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Project Objectives

To create a holistic open-source modeling platform for the optimal design and retrofit of the

GED energy systems and microgrids via integrating thermal and electrical systems along
with their integrated control.
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We aim to
« achieve a 25% total system energy efficiency improvement compared to current state-
of-the-art district energy and microgrid systems

* increase the number of continuous operational hours by at least 25% to increase the
resilience of the district energy system.




Project Scope
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Budget Period 1 (2020.10~2022.9): Develop the Alpha version of the Optimal Co-Design Platform.
Budget Period 2 (2022.10~2023.9): Develop a Beta version of the Optimal Co-Design Platform.

Budget Period 3 (2023.10~2024.9): Demonstrate the performance targets at two distinct sites, publicly release the final
version of the modelling platform, finalize the commercialization plan, and identify partners for commercialization.




URBANopt Advanced Analytics Platform
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Website: https://www.nrel.gov/buildings/urbanopt.html



https://www.nrel.gov/buildings/urbanopt.html

Equation-Based Modeling with Modelica

Modelica: Equation-based, object-oriented, multi-domain
modeling language for dynamic systems

- Developed since 1996

- three free standard libraries with 2100+ models

- 100+ free & commercial libraries
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Modelica Models for Microgrid

Components Implemented in OpenIPSL Library System Examples: Microgrid
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Case Study: Validation of Microgrid Model
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F. Fachini, L. Vanfretti, M. de Castro, T. Bogodorova and G. Laere, "Modeling and Validation of Renewable Energy Sources in the OpenlPSL Modelica Library," IECON
2021 — 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6.
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District Cooling Systems

Cooling District
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District Heating Systems

System Schematic Central Plant e Boiler
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Integration of Electric-Thermofluid System
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An implementation to couple electric and thermofluid systems, which constructs the
model in Modelica hierarchically.
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Case Study

This case study shows a motor coupled chiller used to track the chilled water supply temperature
set point (8 °C), when the chilled water return temperature changes.
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Optimization

We will create a multi pronged approach to improving efficiency throughout the electrical network

(a) Load reduction where possible

(b) Peak shaving to reduce stress on generation

(Thermal) Generator Battery energy
Demand setpoint storage
response  optimization

Reduce

consumption X

(Fig. a)

Peak shaving X X
and shaping

Reduce line X X
losses
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Optimization: Reinforcement Learning
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A. Pigott, K. Baker, S. Dorado-Rojas, L. Vanfretti. “Dymola-Enabled Reinforcement Learning for Real-time Generator Set-point Optimization.” IEEE ISGT, 2022.
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URBANopt SDK to Modelica

URBANopt Software Development Kit (SDK) integrates multiple analysis tools including OpenStudio,
OpenDSS, REopt, and the GeoJSON to Modelica Translator.

The GeoJSON to Modelica Translator currently handles two levels of model construction.

Level 1: The focus of this project. Enables string substitution into Modelica files to create simulatable

models.

Level 3: Dynamically generates
couplings. Currently only works for 4G
and 5G systems. Loads are
dynamically created and connected
and include Spawn, TEASER, and
time series data. Time series data can
be sourced from URBANopt SDK’s
OpenStudio simulations.
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URBANOopt to Modelica

Based on the inputs from URBANopt, GeoJSON to Modelica Translator (GMT) replaces some default design and sizing
parameters in existing Modelica system template models.

Pre-defined Modelica Buildi System model with Buildi
system template model uldaing replaced parameter ulding

(*.mot) + ETS (*.mo) + ETS

Default Manually connect Replaced
components in Dymola

Plant - Plant Network
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Input from

Parameters for
Network
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and ETS
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Demonstration via Case Studies

Using the University of Colorado Boulder and University of Texas at Austin Campuses to
demonstrate that the proposed platform can achieve

- 25% total system energy efficiency improvement from source energy to delivered energy
- 25% increase in the number of continuous operational hours in a simulation environment
Timeline

 Phase 1: Data collection

 Phase 2: Develop and calibrate models
 Phase 3: Demonstration




Case Study: University of Colorado Boulder
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Case Study: University of Texas Austin
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Outreach and Engagements

Formed a Technical Advisory Group with major stakeholders
« Interviewed NREL software developers regarding commercialization success factors.

« Open Source Release
 URBANOopt Release GMT 0.2.3 Release https://github.com/urbanopt/geojson-modelica-translator
« Modelica Buildings Library targeted release of V9.0 in summer 2022
https://simulationresearch.lbl.gov/modelica/index.html

« Modelica OpenIPSL library release
https://qgithub.com/ALSETLab/MicroGrid MultiDomain/tree/MicroGrid-MultiDomain

« Publications: Two (2) journal papers and three (3) conference papers

« Project Website: https://sites.psu.edu/sbslab/research/city/grid-interactive-efficient-district-energy-
system/
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Plan for the Next Step

Budget Period 1 (Now to 9/22): Complete the release of Alpha Version.
Budget Period 2 (2022.10~2023.9): Develop a Beta version of the Optimal Co-Design Platform.

Budget Period 3 (2023.10~2024.9): Demonstrate the performance targets at two distinct sites,
publicly release the final version of the modelling platform, finalize the commercialization plan, and
identify partners for commercialization.




Thank you!

Kyri Baker, Pl, CU Boulder, Kyri.Baker@colorado.edu
Wangda Zuo, Co-Pl, Penn State, wangda.zuo@psu.edu

Luigi Vanfretti, Co-Pl, RPI, luigi.vanfretti@gmail.com

Atila Novoselac, Co-Pl, UT Austin, atila@mail.utexas.edu
Michael Wetter, Co-Pl, LBNL, mwetter@Ibl.gov

Kyle Benne, Co-PIl, NREL, Kyle.Benne@nrel.gov

Raymond Kaiser, Co-Pl, Amzur, raymond.kaiser@amzur.com
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