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Energy efficiency / temperature level

Motivation
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Project Objectives

Develop analytical models for
district energy systems

Extend existing tools to
enable easier modeling of
district energy systems

Integrate additional waste
heat sources into analytical
framework

Work with private third-party
company to integrate analysis

4=, \_ LARGE OFFICE

GEOTHERMAL
BOREHOLE FIELD

Treated APARTMENT

Effluent BUILDING
District T S
Heat Exchanger W / o
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‘ Sob\ -
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Modelica Buildings Library Development



Challenges of Low-Temperature Networks (LTN)

* Local boosting of temperature at buildings for heating and cooling
— More complex Energy Transfer Station (ETS) designs

 Low-temperature lifts increase magnitude and sensitivity of mass flow to
load changes
— Greater emphasis on pump energy and control, pipe designs

e Bidirectional mass and/or energy flow to enable network-wide heat
recovery - Tighter hydronic coupling between network components

Summary

* Control challenges for stable and efficient operation

* Load-based modeling alone is not enough for aiding practical design and
operation

* Need dynamic modeling including explicit pressure-flow and control



Modelica is an object-oriented, equation based Modeling Temperature Dynamics
language with an open specification to model i Mathematical
. representation
heterogeneous physical systems
dr  Temp—T
Industry usage in automotive, energy, aerospace ‘@ " R T Quvac
. fo . . Modelica
Open specification allows commercial and open- J representation (.mo)
source compilers nodel Wall
Parameter Real R;
o . input Real T_amb;
Separates modeling from Equation Solver input Real O
. . ) Differential equation
simulation to allow for different (Algebraic) Craer(T) = (T_amb - T) /R+Q;
. . Equation Solver end Watls
solvers as-needed, including for ~ %
nonlinear, hybrid DAEs resulting C°ml'°"er
from pressure-flow and control e 1]
mOdellng Model Solver Simulation ;




Modelica Buildings Library and Spawn

Open-source repository of 2000+ models and functions
For building and district energy systems and their controls (explicitly!)

Air-based HVAC

—L I Li:‘jr:‘}' iJM
E.l

Natural ventilation,

multizone air exchange,
contaminant transport

District heating
and cooling systems

Hydronic heating

Room heat transfer,
incl. window (TARCOG)

Control design & deployment,

including ASHRAE G36

ASHRAE

Chiller plants

W

Solar collectors

Embedded Python Room air flow

clock ran

NNRIENF - )

startTime=0

ra ]
x

as core, including district heating and
cocling systems

https://ibpsa.github.io/project1/
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Electrical systems
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H/ 59
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Building
Heater
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Maps control
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Controls

M. Wetter, W. Zuo, T.S. Nouidui, and X. Pang (2014). Modelica Buildings library. Journal of Building Performance Simulation, 7(4):253-270. https://doi.org/10.1080/19401493.2013.765506
M. Wetter, K. Benne, A. Gautier, T.S. Nouidui, A. Ramle, A. Roth, H. Tummescheit, S. Mentzer and C. Winther (2020). Lifting the Garage Door on Spawn, an Open-Source BEM-Controls Engine. Proc. of Building 8

Performance Modeling Conference and SimBuild, p. 518-525, Chicago, IL, USA, Sep 2020. https://simulationresearch.lbl.gov/wetter/download/2020-simBuild-spawn.pdf.
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An Example Case: “Bidirectiona

I”

System Control
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M. Wetter and J. Hu (2019). Quayside Energy System Analysis. LBNL-2001197. e e e 9
https://eta-publications.lbl.gov/publications/quayside-energy-systems-analysis.
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URBANopt SDK



Project Focus Areas

DISTRICT THERMAL SYSTEM MODULES

BUILDINGS CORE MODULES
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URBANopt SDK Architecture

@ URBAN SDK

Command Line Interface (CLI) & OSAF Optimization Layer

BUILDINGS CORE MODULES GRID-INTERACTIVITY MODULES DISTRICT ENERGY SYSTEM

MODULES
GEBs DERs Dist. Grid
@ _Penstudio GMT/DES CLI
Qﬂ b DiTTo
Commercial and HPXML <
-Residential Workflows N
m )
REopt RNM-US {4 TEASER
API API EPEWP
(& EnergyPlus OpenDSS
MODELICA & the MODELICA

Buildings Library
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GeolJSON to Modelica Translator



District System Architecture

Key Points of | A1.Commercial building load to ETS B.ETS to district network

Connectivity A2, Residential building load to ETS C. Primary equipment to district network

Building Load Models Energy Transfer Stations (ETS) Network Configuration

sf,Epawn = = ”

of énergyPlus RC Model Heat Exchanger  Circulation Pumps  Direct Connection

Time Series (Watts)

(Mass Flow Temperature) |

Time Series

IQ E! | : : H I Two Pipe One Pipe

Water-to-Water Heat Pumps

Decoupler Tanks

v

m

T

Combined Heat and Power

Primary Equipment

Circulation Pumps

i = 85 F
Heat Pumps Boilers Chillers Cooling Towers
I

Four Pipe

Note that the location of the primary equipment can be centralized or distributed, and that not all primary equipment component models or
network configurations are represented in the diagram.
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Modelica Building Load Models

 Building Load Models « Central Plant Configuration
- TEASER / RC Models Spatial location

Spawn of EnergyPlus - Heating
Time Series Loads « Boiler(s) (temperatures)
« ETS Systems * Pumps
- Indirect - Cooling
. Indirect with Heat Pump « Chiller(s) (temperatures)
. Direct (P:“””;_ps .
. Network Topology 00ling 1OWErs
« 1-Pipe
« 2-Pipe

4-Pipe
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Results and Case Studies



Case Study - NREL's Campus Expansion

Use URBANopt DES to model 4G system and MBL to
model 5G system.

o . 4G: 2,558,859 kWh
5dg3 « 5G: 647,695 kWh (25% of 4G heating power input)

eeeeeeee
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Case Study - Waste Heat Integration into LTN

* Proposed new LTN
(“Reservoir”) to
overcome hydronic
control challenge of
bidirectional

* Modeled with Modelica -,,..

Buildings Library

* Similar energy
performance with
better control stability
and opportunity for
modularity

Parallel Bidirectional

Series Unidirectional

“« -
Network (BN) (“Reservoir”) Network (RN)
o i s Reservoir Th3
=1 P3: Hospital 4 loop
Twa 9 ] TCJ | ot e SRR S § ST e TSR R s
_______________ , ! P1: Office ! i 0. Rasidantial
== p>. Residential § ~ ‘-v-t-0e- — i 1 et
WTWJ 1 Télld Tra * Tos
arm (3= 0T LT o
pipe LD e i
Twz * b Tz :'___Filf_n_".___'l—._ |1 P3: Hospital i
Fommmmmeen Tri T
== ! Plant 1 Tos
=t m'=0 P Teu T m=0
| Storage |
Plant
o E Sewage water
17 °C —E— Heat
<——— exchanger

Sewage water
heat exchanger

T. Sommer, M. Sulzer, M. Wetter, A. Sotnikov, S. Mennel and C. Stettler (2020). The reservoir network: A new
network topology for district heating and cooling. Energy, 199. https://doi.org/10.1016/j.energy.2020.117418.

Geothermal
borehole field

Normalized (reference BN) annual energy (%)

150 +
140 +
130
120

p—
—
(=}

100

50 -

(a)

LA

Changed piping to avoid control problems

Improved pipe sizing
Added dynamic pump control

I Heat pumps
[ Prosumer pumps
[ Plant pump
I Circulation pumps
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Case Study - Waste Heat

Create a model to integrate waste
heat loads into Modelica and
URBANopt DES

Data center Data center | Wastewater | Refrigeration Laundry
water cooling | air cooling
Supply temperature Ty, mean 36.5 °C 30.6 °C 20.4 °C 67.0 °C 28.4°C
Return temperature Tre; mean 22.8 °C 20.8 °C 10.0 °C* 27.9°C 10.0 °C*
Waste heat:
-0 flow mom 839 kW 199 kW 97.5 MW 193 kW 292 kW
. Qﬂow mean 723 kW 169 kW 46.0 MW 114 kW 89.8 kW
- Annual waste heat Qwx 6330 MWh/a | 1483 MWh/a | 402 GWh/a 1002 MWh/a | 786 MWh/a
Fluid/media Water Water Wastewater Refrigerant Wastewater
Open/closed loop Closed Closed Open Closed Open
Location Golden, CO, USA Denver, USA Germany
Measurement period 09/2016 - 11.2018 -
08.2017 10.2019
Number of hourly data points |
Process description 930 m? floor area, 2.5 MW of No Waste Heat
total MW of total

Waste Heat Integration

water cooled air cooled
node racks and node racks
cooling distribution unit

and fan wall

wastewater

sz(er
T,

water,in

\
T sewer

water,out

(b) Wastewater

to cooling units and
heat exchanger for
waste heat utiliztation

(a) Data center (water and air cooling)

Qeong =

Tcond,out cond,in
Condenser
Expansion >( A\

valve f/ \,\ Compressor

heat recovery
to process

ﬁ wastewater
( —_—
\ /

Tww Muw

wastewater
from process

(Tuonly stationary
measurements)

(c) Refrigeration in supermarket

(d) Laundry (industrial process)

® Q_WH_delivered mQ_DES_SRC mE_DES_HP mE_BLDG_HP mE_PUMP
0 50 100 150 200 250 300 350 400
District energy balance [MWh]
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Source: Manuel Lammle, Fraunhofer ISE, CU Boulder, NREL
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DES heat pump model
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image4.png

Data Center Efficiency Dashboard
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