TURBO-COMPRESSION COOLING SYSTEM FOR ULTRA LOW TEMPERATURE WASTE HEAT RECOVERY

2022 CHP/District Energy System Portfolio Derek Young June 7, 2022

Colorado State University

REACH CoLab

PRESENTATION OVERVIEW

- Motivation
- Turbo-Compression Cooling
- Test Facility
- Planned and Future Work

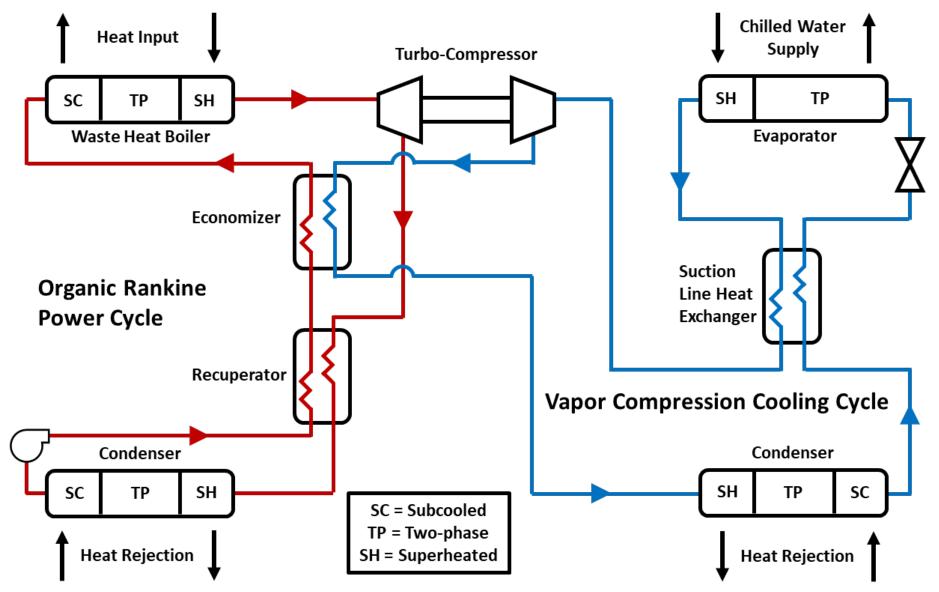
WASTE HEAT RECOVERY

- Low-grade WHR can substantially improve energy efficiency for a variety of industries
- Implementation of heat driven chillers is sparse
 - Less than 10% of 4,500 US CHP installations use heat driven chillers
 - Commercially available heat driven chillers (absorbers) have operational and economic barriers
- Recovering low-grade waste heat and converting it to useful cooling
 - US MFG: 54% reduction in CO2 emissions from cooling-related energy use, 6% total reduction
 - CHP: 20% reduction in CO2 emissions for cooling related energy use in Commercial Buildings

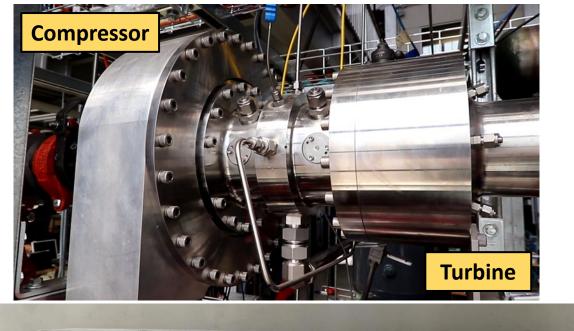
US CHP Sector (2021) Commercial and Industrial

Total Electrical Capacity	81	GWe
Thermal Energy Available	73	$\mathrm{GW}_{\mathrm{th}}$
Heat Driven Cooling Capacity	58	$\mathrm{GW}_{\mathrm{th}}$
Electrical Offset	14.5	GWe
Energy Reduction	76,000	GWh
Electrical Savings	\$5.3 billion	\$
CO2 Emission Reduction	41	Million metric tons

US Manufacturing Sector (2018)


_	U	0	
_	Recoverable Heat Loss	417,626	GWh
	TCCS Cooling	334,101	GWh
	Energy Reduction	83,525	GWh
	Electrical Savings	\$5.9 billion	\$
	CO2 Emission Reduction	45	Million metric tons

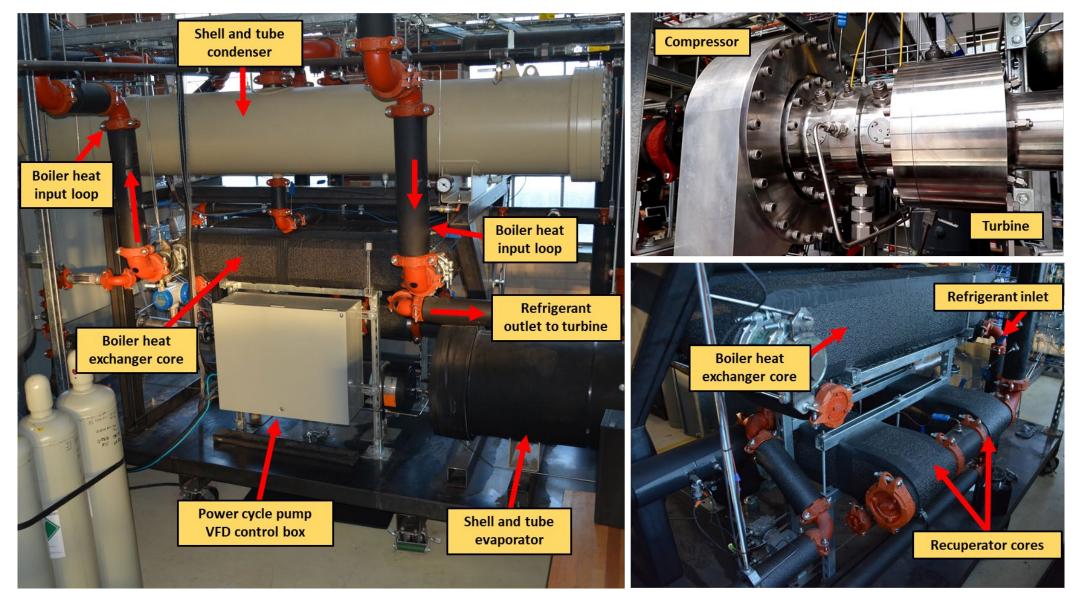
TURBO-COMPRESSION COOLING


TURBO-COMPRESSION COOLING

CRITICAL ENABLING TECHNOLOGIES

- Turbo-Compressor
 - High speed, high efficiency (>80% isentropic) centrifugal machine
 - Directly coupled
 - Custom designed for our application with R1234ze(E)
- Compact Heat Exchangers
 - Low-cost, aluminum brazed plate style
 - High surface area to volume ratio
 - High effectiveness, low pressure drop

Recuperator


Economizer



TCCS TEST FACILITY MAIN SKID

TCCS TEST FACILITY – AUXILIARY LOOPS

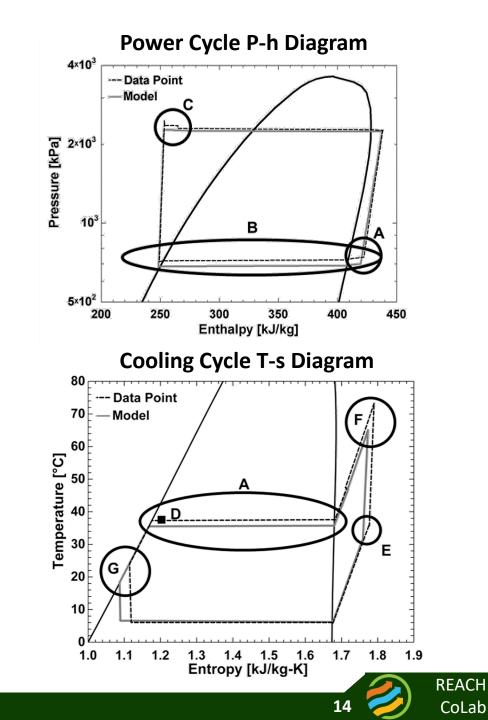
BASELINE DESIGN POINT

- Auxiliary loop temperatures designed to match commercial absorption systems for direct comparison
- High efficiencies for turbomachinery based on designs from project partner

Model Input	Value	Calculated Value	Value
$\eta_{ m s,turbine}$	83.1%	$\dot{W}_{ m turb}$	50.34 kW
$\eta_{ m s, compressor}$	82.0%	$\dot{W}_{ m comp}$	47.47 kW
$\eta_{ m shaft}$	94.3%	$COP_{\rm TH}$	0.65
T _{boiler,in/out}	91°C/86°C	$\eta_{ m ORC}$	8.10%
T _{condenser,in/out}	30°C/35°C	$COP_{\rm VCC}$	6.32
T _{chiller,in/out}	12°C/7°C	$Q^{\cdot}_{ m boiler}$	459 kW
Working Fluid	R1234ze(E)	$\dot{Q_{ ext{condenser, power cycle}}}$	456 kW
		$\dot{Q_{ m condenser,coolingcycle}}$	315 kW
		$\dot{Q_{ m recuperator}}$	22 kW
		$Q^{\cdot}_{ m economizer}$	34 kW
		$\dot{\mathcal{Q}_{\mathrm{SLHX}}}$	42 kW
		$\dot{m}_{ m r,\ power\ cycle}$	2.79 kg s ⁻¹
		$\dot{m}_{\rm r,\ cooling\ cycle}$	1.83 kg s ⁻¹

EXPERIMENTAL TESTING

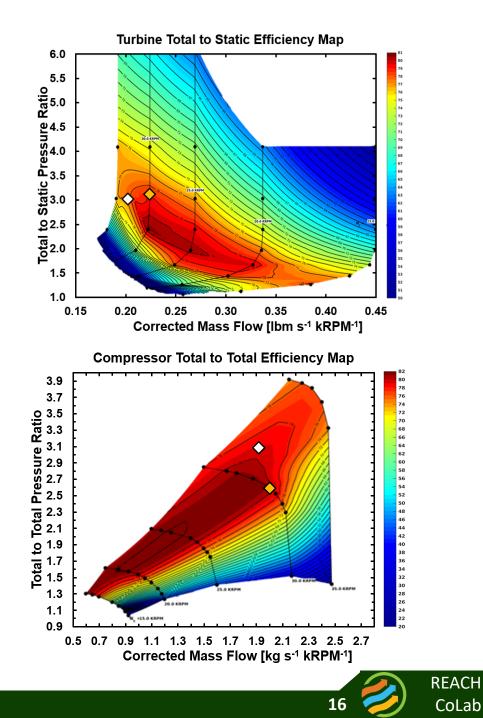
DESIGN POINT RESULTS


- Boiler Temperature Inlet/Outlet
 - 91°C to 86°C
- PC and CC Condenser Temperature Inlet/Outlet
 - 30°C to 37°C
- Evaporator Temperature Inlet/Outlet
 - 12°C to 7°C

Experimental Performance	Value
Boiler Heat Duty [kW]	473.0 ± 10.6
Power Condenser Heat Duty [kW]	435.7 ± 9.5
Cooling Condenser Heat Duty [kW]	291.8 ± 4.0
Evaporator Heat Duty [kW]	263.8 ± 3.5
Turbine Work [kW]	50.07 ± 0.57
Compressor Work [kW]	50.24 ± 0.48
Transfer Efficiency [%]	100.3 ± 1.5
Turbine Efficiency [%]	76.70 ± 0.90
Compressor Efficiency [%]	84.75 ± 0.54
Turbo-compressor speed [RPM]	$31,\!500\pm300$
Thermal COP [-]	0.56 ± 0.01
Organic Rankine Cycle Efficiency [%]	7.71 ± 0.22
Vapor Compression Cycle COP [-]	5.23 ± 0.09

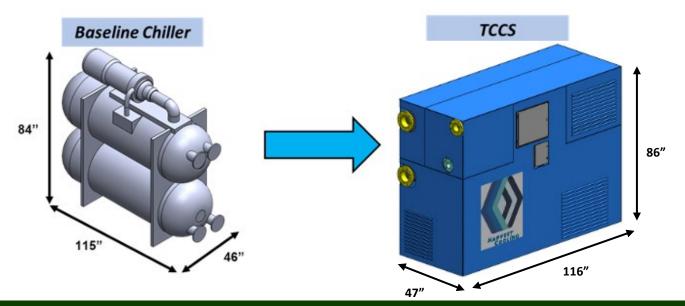
DESIGN POINT RESULT ANALYSIS

- COP = 0.56 experimental, compared to 0.6 modeled
- Lower than design turbine η caused:
 - Higher mass flow through PC to get desired power output
 - Greater delta P through cycle
 - Choked flow through turbine
- Undersized condenser meant lower turbine PR and higher compressor PR
 - Lower turbine PR = less power output
 - Higher compressor PR = less flow delivered and reduced cooling capacity in evaporator
 - Two-phase fluid exiting CC condenser (less h_{vap}) available in evaporator for chilling
- Some of these challenges were outweighed by performance improvements from heat integration
 - 19.6% increase to COP from SLHX (0.45 to 0.56)
 - 9% increase to COP from Economizer (0.51 to 0.56)
 - 7% increase to COP from Recuperator (0.52 to 0.56)



NEXT STEPS FOR TCCS

PLANNED AND FUTURE WORK


- Test Facility Modifications
 - Changes to enable repeatable startup and shutdown
 - More testing to generate detailed turbomachinery performance maps
 - Turndown testing
- Future Work
 - Replace shell and tube condenser with larger surface area HX
 - Transition to commercialization: CHP packaging and marine sectors

PLANNED AND FUTURE WORK – US NAVY STTR

- Partnering with small business Mantel Technologies on a Phase II DOD STTR grant to design and test a turbo-compression cooling system for US Navy Ships
- Capture low-grade waste heat from ship service diesel gensets to improve fuel efficiency by 10%
- TCCS fits into existing chiller footprint by using compact heat exchangers

System	Baseline Chiller	TCCS
Nominal Cooling Capacity	200-tons	200-tons
System Weight	20,000 lbs	20,000 lbs
Annual Electricity Consumption	789,000 kWh	387,000 kWh

COLORADO STATE UNIVERSITY

ACKNOWLEDGEMENTS

Funding Sources

- ARPA-e ARID Program
- DOE EERE AMO Funding, DE-EE0008325
- DOD STTR Phase I-II with US Navy

Project Partners

- Colorado State University
- Barber-Nichols, Inc.
- Modine Manufacturing Co.
- Mantel Technologies
- Key Advisers
 - DOE: Bob Gemmer, John Winkel
 - BNI: Bob Fuller, Kevin Eisemann, Jeff Noall
 - Modine: Rob Bedard, Mike Reinke, Thomas Grotophorst

