2.3.2.701 – Improvements to Hydrodynamic and Acoustic Models for Environmental Prediction

Jesse Roberts- Sandia National Laboratories

drober@sandia.gov;
July 20, 2022
Project Overview

Project Summary
- The project leverages SNL-enhanced open-source numerical models to investigate the interaction of marine energy devices with the surrounding environment.
- Tools to characterize and visualize the affected wave fields, current patterns, and hydroacoustic soundscapes modified by ME devices have been developed.
- Application of these tools can better inform stakeholders, regulators, and developers how to optimize power production and coastal resiliency while minimizing unwanted environmental effects.

Intended Outcomes
- Tools developed by the project can be leveraged to produce quantitative and comparable metrics on the potential for marine energy device related environmental changes.
- The goal is to provide not only the tools but the methods for appropriate application that meet industry standards and promote effective communication among key parties.
- The highest-level outcome is intended to reduce permitting and regulatory costs.

Project Information
- **Principal Investigator(s)**
 - Jesse Roberts
- **Project Partners/Subs**
 - Sandia National Laboratories
 - Integral Consulting
 - Montana State University
 - H.T. Harvey and Associates
 - Baylor University

Project Status
- Ongoing

Project Duration
- 2019
- 2021

Total Costed (FY19–FY21)
- $2,184K

Draft Template for review and feedback
Project Objectives: Relevance

Foundational R&D
- Develop numerical and experimental tools and methodologies to understand fluid-structure interactions.
- Improve ME resource assessments and characterizations to optimize devices and arrays and understand extreme conditions.

Reducing Barriers to Testing
- Mitigate environmental risks and reduce costs and complexity of environmental monitoring.
- Engage in relevant coastal planning processes for equitable consideration of marine energy.

Outcomes
- Use of improved resource assessments and characterization to effectively design and deploy devices.
- Increased inclusion of marine energy in both coastal and energy resource planning processes.
- Reduced environmental risks for marine ecosystems and biodiversity from the deployment of large-scale renewable energy systems.

DRAFT TEMPLATE FOR REVIEW AND FEEDBACK
Project Objectives: Approach

Integrating disparate Marine Energy environmental data using a coherent framework (SEAT) provides innovative support for mitigating environmental risk and optimizing ME array design.

TASKS
1. Design SEAT
2. Develop Functionality
3. Apply to Case Studies
4. Outreach and Engagement

DRAFT TEMPLATE FOR REVIEW AND FEEDBACK
Project Objectives: Expected Outputs and Intended Outcomes

Outputs:
- Improvements to SNL-Delft3D-CEC-FM, SNL-SWAN and Paracousti
 - Models optimized for support of environmental assessment and ME site characterization
- The Spatial Environmental Assessment Tool (SEAT)
 - Quantitative risk metrics for environmental assessment
 - Spatial mapping linked with array modeling tools to support planning for risk mitigation and array performance optimization.
 - Facilitates collaboration and communication

Outcomes:
- Tools provide **quantitative metrics to evaluate risk** to the environment due to different array shapes, devices, and locations.
- Application of tools that can **improve project planning and communication and reduce uncertainty in project risks**
Project Timeline

FY 2019
- SNL-SWAN and WAMIT validation
- SNL-Delft3D-CEC-FM development and application
- ParAcousti model development for WECs
- In-person demonstrations of model use cases

FY 2020
- SEAT interface development
- Case Study development for WEC and CEC sites
- ParAcousti soundscape characterization and application
- Outreach and training and industry feedback

FY 2021
- ParAcousti Development and demonstrations
- SEAT interface refinement and case study development
- Outreach and training and industry feedback
<table>
<thead>
<tr>
<th></th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>Total Actual Costs FY19–FY21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costed</td>
<td></td>
<td></td>
<td></td>
<td>Total Costed</td>
</tr>
<tr>
<td>$580K</td>
<td></td>
<td>$854K</td>
<td>$751K</td>
<td>$2,184K</td>
</tr>
</tbody>
</table>
End User Engagement and Dissemination

<table>
<thead>
<tr>
<th>End Users</th>
<th>Outreach</th>
<th>Dissemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Technology Developers</td>
<td>• In-person workshops and demonstrations</td>
<td>• Conference Presentations</td>
</tr>
<tr>
<td>• Environmental Scientists</td>
<td>• Developer Feedback</td>
<td>• Peer Reviewed Publications</td>
</tr>
<tr>
<td>• Regulators</td>
<td></td>
<td>• Publicly available models and tutorials via GITHUB</td>
</tr>
<tr>
<td>• Other Researchers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance: Accomplishments and Progress

• Development of CEC module for the open source DFlow-FM for approval by Deltares and integration into publicly maintained version of Delft3D code

• Refinement of Paracousti sound field modeling for WEC array characterization and Case Study at PacWave South

• Developing Spatial Environmental Assessment Tool interface in QGIS for evaluating ME array's environmental risk potential.

• Presented findings at the Offshore Technology Conference and held model demonstrations for potential end-users.

DRAFT TEMPLATE FOR REVIEW AND FEEDBACK
Spatial Environmental Assessment Tool

Site Characterization

Device Parameters

Array Layouts comparison

SNL-SWAN
SNL-Delft3D-FM-CEC
Paracousti

Metocean Conditions

Thresholds

Site Specific Receptors

Spatial Risk vs Power Evaluation

SEAT Results

DRAFT TEMPLATE FOR REVIEW AND FEEDBACK
Stressor Layer
- Spatial Map of Modeled forces
- Represents range of conditions (24)
- Difference between conditions present and absent
- Condition weighted by probability
- Map is sum of weighted results

Receptor Layer
- Map of Site-specific feature of interest
- Condition weighted by probability
- Map is sum of weighted results

Risk Layer
- SEAT integrates model (CEC, WEC, or acoustic) and receptor information
- Generates spatial estimate of risk

PacWave South WEC Array-Case Study

Risk Layer
- SEAT integrates model (CEC, WEC, or acoustic) and receptor information
- Generates spatial estimate of risk
Pacwave South Case Study

<table>
<thead>
<tr>
<th>Risk Value</th>
<th>Description</th>
<th>% Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>< -1</td>
<td>Decreased Mobility</td>
<td>0.9 0.9 0</td>
</tr>
<tr>
<td>-1 to 0</td>
<td>Increased Deposition</td>
<td>54.5 52.6 60.1</td>
</tr>
<tr>
<td>0</td>
<td>No Change</td>
<td>43.4 45 38.8</td>
</tr>
<tr>
<td>0-1</td>
<td>Decreased Deposition</td>
<td>1.2 1.5 1.1</td>
</tr>
<tr>
<td>1</td>
<td>Increased Mobility</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

DRAFT TEMPLATE FOR REVIEW AND FEEDBACK
Pacwave South-Case Study

4x4 diameter Spacing

8x4 diameter Spacing

16x6 diameter Spacing

DRAFT TEMPLATE FOR REVIEW AND FEEDBACK
3D Sound Propagation
Noise approximated from
- 15 kW point absorbers
- 118–131 dB (re 1 μPa)

Risk Metrics
- Sound Pressure Levels (SPL) – total and octave bands
- Signal to Noise (SNR) – above ambient levels
- Sensation Level (SnL) – perception by specific marine species
Tanana River- Current Energy Converter Case Study

- Use of SNL-Delft3D-FM-CEC (unstructured grid)
- Demonstrated tool’s capability to simulate range of flows and array configurations

DRAFT TEMPLATE FOR REVIEW AND FEEDBACK
Future work

• Disseminate a beta version of SEAT and Guidance/Use Documentation that highlights comparison of environmental risk with potential power outputs
• Develop additional risk metrics that meet regulatory standards
• Provide online training materials
• Conduct end-user feedback and outreach

https://ecoquants.shinyapps.io/nrel-uses/
Q&A