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• D&D Integrated CER for One-for-one and LifecycLe Estimate Ranges
(DICEROLLER)

• NNSA Office of Planning, Analysis and Evaluation (PA&E) requires the ability to estimate costs 
associated with Deactivation and Demolition (D&D) of NNSA facilities.

• This capability will support:
• Lifecycle cost estimates for capital acquisition projects, and
• “One-for-one” replacement cost estimates, meaning that new construction at DOE sites “is 

offset by the sale, declaration of excess, or demolition of building area of an equivalent or 
greater size.”

DICEROLLER – A case study
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Background: PA&E leads Analyses of Alternatives and develops early-stage planning estimates like 
those in the SSMP. 

Model requirements:
• High-level for early-stage estimates
• Easy to use

• Small number of parameters, which should be easy to identify at early stages
• Covers a wide range of project scope, size, costs, etc.
• Based on historic data
• Capable of producing AACE Class 5 quality estimates

Model objectives
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• Total of 41 data points used to construct cost estimating relationship (CER)
• NNSA Office of Safety, Infrastructure & Operations (NA-50)
• DOE Office of Environmental Management (DOE EM)
• G2 Planning Database
• Sandia National Laboratory

• Range of facility size:
• 240 𝑓𝑓𝑓𝑓2 – 319,742 𝑓𝑓𝑓𝑓2

• Range of total project costs:
• $3,764 - $343,000,000

• Range of hazard categories:
• Nuclear Category 2, 3; Radiological; Chemical; Biological; No Hazard

• Range of contamination types:
• Radiological, Lead/asbestos, No contamination

• Range of building types:
• Permanent technical; Permanent non-technical; Temporary

• Data adjusted to account for escalation, location

Preparing the data
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• Data cross-referenced with DOE’s facility management database to identify cost drivers:
• Facility gross square footage (GSF)
• Contamination type (Contam)

• Radiological, Lead/asbestos, No contamination
• Building construction type (Type)

• Permanent technical; Permanent non-technical; Temporary

• Tested several model forms to generate a cost estimating relationship to predict future D&D project 
costs.

• The dataset and cost estimating relationship were made into a user-friendly tool for use by PA&E

Creating the CER
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What is a categorical variable?

• A categorical variable is used in a model to describe 
characteristics that can’t be directly quantified.

• The DICEROLLER CER uses two categorical variables: contamination 
and building type.

• We’ll cover two ways of incorporating categorical variables: 
Label Encoding and One-Hot Encoding.
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Label encoding

• Uses integers to represent lists of categories.
• For example, contamination type:

• 1 – Radiological
• 2 – Lead/asbestos
• 3 – No contamination

• By its nature, label encoding imposes a hierarchy or an ordering 
upon your data.

• Using label encoding, the model form of the CER is:
• log 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛼𝛼 + 𝛽𝛽 ⋅ log 𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛾𝛾 ⋅ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 + 𝛿𝛿 ⋅ 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∈ 1, 2, 3 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∈ {1, 2, 3}.
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Contamination Building Type Contam Bldg Contam Bldg One-hot encoded

Radiological Technical 1 1 1 1 1 0 0 0 0 0 0 0

Lead/asbestos Technical 2 1 2 1 0 1 0 0 0 0 0 0

None Technical 3 1 3 1 0 0 1 0 0 0 0 0

Radiological Non-technical 1 2 1 1.5 0 0 0 1 0 0 0 0

Lead/asbestos Non-technical 2 2 2 1.5 0 0 0 0 1 0 0 0

None Non-technical 3 2 3 1.5 0 0 0 0 0 1 0 0

Radiological Temporary 1 3 1 3 0 0 0 0 0 0 1 0

Lead/asbestos Temporary 2 3 2 3 0 0 0 0 0 0 0 1

None Temporary 3 3 3 3 0 0 0 0 0 0 0 0

2 parameters

8



The trouble with label encoding

• This model form implicitly assumes that the cost difference (in 
log space) between contamination bins #1 and #2 is the same 
as the difference between bins #2 and #3.

• You can see this if you separate out the relevant part of the regression 
equation:

• log 𝑇𝑇𝑇𝑇𝑇𝑇 = ⋯+ 𝛾𝛾 ⋅ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪+ ⋯
• Does cost really increase linearly with contamination bin number?
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Label encoding with DICEROLLER
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When can we use label encoding?

• When the ordering/hierarchy makes sense.
• You’ll probably do this automatically when you look for cost drivers in 

your dataset.
• When the spacing between labels makes sense.

• In DICEROLLER, we changed the value of the second contamination 
category from 2 to ~2.14 so that it better lined up with the line 
connecting categories 1 and 3.

• Essentially, we’ve added an extra step to the regression and additional 
parameters to the model.
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Contamination Building Type Contam Bldg Contam Bldg One-hot encoded

Radiological Technical 1 1 1 1 1 0 0 0 0 0 0 0

Lead/asbestos Technical 2 1 2.14 1 0 1 0 0 0 0 0 0

None Technical 3 1 3 1 0 0 1 0 0 0 0 0

Radiological Non-technical 1 2 1 1.98 0 0 0 1 0 0 0 0

Lead/asbestos Non-technical 2 2 2.14 1.98 0 0 0 0 1 0 0 0

None Non-technical 3 2 3 1.98 0 0 0 0 0 1 0 0

Radiological Temporary 1 3 1 3 0 0 0 0 0 0 1 0

Lead/asbestos Temporary 2 3 2.14 3 0 0 0 0 0 0 0 1

None Temporary 3 3 3 3 0 0 0 0 0 0 0 0

2 parameters 4 parameters
(2 coefficients + 

the middle 
category labels)
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Improved label encoding

13



One-hot encoding

• One-hot encoding is a term used by the machine learning 
community.

• Also called dummy encoding.*
• Assign data a value of 1 if it belongs to a particular group within 

a category, and 0 if not.
• If you have k groups within a category, then use k-1 dummy 

variables.
• For example, contamination in DICEROLLER:

• log 𝑇𝑇𝑇𝑇𝑇𝑇 = ⋯+ 𝛿𝛿1 ⋅ 𝐶𝐶1 + 𝛿𝛿2 ⋅ 𝐶𝐶2
EC1 EC2

Radiological contamination 1 0

Lead or asbestos contamination 0 1

No contamination 0 0 14



Multiple categorical variables

• Interactions between multiple categorical variables can – and should – be 
accounted for in regression models.

• Not clear how to do this in Label Encoding.
• Straightforward with One-Hot Encoding, but rapidly drives up the number of parameters.

• The most general model should include all possible interactions between 
variables.

• You can then pare this model back by removing terms which are not statistically 
significant to the regression.

• For DICEROLLER, the most general model form would be 18 terms (3 contamination 
categories times 3 building types, times 2 to account for interactions with/without GSF):

log 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛽𝛽1 + 𝛽𝛽2𝐷𝐷11 + 𝛽𝛽3𝐷𝐷12 + 𝛽𝛽4𝐷𝐷13 + 𝛽𝛽5𝐷𝐷21 + 𝛽𝛽6𝐷𝐷22 + 𝛽𝛽7𝐷𝐷23 +𝛽𝛽8 𝐷𝐷31 + 𝛽𝛽9𝐷𝐷32 + 𝛽𝛽10𝐷𝐷33
+log(𝐺𝐺𝐺𝐺𝐺𝐺) ∗(𝛽𝛽11 + 𝛽𝛽12𝐷𝐷11 + 𝛽𝛽13𝐷𝐷12 + 𝛽𝛽14𝐷𝐷13 + 𝛽𝛽15𝐷𝐷21 + 𝛽𝛽16𝐷𝐷22 + 𝛽𝛽17𝐷𝐷23 +𝛽𝛽18 𝐷𝐷31 + 𝛽𝛽19𝐷𝐷32 + 𝛽𝛽20𝐷𝐷33)
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Contamination Building Type Contam Bldg Contam Bldg Group

Radiological Technical 1 1 1 1 1 0 0 0 0 0 0 0

Lead/asbestos Technical 2 1 2.14 1 0 1 0 0 0 0 0 0

None Technical 3 1 3 1 0 0 1 0 0 0 0 0

Radiological Non-technical 1 2 1 1.98 0 0 0 1 0 0 0 0

Lead/asbestos Non-technical 2 2 2.14 1.98 0 0 0 0 1 0 0 0

None Non-technical 3 2 3 1.98 0 0 0 0 0 1 0 0

Radiological Temporary 1 3 1 3 0 0 0 0 0 0 1 0

Lead/asbestos Temporary 2 3 2.14 3 0 0 0 0 0 0 0 1

None Temporary 3 3 3 3 0 0 0 0 0 0 0 0

2 parameters 4 parameters
(2 coefficients + 

the middle 
category labels)

8 parameters
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The trouble with one-hot encoding

• Lots of parameters
• The number of parameters increases quickly with the number of 

categorical variables and the number of categories within each.
• Fewer remaining degrees of freedom
• Risk of overfitting

• Unreliable if you have few data points per group within a 
category.

• May lead to false claims of statistical significance.
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Two DICEROLLER models

• Option 1: Modified label encoding
• 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝛼𝛼 + 𝛽𝛽 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺𝐺𝐺𝐺𝐺) + 𝛾𝛾 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛿𝛿 ⋅ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
• where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∈ 1, 2.14, 3 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∈ {1, 1.98, 3}
• Predicts log(TPC) with mean squared error of 0.28 for the training data 

set, 0.39 for the validation data set, and 0.31 for the test dataset.
• Option 2: One-hot encoding

• 𝑙𝑙𝑙𝑙𝑔𝑔 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛼𝛼 + 𝛽𝛽 ⋅ 𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺𝐺𝐺𝐺𝐺 𝛾𝛾 + 𝛿𝛿 ⋅ 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

• where 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

, etc.

• Predicts TPC with mean squared error of 0.32 for the training data set, 
0.42 for the validation data set, and 0.33 for the test dataset.
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Model validation
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Model-to-model comparison
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• “Rem edia l Action  Cost Enginee ring and  Requirem ents 
(RACER) is a cost estimating system that was developed under 
the direction of the U.S. Air Force for estimating environmental 
investigation and cleanup costs for the annual budgeting and 
appropriations process.” [1]

• RACER is more detailed than DICEROLLER, which was 
designed for early-stage estimates.

• RACER was used to derive a cost estimate when the NNSA 
Albuquerque was planned for demolition.

[1] Source: Remedial Action Cost Engineering Requirements (RACER™) - https://frtr.gov/ec2/ecracersystem.htm

https://frtr.gov/ec2/ecracersystem.htm


Model-to-model comparison
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• We developed a model that met our requirements:
• High-level for early-stage estimates
• Easy to use
• Small number of parameters, which should be easy to identify at early 

stages
• Covers a wide range of project scope, size, costs, etc.
• Based on historic data
• Capable of producing AACE Class 5 quality estimates

Conclusions
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Recommendations

• Consider having a separate regression equation for each 
category, instead of a “one-size-fits-all” equation.

• Label encoding can be okay if you’re sure there is a hierarchy in 
your data and if you space it out properly.

• Try to have at least three data points per category.
• A category containing a single data point means you have a parameter 

[over-] tuned to that individual point.
• Compare the variance between different groups.
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To learn more:

• Using Dummy Variables in CER Development Dr Shu-Ping Hu 
and Alfred Smith, CCEA

• https://www.iceaaonline.com/ready/wp-
content/uploads/2021/10/JCAPv10i1Oct2021.pdf

• Categorical encoding using Label-Encoding and One-Hot-
Encoder Dinesh Yadav, Towards Data Science

• https://towardsdatascience.com/categorical-encoding-using-label-
encoding-and-one-hot-encoder-911ef77fb5bd

• Also worth checking out the Wikipedia articles on Dummy 
variables (statistics) and Categorical variables
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https://www.iceaaonline.com/ready/wp-content/uploads/2021/10/JCAPv10i1Oct2021.pdf
https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd
https://en.wikipedia.org/wiki/Dummy_variable_(statistics)
https://en.wikipedia.org/wiki/Categorical_variable#Categorical_variables_and_regression


Backup
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All data
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Training data only
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Training + validation data
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