Advanced Airfoils for Efficient CHP Systems Project Overview

Doug Straub

Research Engineer, National Energy Technology Lab

Presentation Overview/Outline

Advanced Airfoils for CHP Applications

Motivation

- Current Combined Heat and Power (CHP) market in U.S.
- Goals/objectives
- Environmental and economic benefits

Technical Challenges/Approach

Summary of results and project status

- Baseline CHP system analysis/energy storage analysis
- Design/build/test airfoil cooling configurations
 - Baseline (1st stage blades & vanes)
 - Advanced concepts
- Oxide dispersion strengthened powder enhancements

Project Goals and Benefits

Goals:

- To increase 1st stage turbine inlet temperature by 100 °C for baseline 5-10 MW CHP turbine applications
 - Advanced materials + AM + Advanced Cooling Designs
- Transfer technologies to industry in Phase 2 effort

Benefits:

- Reduce payback period for CHP plants
 - Power increased by 20%
 - Efficiency increased by 2 percentage pts relative to 33% baseline
 - Steam production increased by 10-15%
- Reduce CO₂ emissions and fuel consumption
 - 36% relative to conventional power/boiler configuration
 - 7% relative to baseline CHP plant

West Virginia University.

Technical Challenges

Challenge 1

Material properties using AM (Additive Manufacturing) has not been shown to be better than base alloy.

- Oxide dispersion strengthening (ODS) has better high temperature properties
- Traditional AM powder processes cannot produce powders of Y2O3 or Al2O3 because of the high melting points
 - Different approach is needed

As Received Powder

Post-Processed ODS Powder

Challenge 2

NATIONAL ENERGY TECHNOLOGY LABORATORY

Benefits of proposed cooling architectures cannot be quantified without a common baseline.

- Public data on integrated airfoil cooling are focused on large GT engines and limited
- Test protocols for integrated performance are limited
 - Cooling performance
 - Pressure drop and coolant flow curves

Baseline Vane

System Modeling and Market Benefits

- Baseline (Virtual) engine model
- Benefits and sensitivity studies
- CHP plant interviews
- Energy storage study for CHP plant

Internal Cooling using Additive Manufacturing

- Baseline vane and blade design, build, testing
- Other designs
 - Lattice
 - Micro-channel
 - NETL double-wall
 - Incremental impingement double-wall

Oxide Dispersion Strengthened AM Materials

- Develop ODS powders for AM
- Fabricate test coupons
- Characterize
 properties
- IN718 vs OD\$718
- M247 vs ODS247

Model for Baseline "Virtual" Gas Turbine

CHP Generic Gas Turbine 2015 Baseline

- Power Output: 6.1 MW
- Thermal Efficiency: 33.1%
- Exhaust Temperature: 968 °F
- Year of Introduction: 2015
- Simple Cycle CHP Applications
 - 15-Stage Compressor,
 - 4-Stage Turbine

Cooling Specs

- TBC on Stages 1 & 2
- Stage 1 and Stage 2 Internally Cooled

Assessing the Impact of Better Cooling

Upgraded Engine

		/		
	Baseline Engine	Baseline Cooling Conf.	6% Increase in Int. Cooling Eff.	13% Increase in Int. Cooling Eff.
Power (kW)	6100	7214	7416	7592
Thermal Efficiency	33.1%	34.0%	34.7%	35.3%
Heat Rate (Btu/kWh)	10208	10026	9829	9669
Exhaust Temperature (°F)	968		989	
Coolant Fraction	9.6%	14.1%	13.5%	12.9%

Test Approach For Internally Cooled Airfoil Testing

Measure non-dimensional surface temperature, ϕ

Data from Public Engine Model (Uysal et al., 2021)

	Hot Gas Path T _g	Coolant T _{c,in}	Max. Metal Temp, T _{w,ext}	Overall Cooling Effectiveness
Baseline	1366K	685K	1178K	$\phi > 0.28$
Advanced Target	1466K	685K	1178K	$\phi > 0.42$

Overall Cooling Effectiveness $\phi = \frac{T_g - T_{w,ext}}{T_g - T_{c,in}} = \frac{R_{ext}}{R_{ext} + R_{wall} + R_{int}}$

Test Conditions

	Hot Gas Path T _a	Coolant T _{c,in}	Overall Cooling Effectiveness	Max. Metal Temp, T _{w,ext}
Baseline	650	325K	$\phi > 0.28$	559K
Advanced Target	650	325K	$\phi > 0.42$	513K

Heat Load Parameter (non-dimensional cooling flow) $HLP = \frac{\dot{m}_c c_p}{h_{ext} A_{ext}} = \dot{m}_c c_p R_{ext}$

Independent variables

• *m*_c

Dependent variables

• $T_{w,ext}; \phi$

Cooling designs

External Thermal Resistance Is Constant

External geometry and conditions

- NACA-0024 external profile
 - Symmetric design for screening different cooling designs
- External test conditions = constant
 - $T_g = 650K$; $P_g = 0.11 MPa$
 - $\dot{m}_g = 0.64 \ kg/s \rightarrow V_g \cong 120 \ m/s$
 - $Ma_g = 0.2$
- Surface roughness

	Airfoil Internal	Ra	Ra
R. T	Cooling Design	As Received (microns)	After Painting (microns)
	Baseline Vane		
	Span-wise	5.0 ± 0.6	1.4 ± 0.3
	Chord-wise	5.7 ± 1.7	1.5 ± 0.4
	Baseline Blade		
	Span-wise	3.6 ± 0.8	0.8 ± 0.15
	Chord-wise	3.8 ± 0.6	1.0 ± 0.2
	NETL Double wall		
	Span-wise	1.1 ± 0.2	1.0 ± 0.3
	Chord-wise	1.1 <u>+</u> 0.15	0.7 <u>+</u> 0.3

mean ± 2 standard deviations

Internal Resistance Varies with Design and Flow

Some of the internal cooling designs tested

Baseline Vane

• Baseline Blade

 Stacked double-wall (NETL Design)

Removed in CAD

Prototype Airfoil Cooling Results

One design is more efficient at low cooling air flows

ENERGY

Additive Manufacturing with ODS Powder Processing

ODS-IN718 samples have been manufactured using 2 approaches

• Direct energy deposition

• Laser powder bed fusion (EOS M290)

IN718 with 0.5% Y_2O_3 – Uniform distribution

Cross-section and Y-elemental map

As-printed ODS 718 – cross-section

Yttrium is uniformly distributed

0.5% Y₂O₃ addition has little effect on UTS

Need higher Y₂O₃ loading?

- Increasing baseline engine firing temperature + improved cooling design
 - 2 percentage point improvement over 33% efficient 5-10 MWe gas turbine
 - Power increase ~ 20%
 - Steam production increase ~ 10%
- Public airfoil cooling concepts (baseline and advanced) designed, built, and tested
 - NETL double-wall concept can achieve advanced cooling target at the same cooling flow and lower pressure drop than baseline blade
- Powder processing method for oxide dispersion strengthen demonstrated for 0.5% Y₂O₃ in IN718
 - Uniform distribution of Y throughout the part
 - Preliminary results and previous work suggest higher Y₂O₃ concentrations are needed
 - ODS M247 powders have also been prepared

Questions, Comments

VISIT US AT: www.NETL.DOE.gov

