights comparison of environmental risk with potential power outputs
- Develop additional risk metrics that meet regulatory standards
- Provide online training materials
- Conduct end-user feedback and outreach

https://ecoquants.shinyapps.io/nrel-uses/

