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Project Goals and Benefits N=| Ao
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Goals:

« Toincrease 15 stage turbine inlet temperature by 100 °C for baseline 5-10 MW CHP
turbine applications

« Advanced materials + AM + Advanced Cooling Designs
« Transfer technologies to industry in Phase 2 effort

Benefits: %OAK RIDGE
. National Laboratory

 Reduce payback period for CHP plants .
 Power increased by 20% leidos
« Efficiency increased by 2 percentage pts relative to 33% baseline WestViginiaUniversiiy

- Sfeam production increased by 10-15%2 4 m

. . i @ University of

« Reduce CO, emissions and fuel consumption “is® Pittsburgh
« 36% relative to conventional power/boiler configuration L,
UNY NORTH DAKOTA.

« 7% relative to baseline CHP plant
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Technical Challenges
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Challenge 1

Material properties using AM (Additive
Manufacturing) has not been shown to be
better than base alloy.

« Oxide dispersion strengthening (ODS) has better
high temperature properties

« Traditional AM powder processes cannot
produce powders of Y203 or Al203 because of
the high melting points

» Different approach is needed

Post-Processed ODS Powder
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Challenge 2

Benefits of proposed cooling architectures
cannot be quantified without a common
baseline.

« Public data on integrated airfoil cooling are
focused on large GT engines and limited

« Test protocols for integrated performance are
limited
» Cooling performance
» Pressure drop and coolant flow curves
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Three Main Areas of Focus
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System Modeling and

Market Benefits

e Baseline (Virtual)
engine mode|

e Benefits and sensifivity

studies
e CHP plant interviews

e Energy storage study
for CHP plant

Internal Cooling using
Additive Manufacturing

e Baseline vane and
blade design, build,
testing

e Other designs
e [attice
e Micro-channel
e NETL double-wall

* Incremental
iImpingement
double-wall
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Oxide Dispersion

Strengthened AM
Materials

e Develop ODS
powders for AM

e Fabricate test
coupons

e Characterize
properties

* IN718 vs ODS718
e M247 vs ODS247




Model for Baseline “Virtual” Gas Turbine N = |NATIONAL
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CHP Generic Gas Turbine 2015 Baseline

« Power Output: 6.1 MW

« Thermal Efficiency: 33.1%

« Exhaust Temperature: 268 °F

* Year of Infroduction: 2015

« Simple Cycle CHP Applications

Source: NETL ®
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Assessing the Impact of Better Cooling SENERGY o
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Upgraded Engine

. Baseline 6% Increase | 13% Increase
Baseline . . .
Enaine Cooling in Int. in Int.
9 Conf. Cooling Eff. | Cooling Eff.

Power (kW) 6100 /214 /416 7592
Thermal Efficiency 33.1% 34.0% 34.7% 35.3%
Heat Rate (Btu/kWh) 10208 10026 9829 9669
Exhaust Temperature (°F) 968 989

Coolant Fraction 9.6% 14.1% 13.5% 12.9%
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Test Approach For Internally Cooled Airfoll Testing  [N=|ranona:
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Measure non-dimensional surface temperature, ¢

Data from Public Engine Model (Uysal et al., 2021)
Hot Gas Overall
T c,in

Temp, Ty, ex Effectiveness Rext Rwau Rint
Baseline 1366K 685K 1178K ¢ > 0.28
Advanced
1466K 685K 1178K > 0.42 : .
Target ¢ Overall Cooling Effectiveness

Tg - Tw,ext . Rext
Tg - Tc,in Rext + Rwall + Rint

Test Conditions

HotGas | . overall e Heat Load Parameter (non-dimensional cooling flow)
Pq’rh °° i Cooling S SES meCy .
Tein Effectiveness | ToP Twex HLP = Rt Agrs = McCpRext
ex ex

Baseline 325K ¢ > 0.28 559K
’%:é‘;?ced 650 325K ¢ > 0.42 513K Independent variables Dependent variables

* M ¢ Tw,ext/'¢
e Cooling designs
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External Thermal Resistance Is Constant —|NATiONAL
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External geometry and conditions

« NACA-0024 external profile

« Symmetric design for screening different cooling
designs

- 800
« External test conditions = constant o
& 600 -
e T, =650K; P, =0.11 MPa S
g g 2 T
. ~ o
e m, =0.64kg/s >V, =120m/s Y 400 - 3
g g = -
— = 5
¢ Mag — 0.2 E 200 4 v
g v
o
« Surface roughness a
=
Airfoil Internal Ra Ra o * Pressure | —4
Cooling Design As Received After Painting =200 T T T T | T
(microns) (microns) 0 10 20 30 40 30
Baseline Vane surface Distance [mm]
Span-wise 50+0.6 1.4+03
Chord-wise 57+1.7 1.5+04
Baseline Blade
Span-wise 36+0.38 0.8+0.15
Chord-wise 3.8+0.6 1.0+0.2
NETL Double wall
Span-wise 1.1+0.2 1.0+0.3

Chord-wise 1.1 +0.15 0.7+0.3




Internal Resistance Varies with Design and Flow N = |NVATIONAL
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Some of the internal cooling designs tested LABORATORY

« Baseline Vane  Baseline Blade  Stacked double-wall
(NETL Design)

:Jns:tru ment External Surface
o )
Removed in CAD
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Prototype Airfoil Cooling Results N=[MTovA:
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One design is more efficient at low cooling air flows
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Additive Manuftacturing with ODS Powder N=|naTonaL
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ODS-IN718 samples have been manufactured using 2 approaches

« Direct energy deposition « Laser powder bed fusion (EOS M290)




IN718 with 0.5% Y,O4 — Uniform disfribution N=|NaTonAL
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Yttrium is uniformly distributed
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0.5% Y,O5 addifion has little effect on UTS N=|AnoNaL
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IN718 w/without 0.5% Y203 addition IN718 w/without 0.5% Y203 addition
Tested at 1050C Tested at 1050C
100 100
EmIN718  mODS718 mIN718  mODS718
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Summgry N=|NAronaL
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* |Increasing baseline engine firing tfemperature + improved cooling design

« 2 percentage point improvement over 33% efficient 5-10 MWe gas turbine

« Power increase ~ 20%
« Steam production increase ~ 10%

« Public airfoil cooling concepts (baseline and advanced) designed, built,
and tested

* NETL double-wall concept can achieve advanced cooling target at the same cooling
flow and lower pressure drop than baseline blade

« Powder processing method for oxide dispersion sirengthen demonstrated
for 0.5% Y,O5in IN718
« Uniform distribution of Y throughout the part
 Preliminary results and previous work suggest higher Y,O; concenfrations are needed
« ODS M247 powders have also been prepared
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Questions,
Comments

VISIT US AT:
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