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o Expertise covers aqueous and high temperature corrosion
o Solutions include material selection, lifetime modeling, process 

modification and new alloy or coating development

Thermal convection loops 
determine compatibility in 
flowing salts or liquid metals

Thermal  cycling simulates turbine 
and automotive duty cycles to 
evaluate new alloys or coatings

Unique: cycling in controlled gas 
up to 1500°C

Machine learning and 
thermo-kinetic models 
being employed to 
predict performance

Field & engine tests to 
validate performance 
models (e.g. Capstone 
65kW microturbine)

Corrosion Science & Technology Group Mission:
Develop corrosion solutions for all forms of power generation and transportation



33

CST Group has broad expertise solving corrosion issues
• Experience with a range of environments

– Aqueous
• Transportation
• Nuclear reactors

– High temperatures
• Steam, air+H2O (exhaust)
• Mixed gases (H, O, C, S)
• Supercritical CO2
• He

– Biomass
• Wide range of feedstocks

– Molten salts
• Nuclear & concentrated solar

– Liquid metals
• PbLi, Li and Sn for fusion
• Previously Pb, Hg and Na

Provide better understanding and 
prediction of materials performance
Aid in materials development and 

selection 
Advance a technology
Solve a particular industrial problem
Not in competition with private industry
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3-year DOE CHP project : Higher Performance/ Temperature 
& Lower-Cost Materials To Increase CHP System Efficiency 

• Alumina forming austenitic (AFA) 
Fe- and Ni-based alloys

• High performance, lower cost 
austenitic alloys

• Corrosion- and fatigue-resistant 
coatings

Degradation mechanisms
Lifetime  models

Mechanisms / Models 
validation

• Cyclic oxidation and mechanical testing
• Mechanical  testing in relevant 

environments
• Engine exposures
• Predictive lifetime models

Alloy Selection & 
Development

Rainbow recuperator
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Project Tasks Related to Different Components & 
Material/Coating Needs

• Task 1: Lifetime modeling & alloy evaluations for high-temperature thin-wall components
• Primary surface recuperator (heat exchanger) and combustor liner

• Comparison of laboratory and field exposures for model validation

• Task 2: Investigation of materials for ≥100°C temperature increase
• Higher temperature heat exchangers and combustor liners

• Commercialization of wrought Ni-based alumina-forming alloy

• Task 3: High performance corrosion-resistant coatings for prime movers

• Task 4: Advanced characterizations for CHP Materials and Coatings (ANL)
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Recuperators Are Compact Heat Exchanges that Significantly 
Boost the Efficiency of Microturbines (2005 slide)

Primary Surface Recuperator 
(PSR), annular configuration

Capstone 200 kW 
Microturbine
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Task 1: Long-term recuperator performance: what are we modeling ?
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Mass transfer theory for laminar flow
over a rectangular plate

Time < t10
1: Cr2O3 formation

Time > t10
2: Mixed oxide formation
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Task 1. Modeling Approach/Development
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• Predict
– oxidation kinetics
– compositional changes (time to 10 wt.% concentration of Cr at scale\alloy interface, critical concentration)
– loss of wall thickness 

as a function of time, temperature, specimen thickness, thermal cycle duration and atmosphere



9

100 1000 10000
0

1

2

3

4

5

6

7

8

M
et

al
 lo

ss
 (µ

m
)

Time (h)

100 1000 10000

Alloy HR120 (25Cr-35Ni): Cr2O3 breakdown in dry and wet air

800 ºC
Flowing air + 10 % H2O

850 cm3.s-1

t10 = 6,879 h

t10 = 10,000 h

50 µm

800 ºC
Dry air

 Cr2O3 breakdown/ t10 was predicted before 7,500 h in wet air
 t10 was predicted after 10,000 h and coincides with localized formation of FeCr-spinel in dry air 

Cr2O3 FeCr-spinel
Calculated metal loss

Dry air
10,000 h at 800 ºC

M
et

al
 L

os
s 

(µ
m

)



10

800 ºC
Flowing air + 10 % H2O
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Alloy HR120 (25Cr-35Ni): Cr2O3 breakdown in dry and wet air

 Cr2O3 breakdown/ t10 was predicted before 7,500 h in wet air
 t10 was predicted after 10,000 h and coincides with localized formation of FeCr-spinel in dry air

 Cr2O3 breakdown/ t10was predicted at 700 ºC and higher flow rate in wet air
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• Microturbine has been modified in collaboration with 
Capstone  to allow for higher temperature operation 
i.e. turbine exhaust temperature (TET) of 690°C

• Engine tests: rainbow recuperator made of AFA (Fe-

14Cr-25Ni-3.6Al-2.5Nb), 120 (Fe-38Ni-25Cr) and 310 (Fe-20Ni-25Cr)  
alloy foils has been tested for :

- 3350h in normal operation (65kW, TET~633 ºC)
- 15,000h at higher temperature (TET~690 ºC. )
• Microturbine is also used as a test facility with 

possibility to insert pressurized probes for material 
evaluation

Data collection:  laboratory tube furnace, ORNL microturbine & 
field - 65kW Capstone Microturbine provides prototypic results 

Capstone 65kw Microturbine

pressurization system

Welded Foils, 3000h of exposure

Window for 
specimen insertion

120
2025Nb

AFA

rainbow  recuperator 
after ~15000h

Ports allowing insertion of 
foil specimens
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Task 1.  Field exposures from Mercury 50 (4.6MW)
643 °C, air + 4-7% H2O, 10-20 m/s (lab ~2 cm/s)
106,000 h: ~10 times longer than laboratory exposures

625 - Ni-22Cr-4Fe 50Fe-20Cr-25Ni

Nb,Cr, Fe spinel

Cr2O3

Fe,Cr rich spinel

Cr2O3
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Field results: Model validation using Solar Turbine’s 
Mercury 50 engine test for up to 106,360 h at ~643ºC

Measurement of Cr 
concentration over the entire 

foil + final foil thickness to 

10µm

2025Nb panel
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“Green” hydrogen is quickly becoming reality
Extreme environment of H2 transportation, generation 
and combustion
- Project for 1GWh storage in Utah 

(operation in 2025)
- Japan already demonstrating 1MW 100% 

H2-fired turbine
- Hydrogen current choice for long-term 

economical energy storage
- Match with distributed generation/CHP 

to avoid H2 distribution cost/issues

- Materials issues with:
- Combustion – AM design to prevent flashback
- Turbine* – higher flame temperature & higher H2O exhaust issues

- opportunity to use modeling to predict, followed by validation
- Electrolyzer – improve efficiency & durability of H2 production
- Other areas:  fuel cells, reciprocating engines, pipelines (transport)

* EPRI report

Hydrogen attractive for long term storage
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Task 2: >100°C higher temperatures
Alumina-forming austenitic steels at 850°C in wet air

- Al2O3 less affected by H2O than Cr2O3
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Task 2: Evaluated AFA Foil Creep properties at 850°C

Experiments allow designers to size components for 750°-850°C applications
Similar creep results for bulk and foil AFA steels but void formation for foils

More expensive Ni-based alloy foils have similar creep properties

dime

100um

Oxidized voids

LMP=T(log(tr)+C)



18

New Ni-based alumina-forming alloy developed at ORNL
• Target >1000°C components such as combustor liners
• Patents awarded

– Alumina-forming, high temperature creep resistant Ni-based alloys,     
US Patent  10,174,408 issued January 8, 2019

– US Patent 10,745,781 issued August 18, 2020 (broader composition award)
– Excellent combination of creep strength and oxidation resistance

• Scale-up: 23 kg heat produced
– Homogenized and rolled to plate

• Characterization completed
– Specimens machined

• Verify tensile, creep and fatigue properties
• Goal is to generate database for end users

– Mechanical testing delayed
– Oxidation testing at 1100°C in wet air
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Larger heat of NAFA:  Transmission Electron Microscopy 
confirmed presence of fine γ’ precipitates rich in Al & Ti
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Task 4: High-energy synchrotron x-ray diffraction conducted 
at ANL Advanced Photon Source to study new NAFA alloy 

Example: aged 0.5h/1121°C+4h/800°C: 92.5% γ phase, 7.4% γ´ & 0.002% M23C6

ANL: L. Xiong, D. Singh
11-ID beamline: 105.7 keV 
500 × 500 µm: mm-scale depth

Specimen from 23 kg casting

Results can be used to 
calculate γ-γ´ misfit to compare 
to other superalloys 
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Task 4: ANL task studying Fe-rich oxides on AL2025Nb 
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Synchrotron Microdiffraction:
– Beam: 250 nm (FWHM), 10 & 20 keV
– Sample: 200µm (8 mil) 700°C 15 & 26 kh
– High-precision line scan

• Step size 1 µm
• d-spacing 1-4 Å

 Phases
– Trigonal: Cr2O3, Fe2O3
– Cubic:  spinel type Ni(Cr,Fe)2O4
– Orthorhombic: NiFe2O4

Microscope

Sample Focus optics

Incident x-ray

Area detectors

Beamline schematic
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Task 3 Background:  Significant Blade Degradation Due to 
Hot Corrosion in Gas Turbines 

• Significant issue for both 
aerospace and industrial 
gas turbines

• Higher temperature is key 
to improve gas turbine 
efficiency and reduce CO2
emission

• Increasing issue for disk 
alloys at >700ºC

• Common issue with 
burning opportunity fuels

J. Meier, HTCPM2016, “A Unified 
View of Deposit-Induced Corrosion”
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Task 3. Common to evaluate coatings in hot corrosion 
Dean Rig testing of Siemens and TN Tech’s Coatings

2mm

CM247,100h 
Dean rig, 

700ºC

- Python program developed to quantify metal loss
- Full TBC performs better than Bond Coat only Metal Loss (µm)
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Unique Rig Commissioned to Conduct Low Cycle Fatigue 
in Corrosive (SO2+Molten Salt Deposit) Environment

Sealed chamber with bellows to 
accommodate displacement

Specific port for 
extensometer

Enclosure connected to 
hood + SO2 detector 

5” button head fatigue 
specimens 
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LCF results: Similar cycles to failure for bare and coated 
CM247LC in air. Next step  is to evaluate LCF in air+0.1%SO2

Estimate, Bare, 
air+0.1%SO2

Salt sprayed at the 
specimen surface  

inside the LCF 
chamber using the 
extensometer port 

~18 h at 750°C

Bare CM247LC

CM247LC+BC+TBC

Equipment & then staffing issues for past 
10 months have limited further progress
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Summary and status: the project is nearing completion
• Task 1. Lifetime modeling

– wrapping up: writing more papers
• M. Romedenne, R. Pillai, S. Dryepondt, B. A. Pint, “Effect of water vapor on lifetime of 625 and 120 foils during 

oxidation between 650 and 800 °C,” Oxidation of Metals 96 (2021) 589-612.
• R. Pillai and B. A. Pint, “The Role of Oxidation Resistance in High Temperature Alloy Selection for a Future with 

Green Hydrogen,” JOM 73 (2021) 3988-3997.
• M. Romedenne, R. Pillai, S. Dryepondt, B. A. Pint, “Oxidation lifetime modeling of 625 and 120 foils after long-

term exposure in flowing air + 10% H2O at 700 and 800°C, submitted to Oxidation of Metals, February 2022 

• Task 2. >100°C material investigation
– 850°C oxidation and creep testing of AFA steels: complete

• M. Romedenne, R. Pillai, S. Dryepondt, M. Lance and B. A. Pint, “High temperature oxidation behavior of alloy 
foils in water vapor at 850°C,” NACE Paper C2021-16594, Houston, TX, presented virtually NACE Corrosion 2021

– Mechanical testing of patented alloy larger heat: in progress
• Task 3. Combined fatigue/corrosion testing of coatings

– Test rig operational: no-cost extension to complete testing
• Task 4. Advanced characterization (D. Singh, ANL)

– complete
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What’s next? ORNL provides broad expertise and unique 
facilities for evaluating H2 material compatibility issues

• Production
– Experience characterizing and modeling component lifetimes in

industrial processes: electrolysis, gasification, photosynthesis, etc.
• Transportation & Storage

– Experience evaluating coatings (possible solution for H2 pipelines)
• Pre-combustion

– 25 years experience H2 loading alloys in high temperature H2

– Expertise in measuring mechanical properties in extreme environments
– Intense industry concern about high temperature H2 material compatibility 

needs to be addressed immediately
• Need to de-risk the use of conventional and new alloys handling H2 at ≤600°C

• Combustion
– 15 years experience studying H2 combustion; steels, superalloys, ceramics
– Developed framework for lifetime modeling in H2 combustion (high H2O)

H2 loading in vanadium

ORNL team:  B. Pint, S. Dryepondt, R. Pillai Simulated high H2O rig at ≤1500°C
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