An Innovative Software Tool for Non-technical Users to Identify Business Opportunities for District Energy and Community Microgrids

Gavin Dillingham, Ph.D. and Carlos Gamarra, P.E., PhD

HARCresearch.org

ABOUT THE PROJECT

ABOUT THE PROJECT

- Software tool development project oriented to feasibility analyses (FAs) for district energy and community microgrids
- Funder: DOE's Advanced Manufacturing Office
- Duration: 09/2020 -11/2023
- Lead by HARC, partnering with UH and Fugro

PROBLEM DESCRIPTION

QUALITY AND QUANTITY ISSUES

PROBLEM RATIONALE: QUANTITY ISSUE

- District energy and community microgrids have the potential to provide resilience and decarbonize.
 But do they have the potential to fulfill the financial goals of their investors?
- Investing is a complex decision due to the high initial investment and risks associated with the long project lifecycle.
- The number of FAs developed is limited by the low level of independence investors have.
 - TECHNICAL BARRIERS : lack of expertise on how to configure the systems and how that configuration would affect the economics.
 - ECONOMIC BARRIERS: low interest in spending money (>\$100K) on studying solutions that might be feasible, or not.
- More feasibility analyses would lead to an increasing adoption of community microgrids and district energy systems.

PROBLEM RATIONALE: QUALITY ISSUE

- Singularities of FA for community microgrids and district energy systems
 - Investors are rarely involved at this stage due to their lack of technical expertise, but are always interviewed about their goals
 - HIGH NUMBER OF POTENTIAL SOLUTIONS: Each microgrid project has dozens of potential combinations of technologies, sizes and manufacturers. Power or thermal distribution system planning adds complexity.

 $MaxPL = \sum_{i=1}^{N} (N-i) = \frac{N^2 - N}{2} = \frac{6^2 - 6}{2} = 15$ Search Space Size = $s^{MaxPL} = 3^{15} = 14,384,907$

- **TIME CONSUMING:** number of potential solutions cut down to expedite the analysis.
- LOW-COST ANALYSIS: sometimes provided for free to open the conversations with the client and to gain his/her trust.
- Decision-making processed in engineering are unconsciously biased.¹
- This dynamic leads to a **limited exploration of the potential solutions**.

[1] https://appel.nasa.gov/2018/04/11/mitigating-cognitive-bias-in-engineering-decision-making/

PROBLEM DEFINITION

- There is a need for more advanced feasibility analysis tools and methods :
 - Able to **expedite the study** of business opportunities in this market.
 - Able to **explore thousands of configurations** and scenarios in an agile and timely manner.
 - Able to provide more detailed information on the economics, allowing investors to develop a personal point of view prior to involving more technical entities in the process.
 - Able to quantify the potential impact of uncertainties on the long-term profitability of the project.
 - Accessible both to engineers and users with limited or no engineering background.
 - Leveraging artificial intelligence to minimize biases and risks of overlooking solutions that might improve the economics of the project.

IGRN

TOOL DESCRIPTION

GOALS OF THE TOOL

DEVELOPMENT OF AN AGILE FEASIBILITY ANALYSIS TOOL FOR NON-TECHNICAL USERS, PROVIDING ADVANCED FEATURES FOR TECHNICAL USERS TOO

To advance the state of the art of feasibility analysis methods for community microgrids and district energy by:

- 1. Eliminating the cost barriers at the feasibility level, increasing the interesting of investors on these systems.
- 2. Reducing the engineering skills required by the users: An investor with clear economic goals should be able to check if a district energy is a profitable solution without involving third companies.
- 3. Integrating an innovative method adapted to this planning problem into a cloud-based tool.
- **4.** Benchmarking the solutions found by the AI with those defined by a technical user, identifying the obstacles to fulfill the goals of the project.

FEATURES OF THE TOOL

User-friendly tool to expedite the feasibility analyses of District Energy Systems (DES) and multi-building microgrids.

- Digital twin with GIS capabilities → intuitive 3D environment for a detailed navigation and faster data input.
- Non-technical users can easily complete a feasibility analysis.
- Detailed description of the technical solution available for technical users.
- More accurate performance assessments based on future climate patterns downscaled from Global Climate Models.
- Defined probability for different economic results.
- Benchmark the optimal solutions proposed by the AI in the tool and by designers/engineers.
- Online tool available at no cost.

TOOL ARCHITECTURE

Integration of three Major Components: Graphical User Interface, Middleware and Computation Engine

UGRO

PROGRESS

PROGRESS

Seven quarters into the project, the first part and version of the tool is being completed.

> TASK 1. Defining Users' Experience	
> TASK 2. Enabling the capabilities of the Tool	E XE
> TASK 3. Iteration1: Data Input and Collection Through GIS	E Ka
> TASK 4. Iteration 2: Development of Computational Engine for DES Following the Power De	emand
> TASK 5. Iteration 3: Results Validation and Presentation Through GIS Tool 1 No	ov 22
> TASK 6. Development of the Optimization and Risk Analysis components of the CE for DE	Feb 23
> TASK 7. Iteration 5: Results Validation and Presentation Through GIS Tool 2	May 23
> TASK 8. Guaranteeing user's experience: final tool validation	Aug 23
> TASK 9. User's Support materials Development. Public Release and Promotion of the Tool	Nov 23

NEXT STEPS

In the Next Six Months...

- Finalization of reporting capabilities and incorporating them into the GUI and Computations Engine
- Validation of the first version of the Computations Engine
- Testing of middleware
- Making the microgrid part of the tool available and intensive testing

Thank You!

Gavin Dillingham, Ph.D.

gdillingham@harcresearch.org

Carlos Gamarra, Ph.D., PE.

cgamarra@harcresearch.org

INITIAL SURVEY RESULTS

ONLINE POLL AND SURVEY RESULTS COMPARISON

• FAs are recognized as a relevant stage of the development a district energy or community microgrid.

• 63% of the respondents, or their clients, would be open to pay for a feasibility analysis of a district energy or a community microgrid

• According to the respondents, over 56% of the feasibility analyses study up to four potential solutions

• According to the respondents, up to four solutions are presented to the client as a result of a feasibility analysis.

According to the respondents, the cost factor is relevant to adopt the tool. •

> community microgrids requiring no technical knowledge? 45% 41% 40% 35% 30% 26% 25% 19% 20% 15% 15% 10% 5% 0% Yes, but just if it is available at no Yes, but just if it really doesn't No, we would pay a consulting or Yes, but we would ask someone require engineering knowledge an engineering company anyway with engineering knowledge to cost

Are you interested in a no-cost feasibility analysis tool for district energy and

run it for us anyway.

• Respondents have shown interest in studying the economics and testing their own concepts

What would be your main reason for using this tool?

• 56% of the respondents are interested on testing it while 44% are interested in using a tool like this.

How much time would you spend on this tool?

UGRO