High Speed Medium Voltage CHP System with Advanced Grid Support DE-EE0008409

(October 2018 – July 2022)

Johan Enslin, Clemson University Enrique Ledezma, TECO Westinghouse Presented by: Randy Collins, Clemson University

> June 7-9, 2022 DOE AMO CHP Workshop

Enrique Ledezma, Rusty King TECO Westinghouse Round Rock, TX

Johan Enslin, Ramtin Hadidi Clemson University North Charleston, SC

ENERGY EFFICIENCY & Advanced Manufacturing Office

DE-EE0008409: High Speed Medium Voltage CHP System with Advanced Grid Support

Project Partners:

Project Duration:45 monthsProject Start Date:October 1, 2018Requested NCE for BP2 to October 31, 2022

Project Goals:

- Enable a TRL 5 demonstration of the 1 MW, 500 Hz, 15000 RPM high frequency CHP generator and electric machine system, utilizing advanced grid support functions required by IEEE Std. 1547-2018 and UL 1741 SA.
- Validate the grid tied SiC enabled high frequency CHP generator converter.
- Implement and validate the system replicating the gas turbine dynamics and high-speed generator-tied converter.
- Demonstrate island mode transitions and resynchronization for reconnection with the power grid with the fully coupled system prototype setup.

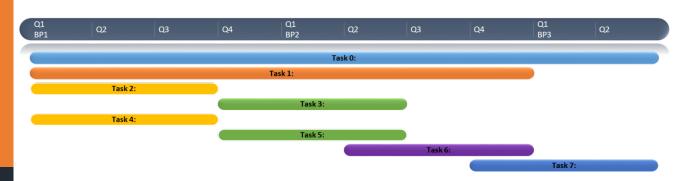
TECO Westinghouse

HS MV CHP with Grid Support Concept

- High Speed CHP systems operating directly at medium voltage may provide smaller footprint
- No 60 Hz power transformer with direct interface to medium voltage
- High speed machine drive may provide advanced grid support functions, i.e. reactive power support, voltage regulation, harmonic filtering and frequency regulation.
- The primary goal of this project is to be in a position to develop a medium voltage commercial grid-tied system with advanced grid support functions validated against IEEE-1545-2018 and UL 1741 SA
- Enable a TRL 5 demonstration of 1 MW, 500 Hz, 15,000 RPM machine system for advanced CHP grid integration

The demonstration system will:

- Validate the grid-tied SiC enabled high frequency CHP generator converter
- Implement and validate the system replicating the gas turbine dynamics and high speed generator-tied converter
- Demonstrate island mode transitions and resynchronization with the power grid with fully coupled system prototype setup

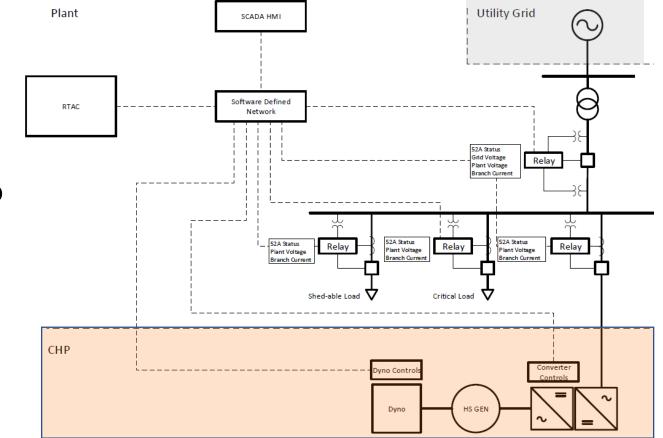

Demonstration System Specifications		
Generator Voltage	4.16 kV	
Power Rating	1 MW	
Operating Speed Range	11,000 – 15,000 RPM	
Grid Voltage	480 V – 13.8 kV	
Enabling Technology	WBG SIC MOSFET	
Microgrid Controller	Compliant with IEEE Std. 2030.7	
Interconnection and Interoperability	Compliant with IEEE Std. 1547-2018	
Installed Cost Target	< \$1,800 / kW rated power	

TECO Westinghouse

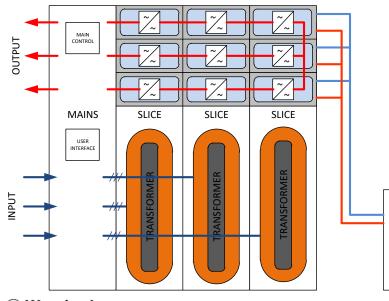
Project Scope

- Project is divided into seven tasks spanning two and a half budget periods.
- The development and hardware validation tasks are staggered to allow for incremental
- The project is capped off with a complete system demonstration with Power Hardware-In-the-Loop
- Mostly Completed Tasks 1-4
- Partially Completed 5-6
- Final Task 7 Planned for 2023

Table of Project Task Descriptions


Task	Description
1	Integration of Power Electronics Coupled CHP
	in Advanced Manufacturing Plants
2	Development of Advanced Grid Support
	Functions
3	Hardware Validation of Advanced Grid Support
	Functions
4	Development of Machine Controls for High
	Speed Gas Turbine Dynamics
5	Hardware Validation of the Coupled Gas
	Turbine and High Speed Generator Dynamics
6	Simulation and Controller Hardware-In-the-
	Loop Validation of the Fully Coupled System
7	Power Hardware-In-the-Loop Testing of the
	Fully Coupled System

Base Line Manufacturing Plant Configuration


- CHP is the only source of distributed generation
- Islanding switch on the customer side of the utility interconnection
- Referenced at 1 MW DG and up to 2 MW plant load
- Consists of critical and shed-able plant loads
- COTS control hardware and software

WBG Power Electronics Architecture (Task 1)

- Series Connected H-Bridge (SCHB) topology with bi-directional power flow capabilities
- High frequency motor control enabled through SiC 1700 V MOSFETs
- Cascaded converters allow for direct connection up to 13.8 kV
- Integrated isolation transformers allow for a range of medium voltage grid connections from 4,160V up to 35 kV

TECO Westinghouse Schematic and actual system installation of a 1 – 2.5 MW SCHB architecture

2-PHASE COOLER

Grid Interactive Converter: Scope of Algorithm Development (Task 3)

- Five main areas of development, in order of priority
- 1. Phase lock loop bandwidth and stability under asymmetrical voltages
- 2. Measured voltage transformation(s)
- 3. Current regulation for asymmetrical voltages
- 4. Active unintentional islanding scheme with reactive power
- 5. Active and reactive power controller

Groupings of IEEE 1547 and UL 1741 Functional Requirements

Reactive and Active Power Control

- Constant Power Factor
- Constant Reactive Power
- Volt-VAR Reactive Power Control
- Watt-VAR Reactive Power Control
- Volt-Watt Regulation

Voltage Ride-Through

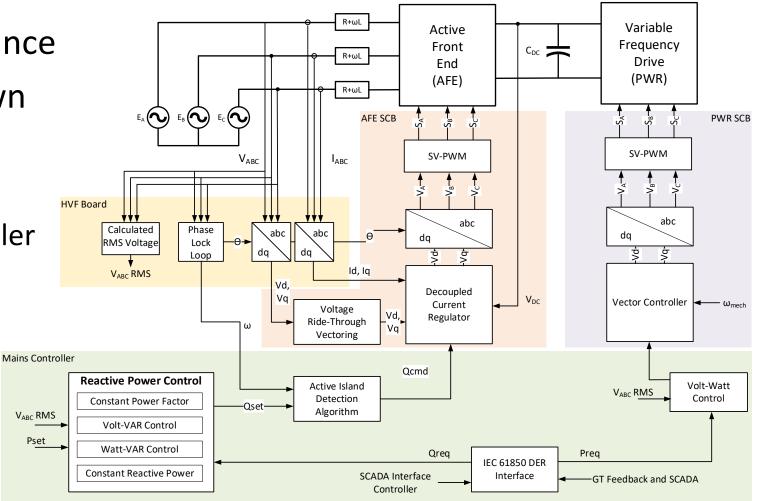
• Symmetrical and Asymmetrical

Frequency Ride-Through

• Under and over frequency

Frequency Regulation

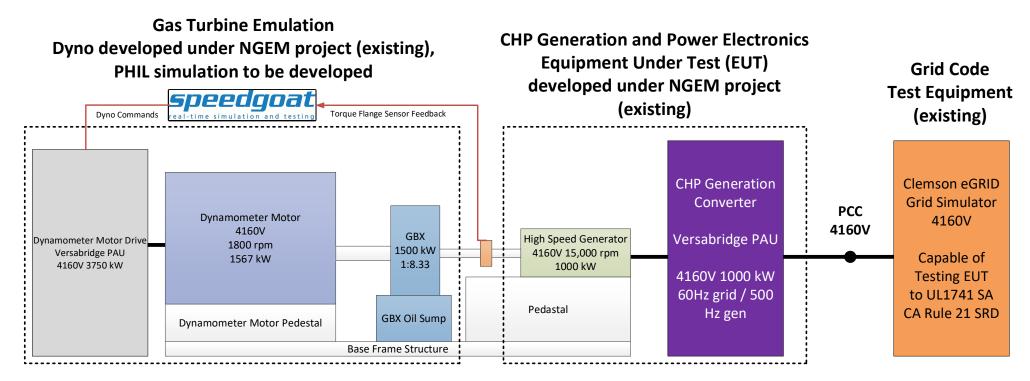
- Droop mode frequency regulation
- Inertial response


Unintentional Islanding

- Active unintentional islanding
- Passive unintentional islanding

Grid Interactive Converter: Scope of Algorithm Development (Task 3 and 4)

- IEEE 1547-2018 compliance
- Trip logic units not shown
- Other possible inputs:
 - GT engine control
 - SCADA Interface Controller



System Validation in Task 7

- Power Hardware-In-the-Loop simulation of the gas turbine dynamics
- Utilizing existing eGRID capabilities for grid code compliance testing

Block diagram of the Power Hardware-In-the-Loop system validation

SCADA Interface Controller (Task 6)

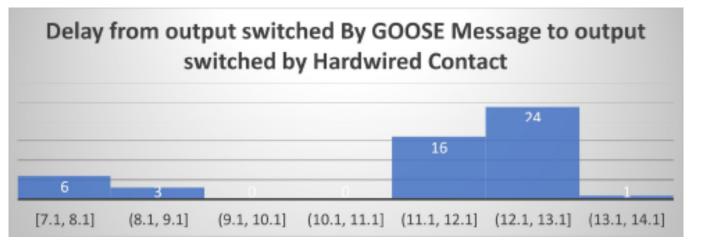
• SCADA Interface Controller

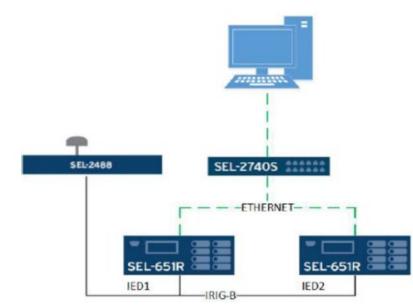
- Function 1: Coordinate utility SCADA requests
- Function 2: Manage islanding transitions
- Function 3: Provide microgrid energy management functions

• Plant EPS to use IEC 61850 data framework

- CHP plant to use a mixed definition
 - IEC 61850-7-420 for DER functions
 - Additional logic nodes for IEEE 1547 and IEEE 2030 islanding transitions
- Provides a clear roadmap to integrate future resources

TABLE II PARAMETERS THAT MAKE UP AN IEC 61850 PROFILE FOR ENERGY MANAGEMENT OF CHP UNITS

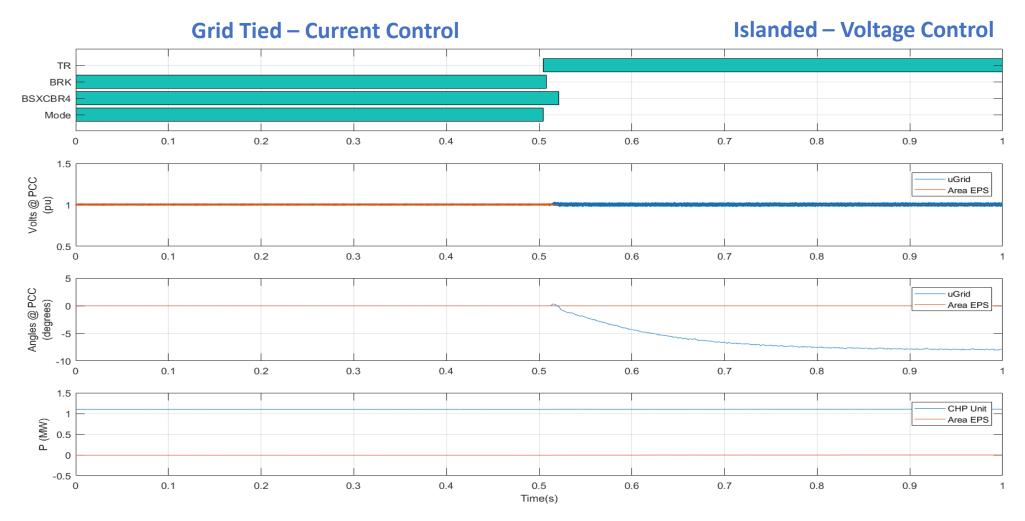

param. name	unit	description
chp-heat-power-efficiency	%	heat to electricity
chp-operation-possible	bool	flag which states whether the target power of the CHP unit(s) may be set
chp-power	W	current power of the CHP unit(s)
chp-target-power	W	to set the target power
chp-min-power	W	minimal elec. CHP power
chp-max-power	W	maximum elec. CHP power (sum of the power of available CHPs)
chp-step-size	W	the modulation step size
chp-active-control	bool	a keep alive bit - which has to be set in constant intervals to keep control
storage-max-capacity	Wh	maximum capacity of storage
storage-loss-over-time	%/h	loss of storage tank over time
storage-state-of-charge	%	state of charge of the storage tank
boiler-power	W	current power of the boilers


S. Feuerhahn, R. Hollinger, C. Do, B. Wille-Haussmann and C. Wittwer, "Modeling a vendor independent IEC 61850 profile for energy management of micro-CHP units," *2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)*, Berlin, 2012, pp. 1-5.

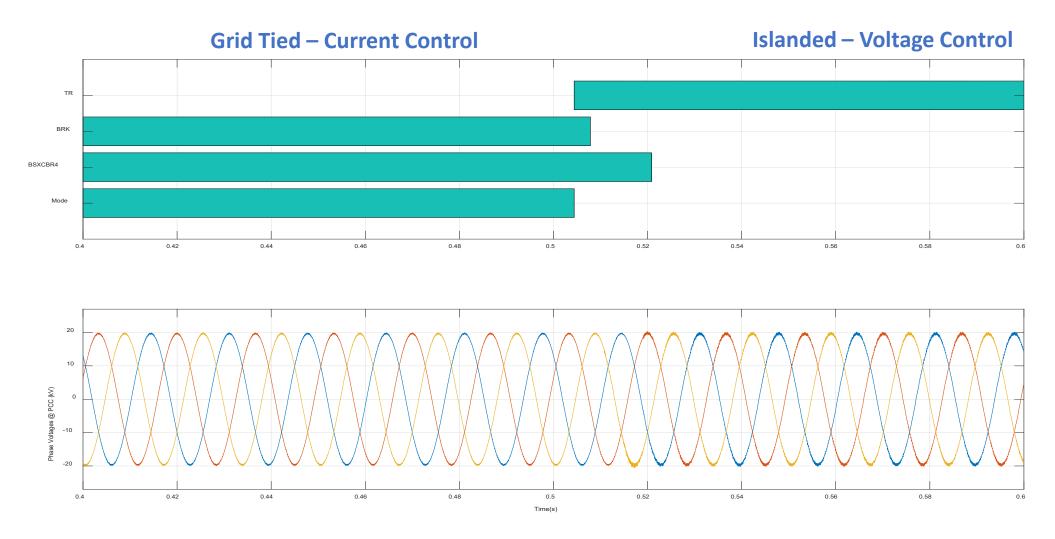
SCADA Interface Controller Hardware-In-the-Loop (CHIL)

- Capable of benchmarking and proving use cases with the complete
- Utilizing real-time power electronics and power system simulation tools
- Coupled simulation to real control elements and IEC 61850 enabled IEDs
- Using industry recognized hardware and software for system configuration and control

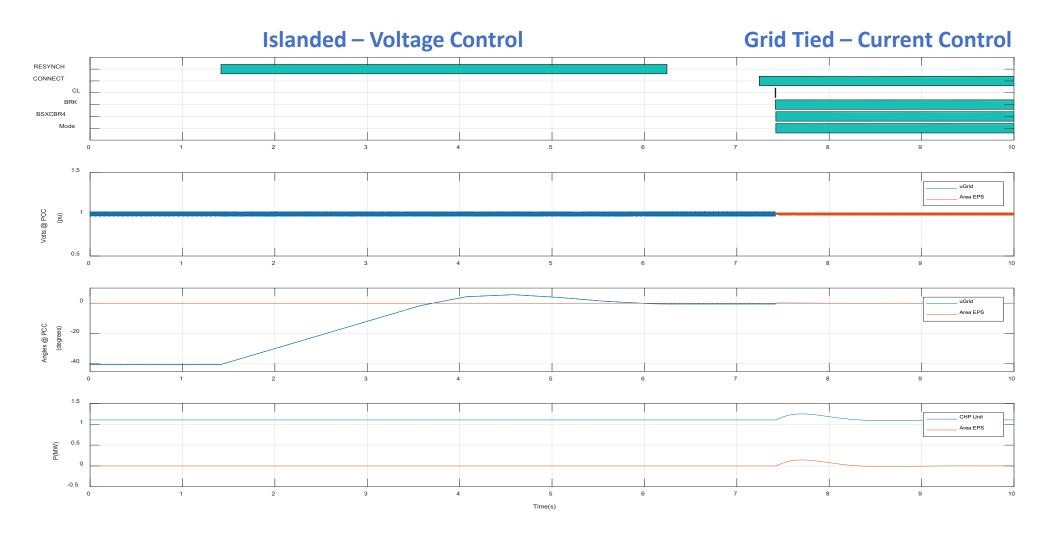
GOOSE messaging benchmark diagram

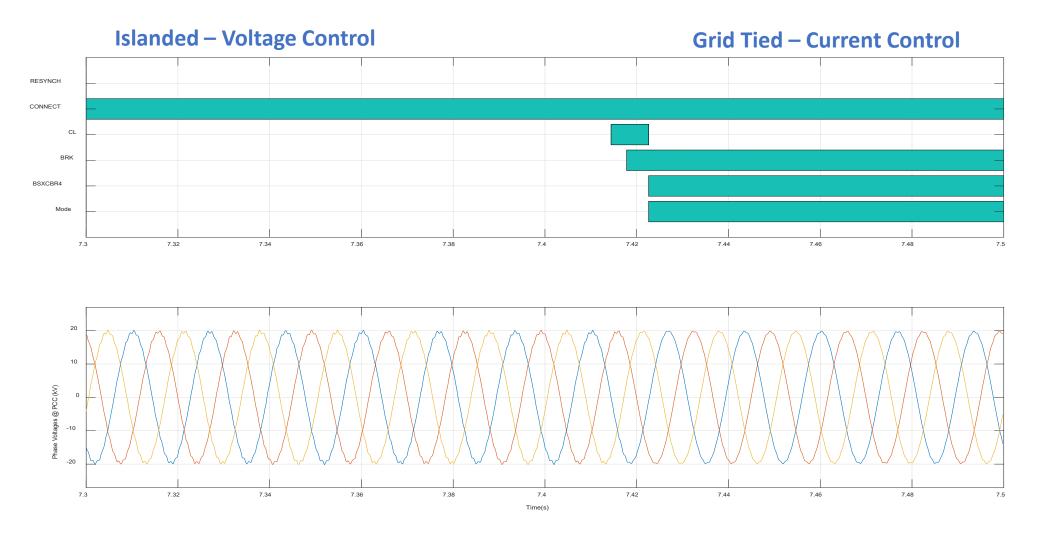


Real-Time Distributed Control system used for initial controller demonstration

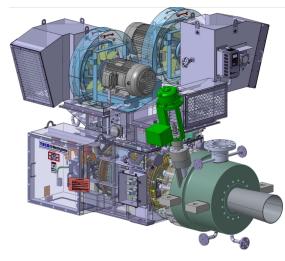

Transition to Islanding: Balanced Power

TECO Westinghouse


Transition to Islanding: Balanced Power


Automatic Reconnect of Islanded System

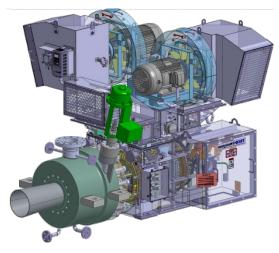
Automatic Reconnect of Islanded System



Enabling Technology

- High Frequency Medium Voltage Variable Frequency Drive
 - Multi-level design suitable for many applications
 - Modular design for simplified O&M requirements
 - Using state-of-the-art Silicon Carbide power electronics to increase efficiency

- High Speed Medium Voltage Induction Machine
 - Robust machine design building off decades of experience
 - Low maintenance squirrel cage design with no permanent magnets
 - Open or totally enclosed designs available
 - Can be designed for hazardous environments



High Speed Medium Voltage Induction Machine

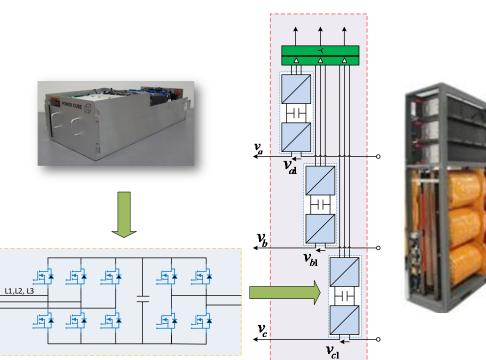
- Considered a squirrel-cage induction motor topology for the high speed application because of its robustness
- Selected commercially available materials with low losses and high strengths
- Optimized the geometry for the application to achieve the required performance with lowest cost
- Designed the stator coils using type 8 Litz conductors to minimize eddy current proximity losses

Prototype 1 MW, 15,000 RPM Induction Machine

3D rendering with the turbo expander attached

1 MW Reference System Specifications

(sensitive data removed)

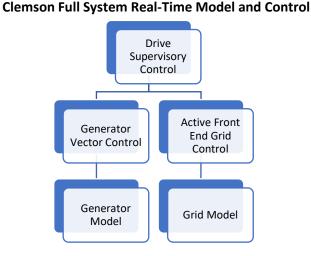


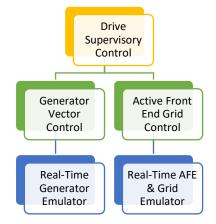
High Frequency Medium Voltage Variable Frequency Drive

- Modular, multi-level system architecture
 - Scalable in voltage by adding slices in series
 - Scalable in power by adding units in parallel
- Suitable for high speed motoring and generation applications
- Able to use low voltage SiC MOSFETs, leveraging cost reductions from other industries
- Low input and output distortion reducing grid and induction machine requirements

1 MW Reference Hybrid SiC based System Specifications

(sensitive data removed)

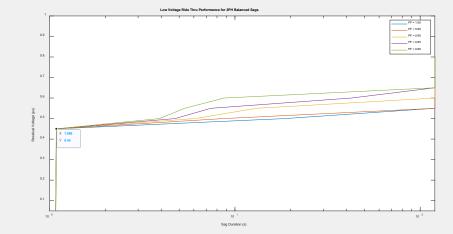

Modular, multi-level, medium voltage VFD architecture scalable in the 1 to 20 MWe range

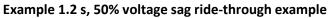


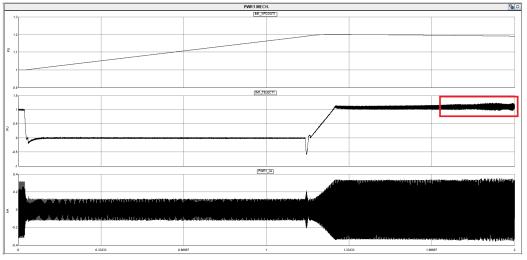
Controller HIL Approach (Task 5)

- Clemson has developed a real-time model of the complete system to investigate the Drive Supervisory Control
 - This controller contains the elements of the Generator Vector Control and the Active Front End Grid Control
 - Enables control development around the coordination of the Generator and Grid control requirements
- TWMC is working to finalize the CHIL for:
 - Generator Vector Control and Real-Time Generator Emulator – BP2 M1
 - Active Front End Grid Control and Real-Time AFE & Grid Emulator – BP2 M3
 - Development must be completed at TWMC due to the control hardware setup involved
 - Clemson has supported development of both the generator and AFE & Grid emulators

TWMC Controller Hardware-In-the-Loop Implementation

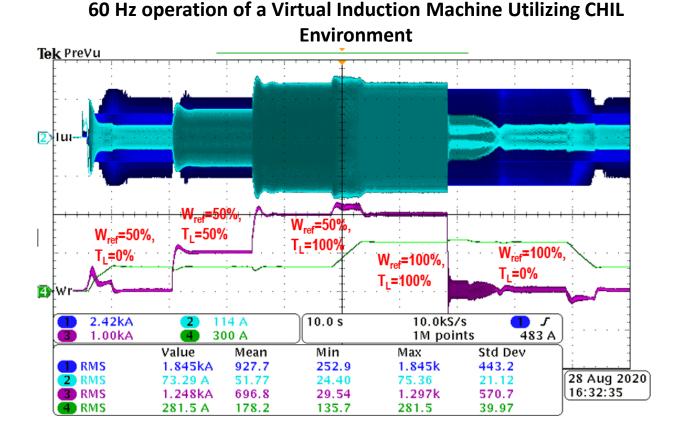

TWMC is focusing on CHIL of Vector and AFE Control to meet milestones




TECO
Westinghouse

Drive Supervisory Control (Task 5)

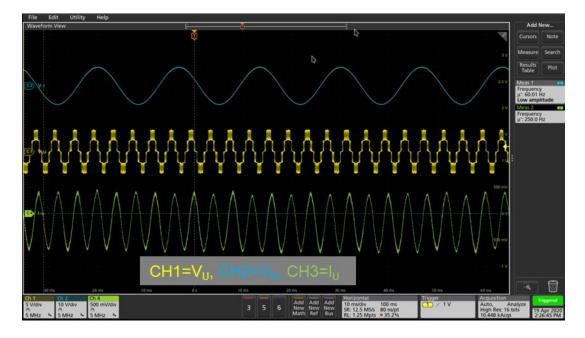
- The AFE overcurrent limits are sufficiently large so that the system should ride through the majority of low voltage conditions in the IEEE 1547 2018 Cat. III mandatory operation region
 - For single phase and two phase sags, the system will ride through indefinitely regardless of the power factor setpoint
 - For three phase sags, the power factor setpoint will affect the allowable ride through duration at the combination of low power factor and large voltage sags
- The system meets the 1.0s ride through requirement in the momentary cessation region.


3 Phase Sag Maximum Duration Vs. Power Factor

TWMC Controller HIL Simulator (Task 5)

TWMC "Iron Bird" CHIL Setup

- Shown torque dynamic response as command is varied from 0%, 50%, 100% and back to 0%
- Correspondingly, speed response as command changes from 0%, 50%, 100%, and back to 50%

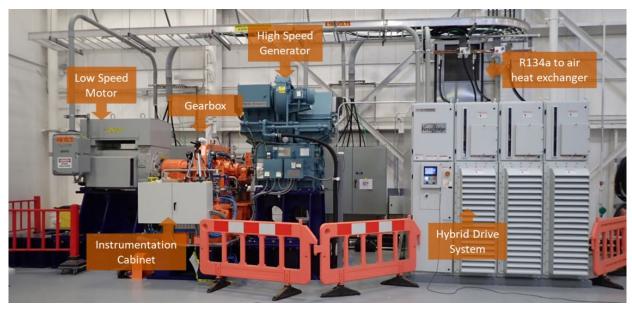


TWMC Controller HIL Simulator (Task 5)

NEXT CHIL Activities at TWMC to complete BP2 Tasks:

- Tune the virtual LabView FPGA encoder model to reliably emulate real motor encoder operation at 500Hz (15000 RPM)
- Test AFE Grid Control and Realtime AFE & Grid Emulator (CHIL environment)
- Transfer tested system Control Code for final PHIL prototype validation

500 Hz operation of a Virtual Induction Machine Utilizing CHIL Environment



- The figure above shows correct input voltage, output voltage, and output current at 50% speed command.
- At speed >50%, output currents (NOT shown) demonstrate some imbalances. Encoder model may require more tuning.

1 MW Prototype System Validation (Task 7)

- Initial full power runs completed demonstrating successful results
 - Total system efficiency, shaft to grid > 92%
- Comprehensive test plan developed and validation testing underway

1 MW reference design undergoing validation testing at the Clemson University eGRID Center

Protocol Reference	Title
IEEE Std 1566 [™] -2005	IEEE standard for performance of adjustable speed ac drives rated 375 kW and larger
UL 347A-2015, 1 st Ed.	Medium voltage power converter equipment, standard for safety
IEC 61800-4:2002	Adjustable speed electrical power drive systems- general requirements-rating specifications for ac power drive systems above 1000 VAC and not exceeding 35 kV
IEEE Std 519 [™] -1992	IEEE recommended practices and requirements for harmonic control in electrical power systems
IEC 61000-3-6:2008	Harmonic Emission Limits for Customers Connected to MV, HV and EHV
IEEE Std 112 [™] -2017	IEEE standard test procedure for polyphase induction motors and generators
NEMA MG1-2014	Motors and generators
IEEE Std 85-1973	IEEE Test Procedure for Airborne Sound Measurements on Rotating Electric Machinery
IEEE Std 1547.1-2020	IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources with Electric Power Systems and Associated Interfaces
UL 1741 SA, 2 nd Ed.	Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources

Questions

