

The #H2IQ Hour

Today's Topic: HydroGEN Advanced Water Splitting Materials Capabilities Overview

This presentation is part of the monthly H2IQ hour to highlight hydrogen and fuel cell research, development, and demonstration (RD&D) activities including projects funded by U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) within the Office of Energy Efficiency and Renewable Energy (EERE).

This webinar is being recorded and will be available on the <u>H2IQ webinar archives</u>.

Technical Issues:

- If you experience technical issues, please check your audio settings under the "Audio" tab.
- If you continue experiencing issues, direct message the host, Natasha Nguyen

Questions?

There will be a Q&A session at the end of the presentation.

To submit a question, please type it into the Q&A box on the right-hand side

of your screen next to the chat box/Chat

The #H2IQ Hour Q&A

Please type your questions into the **Q&A Box**

All (0)

✓ Q&A

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately...

 \times

#H2IQ Hour Polling Questions

Please submit your answers to our polling questions in the **Polling** Box

HydroGEN Overview:

A Consortium on Advanced Water Splitting Materials

Huyen Dinh, Director of HydroGEN, NREL

9/16/2022, Virtual

H2IQ HydroGEN EMN Webinar

H2@Scale: Enabling affordable, reliable, clean and secure energy

Transportation and Beyond

Large-scale, low-cost hydrogen from diverse domestic resources enables an economically competitive and environmentally beneficial future energy system across sectors Hydrogen can address specific applications that are hard to decarbonize Today: 10 MMT H_2 in the US Economic potential: 2x to 4x more

Materials innovations are key to enhancing performance, durability, and reduce cost of hydrogen generation, storage, distribution, and utilization technologies key to H2@Scale

Source: DOE Hydrogen and Fuel Cell Technologies Office, https://energy.gov/eere/fuelcells/h2-scale

"Hydrogen at Scale ($H_2@$ Scale): Key to a Clean, Economic, and Sustainable Energy System," Bryan Pivovar, Neha Rustagi, Sunita Satyapal, *Electrochem. Soc. Interface* Spring 2018 27(1): 47-52; doi:10.1149/2.F04181if.

HydroGEN Overview

HydroGEN is advancing Hydrogen Shot goals by

fostering cross-cutting innovation using theory-guided applied materials R&D to advance all emerging water-splitting pathways for hydrogen production

HydroGEN EMN Framework Collaboration, Streamline Access

HydroGEN: Advanced Water Splitting Materials

HydroGEN is vastly collaborative, has produced many high value products, and is disseminating them to the R&D community.

2 R&D 100 Awards

118 Publications, Impact factor* = 2.20 2,783 citations, 436 authors

4 community benchmarking workshops

33 project NDAs, 2 MTAs

46 capabilities utilized across 6 labs

STEM Work Force Development

*Field-weighted citation impact (FWCI) indicates how the number of citations received by the Publication Set's publications compares with the average number of citations received by all other similar publications in Scopus. 8

Diverse HydroGEN Leadership and Community

Comprising more than 60 unique, world-class capabilities/expertise in:

HydroGEN fosters cross-cutting innovation using theory-guided applied materials R&D to advance all emerging water-splitting pathways for hydrogen production

Website: https://www.h2awsm.org/capbilities

HydroGEN EMN Collaborates with Projects

HydroGEN Labs Support FOA-Awarded Projects

Capability Nodes on the User-Friendly Node Search Engine for Stakeholders

> 60 current capability nodes

- 44 PEC capabilities •
- **28 STCH capabilities** •
- 39 LTE capabilities •
- **35 HTE capabilities** •
- 7 Hybrid thermal (HT) capabilities

Node Readiness Category (NRC) Chart Node is fully developed and has been used for AWSM research projects

Node requires some development for AWSM

Node requires significant development for AWSM

Search		Q	V T
Reset filtering			H
CAPABILITY CLASS	*		[
Analysis			[
Benchmarking			L P
Characterization			
Computational Tools and Modeling			S
🔲 🗢 Data Management			[
Material Synthesis			[

- Process and Manufacturing Scale-Up
- System Integration

WATER-SPLITTING TECHNOLOGY
High-Temperature Electrolysis
HTE 1 HTE 2 HTE 3
Low-Temperature Electrolysis
LTE 1 LTE 2 LTE 3
Photoelectrochemical
PEC 1 PEC 2 PEC 3
Solar Thermochemical
STCH 1 STCH 2
STCH 3
Hybrid Thermochemical
HT 1 HT 2 HT 3
Node Readiness Categories

NATIONAL LABORATORY

Idaho National

Laboratory (INL)

Lawrence Berkeley National Laboratory (LBNL)

- Lawrence Livermore National Laboratory (LLNL)
- National Renewable Energy Laboratory (NREL)
- Sandia National Laboratories (SNL)

Stakeholders can search for relevant materials synthesis, characterization, analysis, and modeling capabilities to meet their needs

HydroGEN Capabilities Website/Search Engine - Demo

HydroGEN

Home About Capabilities Data Publications Work with Us News Contact

Capabilities

HydroGEN offers a suite of unique capabilities in the photoelectrochemical, solar thermochemical, lowtemperature electrolytic, and high-temperature electrolytic water splitting pathways.

FEATURED CAPABILITY **Computational Materials Diagnostics and Optimization** of Photoelectrochemical Devices

This capability provides a computational procedure for diagnosing sources of discrepancy between idealized PEC device behavior and observed performance, as well as... LLNL

LTE 1, PEC 1, STCH 2

Demo

LIST OF CAPABILITIES

Each capability represents a resource node—a combination of a tool, technique, and expertise—that is unique to the national laboratory system. Each resource node is assigned a node readiness category that describes the readiness of the capability node for use in the water splitting pathway listed.

Search	Showing 1 to 12 of 63 entries	1	2 3 4 Next
Reset filtering	Ab Initio Modeling of Electrochemical Interfaces	Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis	Advanced Electron Microscopy
■ Analysis	\rangle)	\rangle
Characterization			
Computational Tools and Modeling	LLNL LTE 2, PEC 1	INL HTE 1	SNL HTE 2, LTE 2, PEC 2, STCH 1
■ Material Synthesis			
Process and Manufacturing Scale-Up	Albany: Open-Source	ALD Based Surface	Analysis and
■ System Integration	Multiphysics Research Platform	Functionalization and Porosity Control	Characterization of Hydrided Material Performance
WATER-SPLITTING TECHNOLOGY	>	>	>
High-Temperature Electrolysis	SNL HTE 3, LTE 3, PEC 3, STCH 2	LLNL PEC 3	INL HTE 2
Low-Temperature Electrolysis	•		
Photoelectrochemical	Beyond-DFT Simulation of	Characterization of	Characterizing Degradation
Solar Thermochemical STCH 1 STCH 2 STCH 3	Energetic Barriers and Photoexcited Dynamics	Semiconductor Bulk and Interfacial Properties and On-Sun Photoelectrochemical So	Processes at Photoelectrochemically Driven Interfaces
Hybrid Thermochemical	LLNL PEC 2	NREL PEC 1	LLNL PEC 1, LTE 2
Node Readiness Categories	•	••	•

NATIONAL LABORATORY

- Idaho National Laboratory (INL)
- Lawrence Berkeley National Laboratory (LBNL)
- Lawrence Livermore National Laboratory (LLNL)
- National Renewable Energy Laboratory (NREL)
- Sandia National Laboratories (SNL)

Show

12 🗙 Apply

Reset

STCH: Characterization Capabilities - Demo

Search	Advanced Electron	Concentrating Solar Power	Controlled Materials
Reset filtering	Microscopy	Furnace	Synthesis and Defect
CAPABILITY CLASS	>	>)
Anarysis Benchmarking Characterization Computational Tools and Madeling	SNL HTE 2, LTE 2, PEC 2, STCH 1	SNL HTE 2, PEC 2, STCH 1, HT 1	NREL HTE 2, STCH 1
 Material Synthesis Process and Manufacturing Scale-Up System Integration 	High Flux Solar Furnace	High-Temperature X-Ray Diffraction (HT-XRD) and Complementary Thermal Analysis	Photoelectrochemical Device In Situ and Operando Testing Using X-Rays
WATER-SPLITTING TECHNOLOGY	NREL STCH 1, HTE 2	SNL HTE 1, LTE 1, PEC 1, STCH 1, HT 1	LBNL HTE 1, LTE 1, PEC 1, STCH 1
 HTE 1 → HTE 2 → HTE 3 Low-Temperature Electrolysis LTE 1 → LTE 2 → LTE 3 Photoelectrochemical PEC 1 → PEC 2 → PEC 3 Solar Thermochemical STCH 1 → STCH 2 STCH 3 Hybrid Thermochemical 	Virtually Accessible Laser Heated Stagnation Flow Reactor for Characterizing Redox Chemistry of Mate SNL STCH 1		
Node Readiness Categories	Showing 1 to 7 of 7 entries		

PFC: Characterization	Search	Showing 1 to 12 of 13 entries		1 2 Next
Capabilities - Demo	CAPABILITY CLASS	Characterization of Semiconductor Bulk and Interfacial Properties and On-Sun Photoelectrochemical So >	Characterizing Degradation Processes at Photoelectrochemically Driven Interfaces	Corrosion Analysis of Materials
	 Characterization Computational Tools and Modeling 	NREL PEC 1	LLNL PEO 1, LTE 2	NREL HTE 3, LTE 1, PEO 1
	Material Synthesis			
	Process and Manufacturing Scale-Up System Integration	Electron Beam and In Situ Photon Beam Characterization of PEC Materials and Devices	High-Temperature X-Ray Diffraction (HT-XRD) and Complementary Thermal Analysis	I-III-VI Compound Semiconductors for Water Splitting
	High Temperature Electrolysis			
	HTE 1 HTE 2 HTE 3	SNL LTE 2, PEC 1	SNL HTE 1, LTE 1, PEO 1,	NREL PEC 1
	Low-Temperature Electrolysis	•		
	🗆 LTE 1 🗌 LTE 2 🗌 LTE 3			
	Photoelectrochemical	In Situ/Operando X-Ray	Laboratory and On-Sun PEC	Photoelectrochemical Device In Situ and Operando
	Solar Thermochemical	Electronic Structure in	bevice resting	Testing Using X-Rays
	□ STCH 1 □ STCH 2 □ STCH 3	Photoabsorber Materials	\rangle	>
	Hybrid Thermochemical	LINI DED 1 ITE 2	LDNI DE0.1	LDNI UTE1 ITE1 DE0.1
	HT 1 HT 2 HT 3 Node Readiness Categories	ee i, de z	ee	STOH 1
	NATIONAL LABORATORY			
	Idaho National Laboratory (INL)	Probing and Mitigating Chemical, Electrochemical,	Surface Analysis Cluster Tool	Surface Modifications for Catalysis and Corrosion
	 Lawrence Berkeley National Laboratory (LBNL) 	and Photochemical Corrosion of Electrochemical and	>	Mitigation
	Lawrence Livermore National Laboratory (LLNL)	LBNL HTE 2, LTE 2, PEC 1	NREL HTE 2, LTE 1, PEO 1,	NREL LTE 1, PEC 1
	National Renewable Energy Laboratory (NRF1)		0.012	
ced Water Splitting Materials	□ Sandia National Laboratories (SNL)	Showing 1 to 12 of 13 entries		1 2 Next

HydroGEN: Advance

17

Characterization of Semiconductor Bulk and Interfacial Properties and On-Sun Photoelectrochemical Solar-to-Hydrogen Benchmarking

LABORATORY	CAPABILITY EXPERT	CLASS	NODE READINESS CATEGORY
National Renewable Energy Laboratory (NREL)	Todd Deutsch, James Young	Benchmarking Characterization	1: Photoelectrochemical (PEC)

DESCRIPTION

Characterization of Semiconductor Bulk and Interfacial Properties

This capability involves characterizing semiconductors using photoelectrochemical (PEC) methods to measure their bulk and interfacial properties to determine their suitability for photoelectrolysis. We have practical experience contacting a variety of semiconductor configurations and fabricating samples into photoelectrodes suitable for PEC testing. Once we fabricate electrodes and measure their surface areas, we use a suite of characterization methods to determine unknown semiconductor properties by the following procedure:

- We determine the conductivity type of an unknown material by monitoring the open-circuit potential response upon illumination, which is important to establish the reverse-bias conditions used for all subsequent testing.
- We then measure band gap energy to within ±0.01 eV as well as determine whether the electronic transition is direct or indirect with our custom-built photocurrent spectroscopy system.
- Once the bandgap is known, we use the appropriate reference cells and calibrated light sources to measure (photo)current-potential performance under simulated reference illumination (AM1.5 G).
- 4. We then determine the conduction/valence band edge alignment by measuring the flatband potential across a range of electrolytes with varying pHs using three different techniques; photocurrent onset, VOC under intense illumination, and Mott-Schottky analysis.
- 5. The doping density of the semiconductor is calculated from the slope of the Mott-Schottky response.
- 6. We measure incident photon-to-current efficiency (IPCE) to get a wavelength-dependent conversion efficiency that can be integrated over a reference spectrum (AM1.5G) to corroborate the photocurrents obtained under broadband illumination.
- 7. The reflectance may also be monitored during the IPCE measurement to calculate wavelength-dependent internal quantum efficiency.

Efficiency Benchmarking

This capability involves testing water-spitting semiconductors and semiconductor-based devices using simulated and actual solar (on-sun) illumination to validate solar-to-hydrogen (STH) conversion efficiency. The first step is to take incident photon-to-current efficiency measurements to get the wavelength dependent conversion efficiency for each subcell absorber junction. This is necessary to calculate a spectral correction factor to adjust measured photocurrent densities to a reference spectrum for objective comparison of performance to other devices. Outdoor measurements are taken using collimating tubes to isolate the direct component of the solar spectrum to minimize errors due to coupling of the diffuse component of solar radiation to the semiconductor by the photoreactor cell. Continuous research-quality measurements of the characteristics of local solar irradiance are recorded at the Solar Radiation Research Laboratory (SRRL) at NREL every minute from over 80 instruments including pyranometers, pyroheliometers, pyrgeometers, and other meterological sensors. Details on the measurements and data sets are online. This data is used to calculate real-time STH efficiencies from short-circuit current density measurements measurements and data sets are online. This data is used to calculate real-time STH efficiencies from short-circuit current density measurements and sets are online. This data is used to calculate real-time STH efficiencies from short-circuit current density measurements and sets are online. This data is used to calculate real-time STH efficiencies from short-circuit current density measurements and sets are online. This data is used to calculate real-time STH efficiencies from short-circuit current density measurements and the sets are online. This data is used to calculate real-time STH efficiencies from short-circuit current density measurements and the sets are online. This data is used to calculate real-time STH efficiencies from short-circuit current density measurements a

CAPABILITY BOUNDS

Custom cells may be required to accommodate various electrode geometries. Electrode sizes from 0.01 cm2 up to several cm2 can be tested.

UNIQUE ASPECTS

These semiconductor characterization techniques have been funded by the Hydrogen & Fuel Cell Technologies Office for >20 years. We have trained dozens of undergraduate, graduate, and postdoctoral researchers and tested thousands of c-Si, a-Si, oxide, nitride, carbide, phosphide, arsenide, selenide, sulfide, bismide, and antimonide semiconductors and co-authored a book based on our approach. What sets the efficiency benchmarking capability apart from other benchmarking facilities is the colocation of STH testing with the collection of solar radiation data at SRRL, the home of the world's largest collection of radiometers in continuous operation dating back to 1981. Another unique characteristic of this capability is its extraordinary availability due to the excellent solar access intrinsic to Colorado.

AVAILABILITY

We have 5-6 characterization stations that include potentiostats, frequency response analyzers, and light sources permitting a relatively high PEC characterization throughput. A scientist unskilled in this area could gain moderate proficiency on these characterization techniques within a few days of training. Its high availability would allow this capability to serve as a user facility if a large number of sample characterizations is needed. Long-term STH efficiency testing is limited by availability of the tracker that can vary based on demand. Dozens of short-term STH efficiency measurements can be performed daily but are weather dependent. Additional rooftop space at the Energy Systems Integration Facility is designated for on-sun STH benchmarking and long-term testing.

BENEFIT

This capability can screen unknown photoelectrode candidate materials and, by evaluating their intrinsic bulk and interfacial properties, determine their potential to direct sunlight toward water splitting. The co-location of all measurement equipment and capability experts offers convenience, support, and quick turnaround for users. This capability can also verify/certify solar conversion into hydrogen under true solar conditions that are difficult to accurately measure using simulated laboratory conditions, especially for the multijunction systems capable of the highest STH efficiencies.

IMAGES

REFERENCES

 *Accelerating materials development for photoelectrochemical (PEC) hydrogen production: Standards for methods, definitions, and reporting protocols" Zhebo Chen, Thomas F. Jaramillo, Todd G. Deutsch, Alan Kleiman-Shwarsctein, Arnold J. Forman, Nicolas Gaillard, Roxanne Garland, Kazuhiro Takanabe, Clemens Heske, Mahendra Sunkara, Eric W. McFarland, Kazunari Domen, Eric L. Miller, John A. Turner, Huyen N. Dinh, J. Mater. Res. 25(1), 3-16 (2010).

2. Photoelextrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Zhebo Chen, Huyen N. Dinh, Eric Miller, Todd G. Deutsch, Kazunari Domen, Keith Emery, Arnold J. Forman, Nicolas Gaillard, Roxanne Garland, Clemens Heske, Thomas F. Jaramillo, Alan Kleiman-Shwaractein, Kazuhiro Takanabe, John Turner, eds: Zhebo Chen, Huyen N. Dinh, Eric Miller, New York: Springer, 2013.

3. "Photoelectrochemical Characterization and Durability Analysis of GalnPN Epilayers" Todd G. Deutsch, Jeff L. Head, John A. Turner. J. Electrochem. Soc. 155(9) B903, (2008).

4. "Solar to hydrogen efficiency: Shining light on photoelectrochemical device performance," H. Döscher, J.L. Young, J.F. Geisz, J.A. Turner, T.G. Deutsch, Energy Environ. Sci., 9, 74-80 (2016).

 "Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures" James L. Young, Myles A. Steiner, Henning Döscher, Ryan M. France, John A. Turner, and Todd G. Deutsch, Nature Energy 2, 17028 (2017).

6. "Translation of device performance measurements to reference conditions." C. R. Osterwald, Solar Cells, 18, 269-279 (1986).

J. Electrochem. Soc. 155, no. 9 (2008): B903.

HydroGEN: Advanced Water Splitting Materials

HydroGEN Capability Nodes By Water Splitting Technologies/Projects (LTE, HTE, PEC, STCH projects)

HydroGEN Capability Node	Node Class	LTE	HTE	PEC	STCH
LBNL Multiscale Modeling of Water Splitting Devices	Modeling	\checkmark			
INL Advanced Materials for Elevated Temperature Water Electrolysis	Characterization		\checkmark		
NREL In-Situ Testing Capabilities for Hydrogen Generation	Characterization	\checkmark			
NREL Thin Film Combinatorial Capabilities for Advanced Water Splitting Technologies	Synthesis + Characterization		\checkmark	✓	\checkmark
NREL First Principles Materials Theory for Advanced Water Splitting Pathways	Modeling				\checkmark
NREL On-Sun PEC Solar-to-Hydrogen Benchmarking	Characterization			\checkmark	
LBNL Thin Film and Bulk Ionomer Characterization	Characterization	\checkmark			
SNL High-Temperature X-ray Diffraction and Thermal Analysis	Characterization		\checkmark		\checkmark
NREL Multi-Component Ink Development, High Throughput Fabrication, and Scaling Studies	Processing & Scale Up	\checkmark			
SNL Virtually Accessible Laser Heated Stagnation Flow Reactor	Characterization				\checkmark
LLNL Ab Initio Modeling of Electrochemical Interfaces	Modeling			\checkmark	\checkmark

Goal: Computational discovery of STCH materials with simultaneously reduceable cations on https://www.hydrogen.energy.gov/pdfs/review21/p168 stechel 2021 p.pdf separate sublattices.

- Three HydroGEN nodes collaborated with ASU.
 - Controlled Material Synthesis (NREL)
 - Advanced Electron Microscopy (SNL)
 - Virtually Accessible Laser Heated Flow Reactor (SNL) _
- NREL: Synthesized and characterized crystal structure and identified redox active cations.
 - Confirmed dual-cation reduction mechanism by XAS
- SNL: Characterized water splitting and A-site cation redox activity.
 - Confirmed $Ce^{(4+/3+)}$ redox in CCXY phase as predicted _
 - Confirmed CCXY splits water at low p_{02} _

Energy (eV)

HydroGEN: Advanced Water Splitting Materials

Goal: Develop Si-based low cost tandem photoelectrodes to achieve high efficiency (>15%) and stable (>1,000 hrs) water splitting systems. https://www.hydrogen.energy.gov/pdfs/review20/p163_mi_2020_p.pdf

- Three HydroGEN nodes at three National Labs.
 - In situ and operando/Probing corrosion (LBNL)
 - Interface Modeling (LLNL)
 - Surface modification/Surface Analysis (NREL)
- LBNL: Performed microscopy and spectroscopy analysis of the photoelectrodes.
 - Confirmed presence of a new oxynitride species
- LLNL: Performed DFT calculations to understand the stability and activity of the oxynitride phase.
 - substitution of N with O yields the lowest surface free energy among of all the reported GaN m-plane structures
- NREL: Performed co-catalyst deposition on GaN surface to lower kinetic barrier for H₂ evolution

Goal: To develop unassisted water splitting devices with protective/catalytic MoS₂ barriers for durable, high-efficiency PEC water splitting https://www.hydrogen.energy.gov/pdfs/review21/p161_jaramillo_2021_p.pdf

- Five HydroGEN nodes at two National Labs:
 - III-V Semiconductor Synthesis (NREL)
 - Characterization of bulk and interfacial properties (NREL)
 - Corrosion Analysis of Materials (NREL)
 - On-Sun Efficiency Benchmarking (NREL)
 - Photophysical Characterization (LBNL)
- <u>NREL</u>: Design/synthesis of III-V photocathodes, applied PtRu cocatalysts, evaluated durability, performed on-sun photoreactor tests
- <u>LBNL</u>: Performed transient absorption spectroscopy and in-situ Raman measurements to evaluate band gaps and materials defects

Goal: Develop tandem perovskite absorbers that exceed 20% STH efficiency with low cost and high durability. https://www.hydrogen.energy.gov/pdfs/review22/p193_mohite_2022_p.pdf

- Three HydroGEN nodes at three National Labs:
 - In situ and operando/Probing corrosion (LBNL)
 - On-Sun Efficiency Benchmarking (NREL)
 - Hybrid Organic Inorganic Perovskite Synthesis (NREL)
- LBNL: Performing efficiency measurements, cell design and fabrication, and corrosion analysis.
 - Confirmed 100% faradaic efficiency
- NREL: Performing perovskite synthesis, on-sun testing, and cell reactor design
 - Design novel cell with dual-anode for accurate STH efficiency.

Deutsch, Toma, Mohite, et al. 2022, submitted

Hybrid organic inorganic perovskite (HOIP) support

NREL HOIP capability supports several HydroGEN projects on PEC H₂ production, covering perovskite materials, devices, and characterizations:

- Rice Univ: (1) Co-planar all perovskites photocathode-photoanode device achieved STH ~13%, and lifetime ~23h; (2) Stacked perovskite/Si tandem device achieved STH ~20%, and lifetime ~100h (see schematics).
- Univ of Toledo: Stable perovskite/perovskite tandem electrodes for efficient PEC water splitting for H₂ production

Perovskite absorbers are promising for high-efficiency and lowcost PEC water splitting to produce hydrogen.

NREL High Flux Solar Furnace (HFSF)

https://www.nrel.gov/csp/facility-hfsf.html https://www.nrel.gov/news/features/2020/high-flux-solar-furnace.html

Purpose: NREL's HFSF is ideally suited for small-scale feasibility studies. It is available for on-sun functional component performance and materials testing for photo-electrochemical (PEC) cell and solar thermochemical (STCH) solar receiver.

Key Features:

- NREL's HFSF consists of a tracking heliostat and 25 hexagonal slightly concave mirrors to concentrate solar radiation.
- The solar furnace can quickly generate over to 1,800°C over a 1-cm² area and up to 3,000°C with specialized secondary optics to generate concentrations greater than 20,000 suns.
- Flux levels and distributions can be tailored to the needs of a particular research activity.
- The operational characteristics and size of the facility make it ideal for testing over a wide range of technologies with a diverse set of experimental requirements.
- The facility can provide a platform for testing prototypes for solar-electric and solar-chemistry applications.

National Solar Thermal Test Facility (NSTTF)

National Solar Thermal Test Facility (NSTTF) | HydroGEN Consortium (h2awsm.org)

http://energy.sandia.gov/energy/renewable-energy/solar-energy/csp-2/nsttf/

- At proposal stage:
 - Go to HydroGEN capabilities website to search for lab capability
 - Email <u>h2awsm@nrel.gov</u> for capability suggestions and/or connect to capability experts
 - Engage with capability experts to better understand the capability and how to collaborate with them
 - e.g., modeling, synthesis, characterization, analysis
 - Work with the capability expert on the potential work scope to support the project
 - Choose 3-4 nodes to support your project to be most effective

- At awarded project stage:
 - $\circ\,$ Be ready to work with capability node experts at the beginning of project
 - Hold regular project team meetings with all so all have a big picture of the project & how each team member contributes to the work
 - Use the secure HydroGEN SharePoint project site to communicate with team members
 - share information: literature, background info, milestones
 - schedule meetings, take meeting notes
 - work on quarterly reports, AMR & conference presentations, and papers together
 - $\circ\,$ Share data in the secure HydroGEN Data Hub
 - Raw or processed data
 - Experimental & computational data
 - Synthesis & characterization data

Acknowledgements

This work was fully supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Hydrogen and Fuel Cell Technologies Office (HFTO).

Ned Stetson

Katie Randolph

David Peterson

James Vickers

William Gibbons

Eric Miller

Interagency collaboration between NSF–DMREF projects and HFTO HydroGEN EMN John Schlueter, Program Director, NSF–DMREF, Divisions of Materials Research

Questions?

Email questions about HydroGEN capabilities to <u>h2awsm@nrel.gov</u>

Email questions about FOA to <u>HFTOFOA@ee.doe.gov</u>

The #H2IQ Hour Q&A

Please type your questions into the **Q&A Box**

All (0)

✓ Q&A

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately...

 \times

The #H2IQ Hour

Thank you for your participation!

Learn more: energy.gov/fuelcells hydrogen.energy.gov

- Electronic structure prediction
 - Electronic structure prediction for transition metal oxides, complex large-scale systems (disorder, interfaces)
 - Band-structure, effective masses, density of states, ionization _ potential, band offsets, optical properties
- Defects and alloys
 - Advanced defect equilibria for non-dilute interacting defects, high-temperature redox processes, reduction entropies
 - Small-polaron transport vs band-like transport —
 - Ionic diffusion pathways, energy barriers —
 - Monte-Carlo simulations of disordered systems
- Materials Design and Discovery
 - Crystal structure predictions for bulk materials and interfaces
 - Convex hull analysis and phase diagrams

 $Mn_{0.5}Zn_{0.5}O$

3

Photon energy (eV)

 $\Delta \delta = \delta_{ox} - \delta_{red}$

 10^{6}

α (cm⁻¹)

PRX 5.

021016

(2015)

-1.0

-1.5

-2.0

-2.5

-3.0 -3.5

-4.0

-4.5

800

og[pH₂(atm)]

 10^{4}

n

900

1000

T(°C)

(2021)

*E*_q= 2.30

SNL Laser heated stagnation flow reactor for characterizing redox materials under extreme conditions

Measure reduction and oxidation rates under high radiative flux and rapid heating rates to <u>resolve detailed</u> <u>kinetics under extreme</u> <u>conditions</u>

> SrZr_{0.3}Mn_{0.7}O₃ CaTi_{0.4}Mn_{0.6}O₃

SrCen «Mnn «On

CaTi_{0.7}Fe_{0.3}O₃

SI MA6464

CeO.

20

10

O₂ (nmole/s/g)

Temp. Prog. Red.

940 0

800 1000 1200

865 (

temperature (C)

600

1300 C

Laser-SFR reactor platform is <u>automated and</u> <u>virtually</u> <u>accessible</u> through remote windows desktop

400

Benchmarking and Protocol Development for AWS Technologies

PI: Kathy Ayers, Proton OnSite (LTE) Co-PIs: Ellen B. Stechel, ASU (STCH); Olga Marina, PNNL (HTE); CX Xiang, Caltech (PEC) Consultant: Karl Gross

Goal: Development of best practices in materials characterization & benchmarking critical to accelerate materials discovery & development

Accomplishments:

- 3rd Annual AWS community-wide benchmarking workshop (ASU, Oct. 29–30, 2019)
- 36 test protocols drafted and reviewed
- 40 additional protocols in drafting process
- Relevant operational conditions were assessed for each of the water splitting technologies
- Engaged with new projects at March 2020 kickoff meeting and organized breakout meetings
- Quarterly newsletters disseminated to AWS community

Development of best practices in materials characterization and benchmarking: critical to accelerate materials discovery and development

A Balanced AWSM R&D Portfolio

Low Temperatur (8 P	e Electrolysis (LTE) rojects)	High Temperature ((8 Proj	Electrolysis (HTE) jects)
 PEME component integration PGM-free OER catalyst Reinforced membranes 	 PGM-free OER and HER catalyst Novel AEM and ionomers Bipolar membranes Electrodes 	 Degradation mechanism at high current density operation Nickelate-based electrode and scalable, all-ceramic stack design Neodymium and lanthanum nickelate 	 High performing and durable electrocatalysts Electrolyte and electrodes Low-cost electrolyte deposition Metal supported cells
PEM Electrolysis	AEM Electrolysis	O ²⁻ conducting SOEC	H ⁺ conducting SOEC
Photoelectro	chemical (PEC)	Solar Thermochemical (STCH) (7 Projects)	
(7 P	rojects)	(7 Proj	jects)
 (7 P) III-V and Si-based semiconductors Chalcopyrites Thin-film/Si Protective catalyst system Tandem cell 	 PGM-free catalyst Earth abundant catalysts Layered 2D perovskites Tandem junction 	 Computation-driven discovery and experimental demonstration of STCH materials Perovskites, metal oxides 	• Solar driven sulfur-based process (HyS) • Reactor catalyst material

AEME = alkaline exchange membrane electrolysis

SOEC = solid oxide electrolysis cells

37