

The Bradley Department of Electrical and Computer Engineering College of Engineering Virginia Tech, Blacksburg, Virginia, USA

"High-Efficiency Modular SiC-based Power-Converter for Flexible-CHP Systems with Stability-Enhanced Grid-Support Functions"

Flexible CHP Portfolio Meeting

Rolando Burgos, Bo Wen, Virgilio Centeno, Dushan Boroyevich,

Tobias Ahlgrim, and Gopal Mondal

Wind and Solar Power Growth in the United States

WIND Generation Capacity

PV Generation Capacity

U.S. Generation Capacity = 1,203 GW

Flexible Combined Heat and Power (F-CHP) Vision

Project Goals

- 1. To develop an F-CHP power converter featuring:
 - Full compliance with the IEEE Standard 1547, category B, for operation in local areas with high aggregated DER penetration
 - Full compliance with the IEEE Standard 2030.7 for the specification of microgrid controllers
 - Stability-enhanced grid-support functions avoiding the onset of dynamic interactions with the grid and other system components
- 2. To enable F-CHP systems for both microgrid and standalone applications
- 3. To develop a **modular**, **scalable** MV power converter concept based on 10 kV SiC MOSFET devices achieving:
 - Efficiency > 99 %, and power density > 10 kW/I

Instability Triggered by use of Droop-Mode Voltage Control

PV Inverter Tests in Droop Q-V Mode

DC Bus AC Currents

The Modular Scalable AC-AC Circuit

The Prototype AC-AC Circuit Constructed

June 7, 2022

Constructed converter prototype, inverter side

Symbol	Description	Value
V _{dc}	F-CHP converter dc-link voltage	1000 V
V _{ac}	Grid and CHP generator voltage	480 V
Р	Active power rating	100 kW
Q	Reactive power rating	±75 kVar
f	Line frequency	50/60 Hz
L _g	Grid side filter inductance	4 µH
R _d	Grid side filter damping branch resistance	0.56 Ω
C _d	Grid side filter damping branch capacitance	20 µF
C _f	Grid side filter capacitance	20 µF
L _{ph}	Phase-leg output inductance	200 µH
L _{arm}	Arm inductance	10 µH
f _{sw}	Switching frequency	20 kHz
C _{dc}	Cell dc capacitance	74 µF
Ν	Number of cells per arm	1
device	1.7 kV SiC CAS300M17BM2	\

S. Zhou, B. Wen, J. Wang "Design and hardware implementation of the peak current mode switching cycle control for voltage balancing of modular multilevel converters", APEC 2021. Center for Power Electronics Systems

Peak Current Mode (PCM) Switching Cycle Control (SCC)

S. Zhou, B. Wen, J. Wang "Design and hardware implementation of the peak current mode switching cycle control for voltage balancing of modular multilevel converters", APEC 2021.

Center for Power Electronics Systems

Phase-Leg with PCM and SCC

Distributed Control System

IEEE 1588 Precision Time Protocol (PTP) Synchronization Proposed in 2002 for synchronization.

Digital controller

CPES June 7, 2022

- TI TMS320 DSP (Control algorithm)
- Altera MAX 10 FPGA (Communication protocol)

Y. Rong, J. Wang, Z. Shen, S. Zhou, B. Wen "A synchronous distributed communication and control system for SiC-based modular impedance measurement units", IEEE Journal of Emerging and Selected Topics in Power Electronics, early access.

Three-phase Test Results with PCM and SCC

Designs	DC Cap	L _{Arm}
MMC	1 mF	100 µH
SCC	74 μF	10 µH

AC to AC Operation with Two AC Power Supplies

Center for Power Electronics Systems

AC to AC Operation @ 1 kV DC, 470 V rms AC

Microgrid Power Hardware-in-the-Loop (P-HIL) Test Bed

P-HIL Test Bed Implementation

Egston Amplifier

OPAL-RT & Current Sensor Transformer

F-CHP Converter

Center for Power Electronics Systems

EGSTON Working with OPAL-RT and Current Sensors

Network Configuration of Emulated Microgrid

F-CHP Converter Grid-Forming Control in Grid-Connected Mode

Dynamic Benefits of F-CHP Converters

- The F-CHP converter reduces the equivalent grid impedance seen by PV inverters
- Dynamic interactions between PV inverters and the grid are avoided
- PV inverters can increase their power generation

Impedance-based Stability Analysis

Benefits of F-CHP Converter

PV 6 MW, 100 % load, without F-CHP converter

PV 6 MW, 100 % load, with F-CHP converter

3 times MW 12.75 14 without FCHP in grid 12 with FCHP in grid 10 8.25 With **F**-CHP 8 4.5 6 4 0.75 1.25 1.5 Without 2 F-CHP 0 10% Load 30% Load 70% Load 100% Load Limited by triggering instability Limited by voltage profile

PV Maximum Integration Capacity

CPES June 7, 2022

Islanding Operation in 13-bus Microgrid With Microgrid Controller

TES June 7, 2022

Islanded Operation Control Schemes

Scheme I: Reactive loop replaced by voltage regulation loop when switching to IS operation mode •

Scheme II: Reactive loop works uninterruptedly ٠

Islanded Operation Test Results—Scheme I

FS June 7, 2022

Islanded Operation Test Results—Scheme II

Islanded Operation Test Results—Scheme II

Concluding Remarks

- The proposed F-CHP converter has demonstrated its modularity and high efficiency attained by the adoption of SiC devices
- The F-CHP converter provides effective static compensation of PV inverter generation
- The F-CHP converter enhances the electrical system dynamics avoiding interactions between converters AND enabling PV inverters to increase their active power generation
- The proposed grid-forming control enables the F-CHP converter operation in grid-connected and islanded modes as well as under severe system faults
- ➢FINAL STEP: full microgrid P-HIL demonstration

Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering College of Engineering Virginia Tech, Blacksburg, Virginia, USA

"High-Efficiency Modular SiC-based Power-Converter for Flexible-CHP Systems with Stability-Enhanced Grid-Support Functions"

Flexible CHP Portfolio Meeting

Rolando Burgos, Bo Wen, Virgilio Centeno, Dushan Boroyevich, Tobias Ahlgrim, and Gopal Mondal

