

Advanced District Energy Controls for Improved Efficiency and Resilience

2022 District Energy and CHP Symposium San Antonio, TX Jun 9, 2022

Energy Efficiency & Renewable Energy

Presenters

Julian Lamb, Paragon Robotics

Dr. Yong Tao, CSU

Project objectives

- Model, install, and verify a new, community-based DE demand and generation control system which reduces undelivered energy
- Install and verify the performance of either a centralized CHP/storage addition or remote CHP generation which can achieve < 10 year simple payback
- Demonstrate one or more feasible pricing/contract methodologies which could enable the control algorithms developed for objectives 1 and 2

CLEVELAND STATE

 Demonstrate a new metering and control framework which can securely provide 2-way control, metering/billing analysis, and other communication between the utility and customer systems in order to enable objectives 1-3

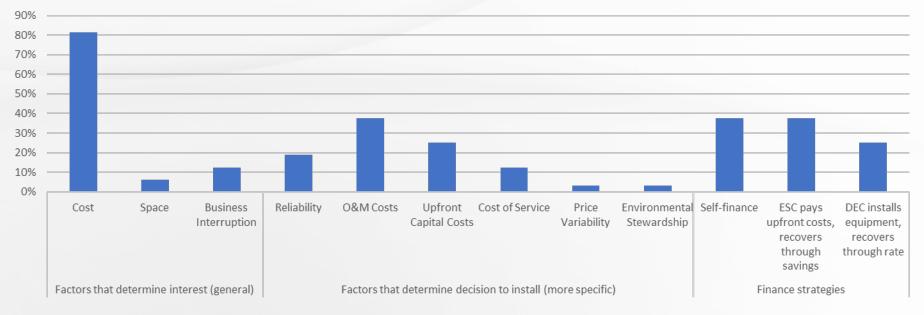
Survey on energy efficiency

Survey Description

- Survey sent to approximately 40 end users on Cleveland Thermal's District Energy system.
 - 19 responses from 17 separate companies
 - Conducted 9/21 through 2/22 (before upturn in natural gas prices)
- Consisted of 36 questions about:
 - Understanding of energy efficiency for district energy systems
 - Prior efficiency work done
 - Interest in additional work
 - Best ways to pay for efficiency work
 - Price points for efficiency work
 - Interest in load management
 - Interest in carbon reduction strategies
 - Interest in microgrid adoption

Customer Description

- All End Users are on system tariff with rates approved by the Public Utility Commission of Ohio
- Nature of end user business
 - Commercial, government, university, hospitality
- Size of facility served:
 - Smallest: 10,000 sq ft
 - Largest: 5 million sq ft
- Nature of use of load:
 - 15 building climate
 - 1 refrigeration
 - 1 equipment cooling
- Title or position of survey respondents
 - CEOs, CFOs, Utility Managers

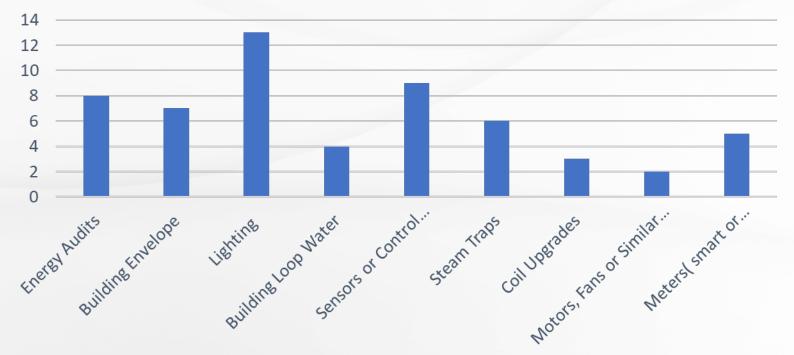


3

Ranking factors and strategies

- Respondents ranked <u>factors determining interest and decision</u> to install efficiency improvements.
- Respondents ranked <u>strategies for financing</u> the installation of efficiency measures.

% of Respondents Ranking Factor or Strategy as Most Important

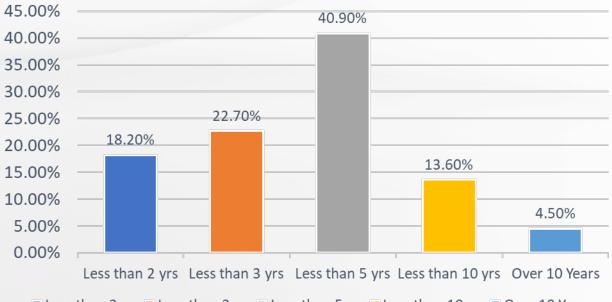


Interest in specific behind the meter improvements

Companies expressing Interest In specific types of Energy Efficiency Improvements

Respondents (19) identified improvements that interested them from a list of potential strategies

BRITE



Expected payback from energy efficiency investment

Over Half of Respondents Preferred Payback Periods of Less than Five Years for Energy Efficiency Investments 18% of Respondents would consider paybacks of over 5 years

> What Payback Period would attract you to invest in EE measures

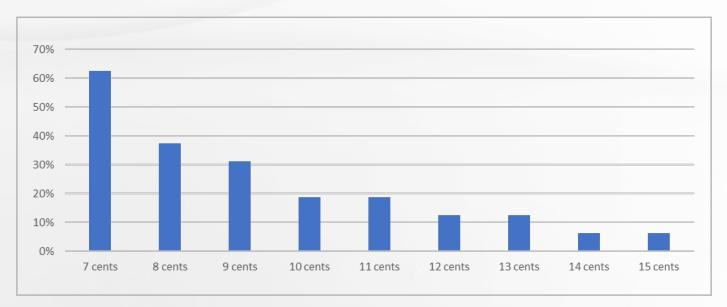
Less than 2 yrs Less than 3 yrs Less than 5 yrs Less than 10 yrs Over 10 Years

CLEVELAND STATE

Demand side management

Respondents were told about <u>Demand Side Management</u> and <u>Demand Response</u> and how programs like these can reduce costs:

- 44% were *not* familiar with Demand Side Management programs (including for electricity).
- 94% would likely participate in Demand Side Management if it could save them money.
- 40% have the ability to reduce heating or cooling load during peak demand events.
- Respondents were asked <u>how much heating and cooling load they could reasonably reduce</u> during a demand response event:



Microgrid opportunities

Respondents were told about how <u>microgrids within a district energy footprint</u> can deliver additional value for electrical and thermal loads.

- 62% were familiar with the design and operation of microgrids.
- 90% thought that microgrids could be useful to their company.
- Respondents were asked <u>up to how much</u> they would be willing to pay "all in" (in cents-perkWh) for electricity within a microgrid that could deliver 99.999% uptime:

CLEVELAND STATE

UNIVERSITY

System efficiency analysis

System Limit

- Energy Production:
 - Sent-out steam produced by natural gas fired boiler
 - Electricity generated by steam
 - Cooling water produced by electric chillers
 - Cooling water produced by steam operated chiller
- Energy consumed:
 - Utility electricity
 - Steam turbine generated electricity

System Efficiency Definition

$$\eta_{p} = \frac{Q_{st,s} + Q_{st,CW} + Q_{CW} + E_{e,t}}{E_{NG} + E_{e}}$$

CLEVELAND STATE

Energy system specification

	Category Steam		Chilled Water			Turbine			
	Capacity	350,000 lbs/hr (106.67 MW)		12,000 Tons (42 MW)			1 MW		
Energy Category		Energy Production		Energy Source		Generation System Efficiency		Post- Generation Energy Losses	Total DE System Efficiency
		Annual MWH	%	Annual MWH	%			Annual MWH	
Steam Sei	ndout	246.6	77%						
Electric Cl	hiller Ton-hrs*	59.7	19%						
Chiller Ste	eam Use	9.2	3%						
Turbines	Output	4.0	1%						
Electricity				12.4	3%				
Natural G	as			358.3	97%				
Distribution Losses (12% to of steam sendout. Chill-w assumed)		on-hrs incl water loss i	ude the cooli is neglected.	ing energy p	produced by	electr	cicity-drive	en re <mark>frize</mark> ratio	n
Customer system lo								358.33	

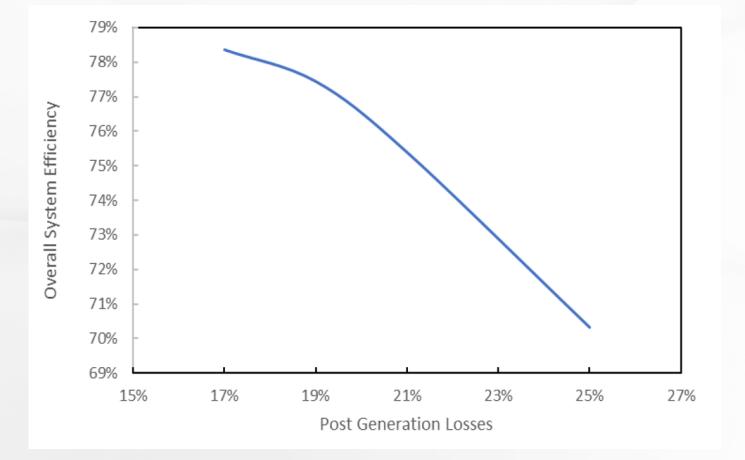
Energy Energy Efficiency & Renewable Energy

Energy Losses

- Distribution network Piping system
- End users Buildings and businesses

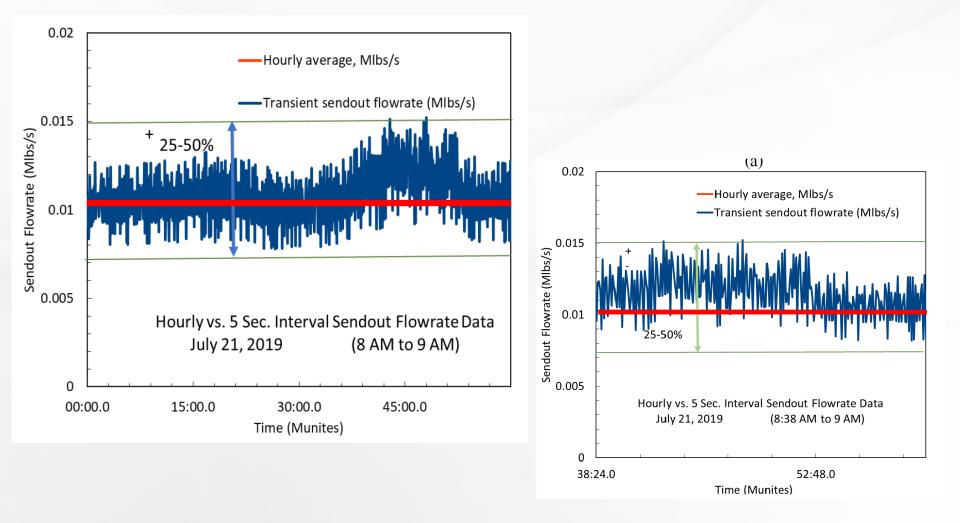
$$\eta_{sys} = \frac{(1 - f_d - f_b)(Q_{st,so} + Q_{steam}, CW) + Q_{CW} + E_{e,t}}{E_{NG} + E_e}$$
where,
$$m_{st} h_{st} - m_{so} h_{so} - \Sigma [m (\Delta p/\rho + \Delta V^2/2)]$$

$$f_d = \frac{m_{st} h_{st} - m_{b}}{m_{st} h_{st}}$$


Assumption: distribution loss for cooling water is neglected.

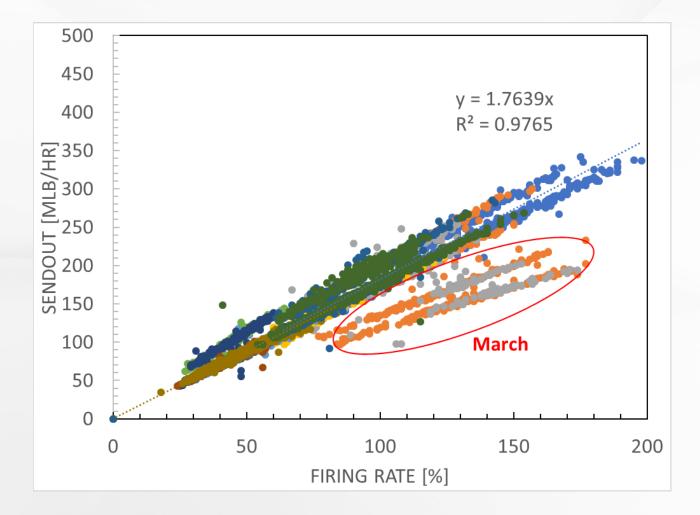
СОГ

Overall DE system efficiency



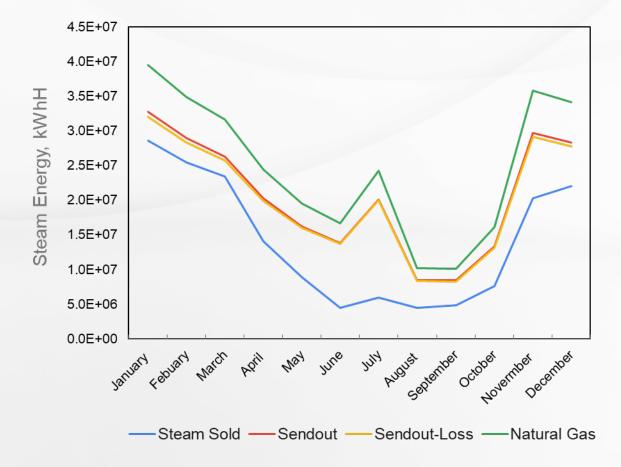
CLEVELAND STATE UNIVERSITY

Boiler sendout


BRITE

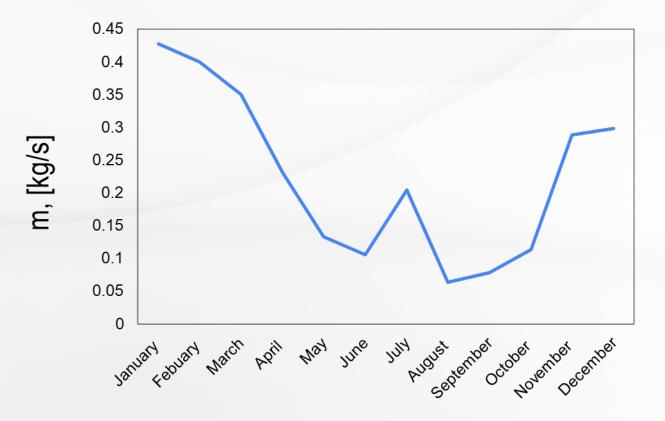
CLEVELAND STATE UNIVERSITY

Sendout rate vs flowrate



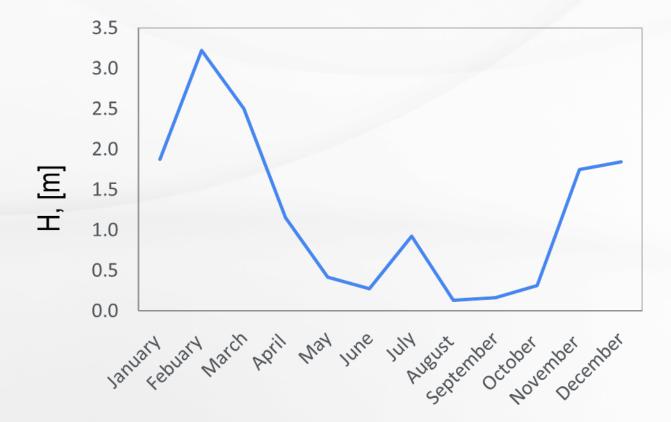
CLEVELAND STATE UNIVERSITY

Steam energy breakdown



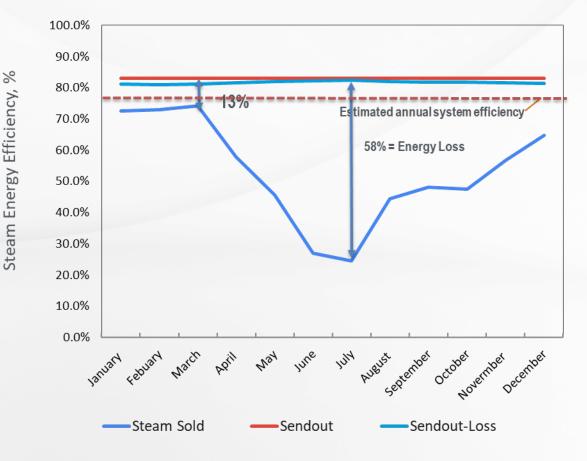
CLEVELAND STATE UNIVERSITY

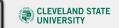
Monthly averaged sendout



Pipeline mechanical losses*

*From the Sendout Point to One End-User Building


CLEVELAND STATE UNIVERSITY



Steam energy efficiency

- The above discussions provide preliminary analysis of energy efficiency improvement potential at a system-level, district energy system.
- Between 13% to 58% of energy loss were found. In addition to the heat loss through piping, loss due to flow discharge in traps and leaks could be the causes.
- Modeling work, based on the thermal energy balance, and field data acquisition are in progress to develop a sensor and data acquisition system that can provide a cost-effective feedback for an intelligent control system.
- Future work includes building HVAC and total energy load analysis, integrated energy production, distribution and enduser system modeling.

Distribution and load instrumentation

- LTE-M cellular for all instrumentation
- Typically connecting to either basic condensate meters (with either built-in pulse output, or using pulse converter), or to full pressure+flowrate meters already installed
- The goal is to ensure value of any additional equipment added to the existing system

Primary focus for improvements Primary focus for improvements

- Generation-side is typically well instrumented, as boiler and chilled water controls require lots of sensors
- Steam trap and other underground (manhole) sensors on the distribution system are prohibitively expense to maintain
- Focus is on real-time flow rate (typically condensate flow rate) and optional pressure sensing at some customer sites
- Integrate real-time data from entire network, and use AI analysis against the system model to look for discrepancies, and make suggestions to operators for them
- Demonstrating additional renewable, CHP, or microgrid equipment in budget period 3

CLEVELAND STATE

Contact us

Julian Lamb, President julian.lamb@paragonrobotics.com mobile: 330.977.7981

Dr. Yong Tao Betty L. Gordon Endowed Chair and **Distinguished Professor** Chair, Department of ME y.tao19@csuohio.edu

Andrew R. Thomas/Jack Kunath **Energy Policy Center** Levin College of Urban Affairs **Cleveland State University** a.r.thomas99@csuohio.edu

CKMAN - MILLER HAL

