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Why quantile regression?
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* PA&E’s customers typically ask for estimates at the 70% or 85%
confidence level

« How to obtain an estimate at the 85" percentile?

« OLS regression — prediction — prediction interval
« Assumes normally-distributed error term

« OLS regression — many predictions with inputs selected from a
distribution — S-curve

« Assumes some distribution for the inputs (often triangular or normal)

* |s there a distribution-agnostic (purely data-driven) way to
generate prediction intervals/s-curves?
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Why quantile regression?
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Properties of quantile regression
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Ordinary Least Squares Linear Quantile Regression
E(y;) = Bo + frzart+. .. +Bpip, i =1,...,m Qr () = Bo(T) + fr(T)zin+. .. +Bp(T)Tip,i = 1,...,n
MSE = ming, 5, S0, (v~ Bo — T2y 28(7)) MAD = ming,) g Siy pr (% — Bol) — Sy 285(7)
where p (r) = 7max(r,0) + (1 — 7) max(—7, 0)
Predicts conditional mean E(Y | X) Predicts conditional quantiles Q, (Y| X)
Applies when 1 is small Needs sufficient data
Assumes normally-dist. errors Distribution agnostic
Does not preserve E(Y | X) under transformation Preserves (Y| X) under transformation
Sensitive to outliers Robust to outliers
Computationally inexpensive Computationally intensive
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Properties of quantile regression

Ordinary Least Squares

E(yz) - Bl} + Blmﬂ—l_' . —i_er:Bip:{' =1,...,n

COLLABORATE. DELIVER.

Linear Quantile Regression

Qr(¥i) = Bo(7) + Br(T)zir+- .. +f8p(’T)$ipa?: =1,...,n

2 . n
MSE = ming, .6 > (:%' — Bo — 2?21 ﬂ’ijﬁj(’f)) MAD = MING,(7),...,8,(r) > i=1 Pr (yi — Bo(7) — E?:l iﬂz‘jﬁj("'))

Predicts conditional mean E(Y | X)
Applies when 1 is small
Assumes normally-dist. errors

Does not preserve E(Y | X) under transformation

Sensitive to outliers

Computationally inexpensive
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where p (r) = 7max(r,0) + (1 — 7) max(—7, 0)

Predicts conditional quantiles Q, (Y| X)

Needs sufficient data

Distribution agnostic

Preserves (Y| X) under transformation

Robust to outlieD

Computationally intensive

Source: “Five things you should know about quantile regression” Rodiguez, R. and Yao, Y., SAS Institute Inc.,
https://support.sas.com/resources/papers/proceedings17/SAS0525-2017.pdf
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Project objectives
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* Assess the utility of quantile regression methods on MB-90
datasets to answer key questions:
* Do we have enough data?
« How to protect against influential points?
* Are there pitfalls to using QR?
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« To resolve the 60t and the 70t percentiles (a difference of
10%) you'd need a total of 190%/, .. = 10 datapoints at
minimum

 Likewise, to differentiate between the 60t and 65" percentiles,
you'd need 199%/., = 20 points at minimum

* Now we have a lower bound. Let’'s see if we can be a little more
specific...

How much data Is enough? Attempt #1
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How much data Is enough? Attempt #2
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* Measured convergence by comparing theoretical vs. empirical
CDFs as a function of the number of points used in the
regression

« Uniform, Triangular, Normal, and Log-normal Distributions

* Represented visually on the following slides
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How much data Is enough? Attempt #2
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Triangular distributed error: y = mx + b + €4, - X
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How much data Is enough? Attempt #2
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Log-normally distributed error: y = mx + b + €1,0rm
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How much data Is enough? Attempt #2
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» Used Cramer-Von Mises & Anderson-Darling goodness-of-fit
tests to compare theoretical and empirical s-curves at 10
randomly-selected points on the s-curve

* Declared convergence by when the goodness of fit test was
unable to distinguish between the theoretical and empirical CDF

» Performed 25 realizations per distribution

* In all cases, convergence occurred around 30 datapoints (~90%
confidence) or 100 datapoints (~95% confidence)

NS




How much data Is enough? Interlude
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 Better, but still not a perfect solution
* Analysis was limited to known, well-behaved distributions

« Statistical test don’t guarantee convergence, but rather “fail to reject the
hypothesis that the two distributions are equivalent”

* |s there a way to test our own data for “sufficiency”, without
knowing the underlying distribution?

NS e




How much data Is enough? Attempt #3
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» Use a regression technique called jackknife, in which you
remove one point at a time from the data set and perform the
regression

 Jackknifing helps us to identify influential points that strongly
affect the regression

NS4 =
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N=32, uniformly-distributed
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N=56, uniformly-distributed
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N=100, uniformly-distributed
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N=1000, uniformly-distributed
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Notes and cautions

- o
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* Finding an influential point is not prescriptive — doesn’t say
whether you should/shouldn’t use QR, or that you must
drop/keep the offending point. It simply allows you to peer
iInside the black box a little bit.

 Points singled out by the jackknife method can help to better
understand potential cost drivers.

« CAUTION! For small n, regression may not be uniquely defined.

NS bz




Conclusions and next steps
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 Lessons Learned:
* Found that PA&E datasets may be too small for quantile regression.

 Path Forward:

» |dentify influential points and find other ways to mitigate their impact
without tossing them out.

* How to handle bias in model (if even necessary)?

Additional thanks to Victoria Walter and Andrew Campo
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* In order to make inferences from OLS, you must make certain
assumptions about your data (independence,
heteroscedasticity, etc.)

* QR makes no such assumptions. In one sense this is very
freeing, because it allows you to explore different datasets
where the assumptions of OLS inference do not apply. On the
other hand, you probably have your own set of preconceived
assumptions when you make inferences (linearity, additivity,
continuity), and without the well-developed infrastructure of OLS
you must check these things for yourself.

NS ”




Approach
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L Use linear quantile regression to determine model coefficients for capital acquisitions cost
and schedule data (TEC/GSF, OPC % of TPC, and CD-1 to CD-4 duration) and D&D cost
data.

QdCompare QR model parameters to CSPER-C and DICEROLLER model parameters.

L Use statistical technique known as bootstrapping to generate confidence intervals around

model parameters. Bootstrapping can also help mitigate the impact of “influential points”
in small datasets.

dCompute 70% prediction intervals using DICEROLLER and QR D&D model and
compared results.

NS




Results — CSPER-C cost and schedule model
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Lead coefficient

HC coefficient
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Results — CSPER-C

Lead coefficient
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Comparing D&D prediction intervals

LABORATE. DELIVER.

« Consider a building with the following characteristics:
« 10,000 GSF
* Nuclear and asbestos contamination
* Hardened process facility

- DICEROLLER (OLS) Quantile Regression

Max (85t %ile) 7.242 7.258

log(TPC)

Most likely 6.889 (mean) 6.744 (median)
log(TPC)

Min (15t %ile) 6.537 6.488

log(TPC)
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