# hermodynamics

2022 Combined Heat and Power/District Energy System Portfolio Meeting Southwest Research Institute, June 7-9, 2022

### ULTRA-EFFICIENT CHP WITH HIGH POWER/HEAT RATIO USING A NOVEL ARGON POWER CYCLE

Miguel Sierra Aznar, PhD. Chief Executive Officer

### DECARBONIZING ENERGY IN 2 ACTS

#### 1. Energy Supply Decarbonization

#### **Accelerated Renewables deployment**

True decarbonization requires our primary energy to come 100% from renewables, growing at a pace that matches energy demand growth and prevent new fossil.

 $CO_2$ 

#### Eliminate Firm-Capacity's carbon footprint

Implementation of **CCS** technologies is key to preventing the lock-in of  $CO_2$  emissions while maintaining the dispatchable and reliable operation of the power grid.

#### Buildout Energy Storage infrastructure

Short-, medium- and long-term energy storage in the form of batteries and **hydrogen** among other forms enables the grid in surmounting intermittency and supply-demand time disparity



#### Buildout Synthetic Fuel generation infrastructure

Generate alternatives energy vectors such as **H**<sub>2</sub> and **NH**<sub>3</sub> to power hard to electrify sectors such as heavy transport and heavy industrial.



#### 2. Energy Demand Electrification



#### Buildout of electrical transmission & distribution

*Expand high- and medium-voltage transmission connecting renewable resources with consumers and enabling efficient interstate electricity trading.* 

| - E | <u>.</u> | -7 |
|-----|----------|----|
|     | īЦ       | H7 |
|     |          |    |
|     |          |    |

#### **Electrification of residential & commercial sectors** Both sectors already fulfill ~50% of their energy demand through electricity. Through the deployment of electric appliances distributed emission will be avoided.



#### **Electrification of transport and smart metering**

Accelerate deployment of electric vehicles and associated charging infrastructure including smart grids with demand response capability.

#### Deploy synthetic fuels for hard to electrify sectors

Adapt heavy transport and industry equipment to using green alternative fuels (e.g.,  $H_2$ ,  $NH_3$ ) through new technology such as fuel cells, hydrogen furnaces, etc.



## RECIPROCATING ENGINES CONTINUE TO BE THE WORKHORSES OF THE ECONOMY



noble

thermodynamics



They're responsible for more than **70 million MtCO**<sub>2</sub> emissions annually alongside air polluting emissions.

#### BUT THE NEED TO DECARBONIZE IS URGENT

*Countries and regions across the globe are launching combinations of national carbon markets and carbon taxes alongside regulations* 



Source: World Bank. 2021; ICE 2021; CARB 2021; EU Commission

Share of global greenhouse gas emissions covered by carbon

pricing policies continue to increase rapidly

### ARGON BREATHING ENGINES



#### PUSHING THE THERMODYNAMIC BOUNDARIES OF PERFORMANCE





### BUT THERE ARE CHALLENGES... HARD ONES!

Argon rich working fluids result in **higher peak temperatures** and **pressures** than air...

which, for reciprocating engines, it means:

- 1. Potential for higher heat losses
- 2. Higher propensity to **knock**
- 3. Smaller window of reliable combustion and thus narrower **operation range.**

BUT large bore engines **approach adiabatic**, scaling with their surface to volume ratio (1/B)

compounded with the **lower heat transfer** quality of Argon

makes large RICE **less sensitive** to higher incylinder temperatures.





### PRELIMINARY KNOCK AND FEASIBLE OPERATION

Solving the challenge of Knock and operational range needs **additional tunning** and use of all degrees of freedom at our disposal.

- Synthetic working fluids enable fine control of charge composition expanding control beyond that of injection and ignition timing.
- 2. Argon affords radically **higher flame speeds** at a **wider range** of equivalence ratios.
- 3. Particularly, the APC provides at a minimum **3 additional degrees of freedom** or control knobs.

Making use of the above, allows to **avoid knock regions** as well as **expanding the misfire limits**.





### ARGON & SUPERCRITICAL CO<sub>2</sub> POWER CYCLES



### THE ARGON POWER CYCLE



### MAKING THE APC PRACTICAL

A close-loop gas recirculated thermodynamic cycle delivering ultra-efficient, flexible, and zero emissions power.

#### 1. Ultra-Efficient Power Generation

The use of a monoatomic gas as the working fluid radically increases the system conversion efficiency and **prevents** the formation of **harmful nitrogen oxides**.

#### 2. Heat and Water Recovery

The recovery of water and heat **reduces** the **water consumption** and improves overall plant efficiency.

#### 3. Carbon Capture and Purification

Control over the recycled argon stream composition enables the **lowest cost carbon capture** and real-time, and efficient **Hydrogen blending**. Simple and versatile, intrinsically clean and agnostic to fuel source, retrofittable onto existing power generation assets.





### NET BENEFITS OF RICE + APC PLANTS

#### Hydrogen Mode

- 1. Fuel Cell competitive efficiency.
- 2. No constrained by NOx.
- 3. Low sensitivity to  $H_2$  quality.
- 4. Lower cost components (pistons, etc.).
- 5. Low sensitivity to cycling compared to fuel Cells.

#### **Natural Gas Mode**

- 1. Higher efficiency than conventional air breathing cycles.
- 2. 100% CO<sub>2</sub> Capture with not air pollutants.

\*Builds on the the flexible characteristics of RICE.

| Plant Item       | Efficiency Gain |
|------------------|-----------------|
| Engine           | (+) 18%         |
| Air processing   | (-) 0%          |
| Gas processing   | (-) 0%          |
| Fuel compression | (-) 1-2%        |
| Net change       | (+) 15%         |

| Plant Item       | Efficiency Gain |
|------------------|-----------------|
| Engine           | (+) 18%         |
| Air processing   | (-) 5-7%        |
| Gas processing   | (-) 2-3%        |
| Fuel compression | (-) 1-2%        |
| Net change       | (+) 5-10%       |



#### WHAT IS THE POTENTIAL IMPACT?

Engine OEMs have done a commendable job in reaching **near theoretical performance** limits through R&D.

The APC provides a path to **improved performance** and **eliminate emissions** while leveraging decades of RICE R&D



Off-the-shelf NG RICE Efficiency

noble

thermodynamics

Thermal Efficiency Comparison

Source: MAN Diesel & Turbo

#### U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy

#### **ADVANCED MANUFACTURING OFFICE**

### ULTRA-EFFICIENT CHP WITH HIGH POWER/HEAT RATIO USING A NOVEL ARGON POWER CYCLE



#### PROJECT R&D APPROACH



### ENGINE FEASIBLE OPERATIONAL REGION

**BMEP (bar)** 

- Conventional air breathing engines navigate a complex space, balancing combustion stability, reliability and emissions to deliver highest efficiency and power density
- Argon breathing engines are not constrained by emissions and thus expand the realm of feasible operating points for which performance can be optimized.
- Nonetheless, knocking regions are greater in size pushing operation window towards the misfiring region.
- In navigating around the Knock region, the APC provides **additional routes** to optimize for performance across the load range.

#### Conventional RICE Operational Range



Air / fuel ratio



#### DEFINING APC OPERATIONAL RANGE





# MAINTAINING PERFORMANCE ACROSS THE LOAD RANGE





### $CO_2$ SEPARATION - COST AND CHARACTERISTICS

Membrane separation is ideal in close loop configurations:

- 1. They conform to a **continuous plug-flow** reactor model.
- 2. The add **no consumable** to the process.
- 3. No need capture all  $CO_2$  in a single pass.
- 4. Easy to operate, maintain and cheaper than amine system under the right operating conditions.
- 5. No complex chemistry involved





Image: MTR, Inc.

#### CO<sub>2</sub> SEPARATION – PERFORMANCE





### $CO_2$ SEPARATION – CONTROL

Membrane system properly controlled provides a great amount of benefit regarding expanding the operational range of the APC.

- Through active management of the system pressures the amount and purity of the CO2 can be tuned within a wide range.
- The membrane separation system **affords fine control** over the composition of the recirculating stream.
- Additionally, membranes act as **controllable buffers** between engine exhaust and intake conditions.
- All together, membranes not only serve to capture CO2 but as a **means to expand the feasible operational range** and optimize the performance of the argon breathing engine.





### TWO DISTINCT BOTTOMING CYCLE CASES

- As the **efficiency of the engine is increased** through the implementation of the APC, exhaust temperatures drop.
- Additionally, as the **engine bore size increases**, the heat losses to the cooling jacket decrease slightly balancing the quality of the exhaust heat.

|              | Case 1  | Case 2  |
|--------------|---------|---------|
| Scale        | <5MW    | >5MW    |
| Efficiency   | 30-40%  | 40-50%  |
| Exhaust Temp | >350 °C | <350 °C |

#### General System Diagram





#### WATER- LOW GENSET EFFICIENCY

| W <sub>CHP</sub>      | 534.18 | kW |
|-----------------------|--------|----|
| η <sub>elec-LHV</sub> | 56.62% | %  |
| Q <sub>CHP</sub>      | 318.42 | kW |
| η <sub>heat-LHV</sub> | 33.75% | %  |
| P/H                   | 1.68   | -  |
| η <sub>CHP-LHV</sub>  | 90.38% | %  |

Overall, the Rankine cycle can increase the efficiency of the system by as much as **3%** while sharing the heat rejection to a district heating system.

Note, on this configuration, the Rankine cycle water mass flow is as low as **162 kg/hour** 





### R245fa – High Genset Efficiency

- The use of an ORC slightly increases the efficiency gains at low exhaust gas temperature. This increase is limited to **<2%**.
- As an example, an ORC delivers 88 kW from a 3MW engine @60% efficient.
- The use of an ORC reduces the heat available for DH, hurting the overall CHP efficiency of the plant compared to water.
- The 88 kW ORC and 3MW engine deliver up to 1.2MW of useful heat (@95C), and an overall efficiency of 87%.

In comparison, the **water cycle delivers 73 kW** of additional power, but **1.4 MW of useful heat** and an overall efficiency of **90%** 





### **PROJECT NEXT STEPS**



### NEXT PHASE SCOPE OF WORK STRUCTURE

Demonstrate that the thermodynamic efficiency of the RICE can be increased by as much as 18% through the integration of the APC.

Implemented in a Combined Heat and Power (CHP) framework, the goal is to show:

- RICE efficiencies as high as 65%.
- Overall system efficiency as high as 70%.





### NEXT PHASE SCOPE OF WORK STRUCTURE



### NEXT PHASE – COMING SOON!









MIGUEL SIERRA AZNAR, PHD. M.SIERRA.AZNAR@NOBLETHERMO.COM NOBLE THERMODYNAMIC SYSTEMS, INC.

