

## High Performance, High Temperature Materials to Enable High Efficiency Power Generation: June 2022 Project Update

Bruce Pint, Sebastien Dryepondt, Rishi Pillai, Marie Romedenne, Govindarajan Muralidharan

Materials Science & Technology Division Oak Ridge National Laboratory

June 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy



### Corrosion Science & Technology Group Mission: Develop corrosion solutions for all forms of power generation and transportation



Thermal convection loops determine compatibility in flowing salts or liquid metals



Thermal cycling simulates turbine and automotive duty cycles to evaluate new alloys or coatings

Unique: cycling in controlled gas up to 1500°C Machine learning and thermo-kinetic models being employed to predict performance

Predicted k, (mg<sup>2</sup>.cm.<sup>-4</sup>h<sup>-1</sup>)

ration at oxide/allc

T (°C)

T, Cr, Fe (NSE = 0.66)
 T, Cr, Fe, Ni (NSE = 0.82)
 All (NSE = 0.84)





Field & engine tests to validate performance models (e.g. Capstone 65kW microturbine)

- $\circ~$  Expertise covers aqueous and high temperature corrosion
- Solutions include material selection, lifetime modeling, process modification and new alloy or coating development



# CST Group has broad expertise solving corrosion issues

- Experience with a range of environments
  - Aqueous
    - Transportation
    - Nuclear reactors
  - High temperatures
    - Steam, air+H<sub>2</sub>O (exhaust)
    - Mixed gases (H, O, C, S)
    - Supercritical CO<sub>2</sub>
    - He
  - Biomass
    - Wide range of feedstocks
  - Molten salts
    - Nuclear & concentrated solar
  - Liquid metals
    - PbLi, Li and Sn for fusion
- **CAK RIDGE** Previously Pb, Hg and Na

- Provide better understanding and prediction of materials performance
- Aid in materials development and selection
- □Advance a technology
- □Solve a particular industrial problem
- □Not in competition with private industry



## 3-year DOE CHP project : Higher Performance/ Temperature & Lower-Cost Materials To Increase CHP System Efficiency

Alloy Selection & Degradation mechanisms Mechanisms / Models Development Lifetime models validation

- Alumina forming austenitic (AFA) Fe- and Ni-based alloys
- High performance, lower cost austenitic alloys
- Corrosion- and fatigue-resistant coatings





- Mechanical testing in relevant environments
- Engine exposures
- Predictive lifetime models





Rainbow recuperator



## Project Tasks Related to Different Components & Material/Coating Needs

- Task 1: Lifetime modeling & alloy evaluations for high-temperature thin-wall components
  - Primary surface recuperator (heat exchanger) and combustor liner
  - Comparison of laboratory and field exposures for model validation
- Task 2: Investigation of materials for ≥100°C temperature increase
  - *Higher temperature heat exchangers and combustor liners*
  - Commercialization of wrought Ni-based alumina-forming alloy
- Task 3: High performance corrosion-resistant coatings for prime movers
- Task 4: Advanced characterizations for CHP Materials and Coatings (ANL)



#### Recuperators Are Compact Heat Exchanges that Significantly Boost the Efficiency of Microturbines (2005 slide)

#### Capstone 200 kW Microturbine

**CAK RIDGE** 

National Laboratory





Primary Surface Recuperator (PSR), annular configuration





#### Task 1: Long-term recuperator performance: what are we modeling?



Net weight change = Weight of metal oxidized - weight of scale vaporized

$$\begin{array}{ll} \text{Time} < \mathbf{t}_{10} & \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left( \left( \frac{1}{\mathrm{a1}} \right) \mathbf{w}_{\mathrm{m1}} \right) - \frac{\mathrm{d}}{\mathrm{d}t} \left( w_{ox,ev1} \right) & \text{Mass} \\ & \text{Update} & \\ & \text{Time} > \mathbf{t}_{10} & \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left( \left( \frac{1}{\mathrm{a2}} \right) \mathbf{w}_{\mathrm{m2}} \right) - \frac{\mathrm{d}}{\mathrm{d}t} \left( w_{ox,ev2} \right) & w_{ox,ev} = \\ & 2: \text{ Mixed oxide formation } \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left( \left( \frac{1}{\mathrm{a2}} \right) \mathbf{w}_{\mathrm{m2}} \right) - \frac{\mathrm{d}}{\mathrm{d}t} \left( w_{ox,ev2} \right) & w_{ox,ev} = \\ & \mathbf{W}_{\mathrm{OX},ev} = \frac{\mathrm{d}}{\mathrm{d}t} \left( \mathbf{W}_{\mathrm{OX},ev2} \right) & \mathbf{W}_{\mathrm{OX},ev2} \end{array}$$

transfer theory for laminar flow over a rectangular plate

$$w_{ox,ev} = 0.664 \left(\frac{p_{-}^{(i)}p^{(0)}}{RT}\right) \left(\frac{D^4}{v}\right)^{\frac{1}{6}} \left(\frac{u}{l}\right)^{1/2} M_{Cr}$$

# Task 1. Modeling Approach/Development



- Predict
  - oxidation kinetics
  - compositional changes (time to 10 wt.% concentration of Cr at scale\alloy interface, critical concentration)
  - loss of wall thickness

as a function of time, temperature, specimen thickness, thermal cycle duration and atmosphere



### Alloy HR120 (25Cr-35Ni): Cr<sub>2</sub>O<sub>3</sub> breakdown in dry and wet air



Dry air 10,000 h at 800 °C



 ✓ Cr<sub>2</sub>O<sub>3</sub> breakdown/ t<sub>10</sub> was predicted before 7,500 h in wet air
 ✓ t<sub>10</sub> was predicted after 10,000 h and coincides with localized formation of FeCr-spinel in dry air
 OAK RIDGE National Laboratory

#### Alloy HR120 (25Cr-35Ni): Cr<sub>2</sub>O<sub>3</sub> breakdown in dry and wet air



✓  $Cr_2O_3$  breakdown/  $t_{10}$  was predicted before 7,500 h in wet air ✓  $t_{10}$  was predicted after 10,000 h and coincides with localized formation of FeCr-spinel in dry air RIDGE V  $Cr_2O_3$  breakdown/  $t_{10}$  was predicted at 700 °C and higher flow rate in wet air

# Data collection: laboratory tube furnace, ORNL microturbine & field - 65kW Capstone Microturbine provides prototypic results

- Microturbine has been modified in collaboration with Capstone to allow for higher temperature operation i.e. turbine exhaust temperature (TET) of 690°C
- Engine tests: rainbow recuperator made of AFA (Fe-14Cr-25Ni-3.6AI-2.5Nb), 120 (Fe-38Ni-25Cr) and 310 (Fe-20Ni-25Cr) alloy foils has been tested for :
- 3350h in normal operation (65kW, TET~633 °C)
- 15,000h at higher temperature (TET~690 °C.)
- Microturbine is also used as a test facility with possibility to insert pressurized probes for material evaluation

Welded Foils, 3000h of exposure



Ports allowing insertion of foil specimens



Task 1. Field exposures from Mercury 50 (4.6MW) 643 °C, air + 4-7%  $H_2O$ , 10-20 m/s (lab ~2 cm/s) 106,000 h: ~10 times longer than laboratory exposures

## Fe,Cr rich spinel Nb,Cr, Fe spinel $Cr_2O_3$ $Cr_2O_2$ 50Fe-20Cr-25Ni 625 - Ni-22Cr-4Fe 100um ez-228238 20.0kV 10.1mm x500 YAGBSE ez-228270 20.0kV 9.0mm x500 YAGBSE 100um



## Field results: Model validation using Solar Turbine's Mercury 50 engine test for up to 106,360 h at ~643°C



Measurement of Cr concentration over the entire foil + final foil thickness to



CAK RIDGE

#### "Green" hydrogen is quickly becoming reality Extreme environment of H<sub>2</sub> transportation, generation and combustion \$3.970

- Project for 1GWh storage in Utah (operation in 2025)
- Japan already demonstrating 1MW 100% H<sub>2</sub>-fired turbine
- Hydrogen current choice for long-term economical energy storage
- Match with distributed generation/CHP to avoid H<sub>2</sub> distribution cost/issues
  - Materials issues with:
    - Combustion AM design to prevent flashback
    - Turbine\* higher flame temperature & higher  $H_2O$  exhaust issues
      - opportunity to use modeling to predict, followed by validation
    - Electrolyzer improve efficiency & durability of H<sub>2</sub> production
    - Other areas: fuel cells, reciprocating engines, pipelines (transport)



**CAK RIDGE** 



Hydrogen attractive for long term storage

# Burning H<sub>2</sub>: validating model for higher H<sub>2</sub>O levels



CAK RIDGE

## Task 2: >100°C higher temperatures Alumina-forming austenitic steels at 850°C in wet air - Al<sub>2</sub>O<sub>3</sub> less affected by H<sub>2</sub>O than Cr<sub>2</sub>O<sub>3</sub>



BSE image





# Task 2: Evaluated AFA Foil Creep properties at 850°C



Experiments allow designers to size components for 750°-850°C applications Similar creep results for bulk and foil AFA steels but void formation for foils More expensive Ni-based alloy foils have similar creep properties

# New Ni-based alumina-forming alloy developed at ORNL

- Target >1000°C components such as combustor liners
- Patents awarded
  - Alumina-forming, high temperature creep resistant Ni-based alloys, US Patent 10,174,408 issued January 8, 2019
  - US Patent 10,745,781 issued August 18, 2020 (broader composition award)
  - Excellent combination of creep strength and oxidation resistance
- Scale-up: 23 kg heat produced
  - Homogenized and rolled to plate
    - Characterization completed
  - Specimens machined

CAK RIDGE

- Verify tensile, creep and fatigue properties
- Goal is to generate database for end users
  Mechanical testing delayed
- Oxidation testing at 1100°C in wet air



# Larger heat of NAFA: Transmission Electron Microscopy confirmed presence of fine $\gamma'$ precipitates rich in Al & Ti





### Task 4: High-energy synchrotron x-ray diffraction conducted at ANL Advanced Photon Source to study new NAFA alloy



Example: aged 0.5h/1121°C+4h/800°C: 92.5% γ phase, 7.4% γ' & 0.002% M<sub>23</sub>C<sub>6</sub>



# Task 4: ANL task studying Fe-rich oxides on AL2025Nb

#### Synchrotron Microdiffraction:

- Beam: 250 nm (FWHM), 10 & 20 keV
- Sample: 200µm (8 mil) 700°C 15 & 26 kh
- High-precision line scan
  - Step size 1  $\mu m$
  - d-spacing 1-4 Å

#### Phases

21

- Trigonal: Cr<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>
- Cubic: spinel type Ni(Cr,Fe)<sub>2</sub>O<sub>4</sub>
- Orthorhombic: NiFe<sub>2</sub>O<sub>4</sub>

#### **Beamline schematic**





## Task 3 Background: Significant Blade Degradation Due to Hot Corrosion in Gas Turbines

J. Meier, HTCPM2016, "A Unified View of Deposit-Induced Corrosion"







- Significant issue for both aerospace and industrial gas turbines
- Higher temperature is key to improve gas turbine efficiency and reduce CO<sub>2</sub> emission
- Increasing issue for disk alloys at >700°C
- Common issue with
  burning opportunity fuels

## Task 3. Common to evaluate coatings in hot corrosion Dean Rig testing of Siemens and TN Tech's Coatings



# Unique Rig Commissioned to Conduct Low Cycle Fatigue in Corrosive (SO<sub>2</sub>+Molten Salt Deposit) Environment

Specific port for extensometer



5" button head fatigue specimens





Enclosure connected to hood + SO<sub>2</sub> detector



# LCF results: Similar cycles to failure for bare and coated CM247LC in air. Next step is to evaluate LCF in air+0.1%SO<sub>2</sub>

Salt sprayed at the specimen surface inside the LCF chamber using the extensometer port

~18 h at 750°C



Equipment & then staffing issues for past 10 months have limited further progress



# Summary and status: the project is nearing completion

### • Task 1. Lifetime modeling

- wrapping up: writing more papers
  - M. Romedenne, R. Pillai, S. Dryepondt, B. A. Pint, "Effect of water vapor on lifetime of 625 and 120 foils during oxidation between 650 and 800 °C," Oxidation of Metals 96 (2021) 589-612.
  - R. Pillai and B. A. Pint, "The Role of Oxidation Resistance in High Temperature Alloy Selection for a Future with Green Hydrogen," JOM 73 (2021) 3988-3997.
  - M. Romedenne, R. Pillai, S. Dryepondt, B. A. Pint, "Oxidation lifetime modeling of 625 and 120 foils after longterm exposure in flowing air + 10% H<sub>2</sub>O at 700 and 800°C, submitted to Oxidation of Metals, February 2022

## • Task 2. >100°C material investigation

- 850°C oxidation and creep testing of AFA steels: complete
  - M. Romedenne, R. Pillai, S. Dryepondt, M. Lance and B. A. Pint, "High temperature oxidation behavior of alloy foils in water vapor at 850°C," NACE Paper C2021-16594, Houston, TX, presented virtually NACE Corrosion 2021
- Mechanical testing of patented alloy larger heat: in progress
- Task 3. Combined fatigue/corrosion testing of coatings
  - Test rig operational: no-cost extension to complete testing
- Task 4. Advanced characterization (D. Singh, ANL)
  - complete

# Acknowledgments

• Research funded by U. S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Combined Heat & Power Program

• Partners

- Siemens Corporate, Anand Kulkarni
- Tennessee Technological University, Y. Zhang
- Solar Turbines, R. Klug, D. Voss, P. Mohan (and others)
- Capstone Green Energy, D. Ayers
- ORNL team
  - Oxidation experiments: Mike Stephens, John Wade, George Garner
  - Characterization: Tracie Lowe, Victoria Cox
  - Mechanical properties: Shane Hawkins
  - TEM: Yi-Feng Su

# What's next? ORNL provides broad expertise and unique facilities for evaluating H<sub>2</sub> material compatibility issues

- Production
  - Experience characterizing and modeling component lifetimes in industrial processes: electrolysis, gasification, photosynthesis, etc.
- Transportation & Storage
  - Experience evaluating coatings (possible solution for H<sub>2</sub> pipelines)
- Pre-combustion
  - 25 years experience  $H_2$  loading alloys in high temperature  $H_2$
  - Expertise in measuring mechanical properties in extreme environments
  - Intense industry concern about high temperature  $\rm H_2$  material compatibility needs to be addressed immediately
    - Need to de-risk the use of conventional and new alloys handling  $H_2$  at  $\leq 600^{\circ}C$
- Combustion
  - 15 years experience studying  $H_2$  combustion; steels, superalloys, ceramics
  - Developed framework for lifetime modeling in  $H_2$  combustion (high  $H_2O$ )

ORNL team: B. Pint, S. Dryepondt, R. Pillai



H<sub>2</sub> loading in vanadium

Fig. 1. Hydrogen concentrations in V–5Cr–5Ti and unalloyed vanadium [7,8] after exposure to low-pressure hydrogen at 500°C.



Simulated high  $H_2O$  rig at  $\leq 1500^{\circ}C$