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Wind and Solar Power Growth in the United States

70 GW
in Q2 2019

U.S. Generation Capacity = 1,203 GW
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Flexible Combined Heat and Power (F-CHP) Vision

June 7, 2022 Center for Power Electronics Systems 3



Project Goals

1. To develop an F-CHP power converter featuring:
 Full compliance with the IEEE Standard 1547, category B, for operation in local 

areas with high aggregated DER penetration
 Full compliance with the IEEE Standard 2030.7 for the specification of microgrid 

controllers
Stability-enhanced grid-support functions avoiding the onset of dynamic 

interactions with the grid and other system components
2. To enable F-CHP systems for both microgrid and standalone 

applications
3. To develop a modular, scalable MV power converter concept based 

on 10 kV SiC MOSFET devices achieving:
 Efficiency > 99 %, and power density > 10 kW/l

June 7, 2022 Center for Power Electronics Systems 4



Instability Triggered by use of Droop-Mode Voltage Control
Zdq Constant Q-Mode

Zdq Droop Q-V Mode Droop Q-V ModeConstant Q Mode

Characteristic Loci Characteristic Loci
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PV Inverter Tests in Droop Q-V Mode 

PV InverterIMU

AC SourcePV EmulatorAC Feeder

DC Bus AC Currents

AC Voltage

Droop Q-V
Control Mode
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The Modular Scalable AC-AC Circuit
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The Prototype AC-AC Circuit Constructed
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Phase-leg A

Phase-leg B

Phase-leg C

Filter

Contactors

Symbol Description Value
Vdc F-CHP converter dc-link voltage 1000 V
Vac Grid and CHP generator voltage 480 V
P Active power rating 100 kW
Q Reactive power rating ±75 kVar
f Line frequency 50/60 Hz

Lg Grid side filter inductance 4 µH
Rd Grid side filter damping branch resistance 0.56 Ω
Cd Grid side filter damping branch capacitance 20 µF
Cf Grid side filter capacitance 20 µF
Lph Phase-leg output inductance 200 µH
Larm Arm inductance 10 µH
fsw Switching frequency 20 kHz
Cdc Cell dc capacitance 74 µF
N Number of cells per arm 1

device 1.7 kV SiC CAS300M17BM2 \
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Constructed converter prototype, inverter side S. Zhou, B. Wen, J. Wang “Design and hardware implementation of the peak current mode 
switching cycle control for voltage balancing of modular multilevel converters”, APEC 2021.



Peak Current Mode (PCM) Switching Cycle Control (SCC)

June 7, 2022 Center for Power Electronics Systems 9

S. Zhou, B. Wen, J. Wang “Design and hardware
implementation of the peak current mode switching
cycle control for voltage balancing of modular multilevel
converters”, APEC 2021.
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Phase-Leg with PCM and SCC
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Distributed Control System
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Main 
Controller

Phase-leg A 
Controller

DC caps pre-
charge enable

vCU, vCL, Iph, 
Fault status

TI MCU

FPGA
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Phase-leg A FPGA to MCU interrupt request signal 

Phase-leg B FPGA to MCU interrupt request signal 

Phase-leg C FPGA to MCU interrupt request signal 

20 ns/div

8 ns
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IEEE 1588 Precision Time Protocol (PTP) Synchronization Proposed in 2002 for synchronization.

Digital controller Y. Rong, J. Wang, Z. Shen, S. Zhou, B. Wen “A synchronous 
 TI TMS320 DSP          (Control algorithm) distributed communication and control system for SiC-based 
 Altera MAX 10 FPGA  (Communication protocol) modular impedance measurement units”, IEEE Journal of Emerging 

and Selected Topics in Power Electronics, early access.



Three-phase Test Results with PCM and SCC
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Phase A upper and lower cell cap voltages, 1 kV
Phase B upper cell cap voltage, 1 kV
Phase C upper cell cap voltage, 1 kV

Phase A phase-leg current Phase A load current

Phase A upper arm current
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Designs DC Cap LArm

MMC 1 mF 100 µH

SCC 74 µF 10 µH



AC to AC Operation with Two AC Power Supplies

June 7, 2022

Converter 1Converter 2

Inverter Rectifier CI
MX45

277 V rms ll 800 V 311 V rms ll

CI
MX30

15 kW15 kW

CI:

Inverter output currents

Rectifier 
input 
current

Voltage 
MX30
vab

13

California
Instrument
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AC to AC Operation @ 1 kV DC, 470 V rms AC
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Front-end input voltages, 470 V rms ll

Front-end input currents

DC-link voltage 1 kV
Inverter phase A DC capacitor voltage 1 kV
Inverter phase B DC capacitor voltage 1 kV

Front-end phase B arm current

Inverter output voltage

Inverter output current
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Inverter Front-end AC
Source

14.4 Ω 1000 V 470 V rms ll

25 A pk



Microgrid Power Hardware-in-the-Loop (P-HIL) Test Bed
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P-HIL Test Bed Implementation
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Egston Amplifier OPAL-RT & Current Sensor F-CHP ConverterTransformer
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EGSTON Working with OPAL-RT and Current Sensors

June 7, 2022

Inverter 1

100 V

500 V

Emulated by
EGSTON P-HIL

3 Ω

1:1iinv =40A ip-hil
0.5 Ω0 mH

vab
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Network Configuration of Emulated Microgrid
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F-CHP Converter
Controller
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F-CHP Converter Grid-Forming Control in Grid-Connected Mode
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Dynamic Benefits of F-CHP Converters

The F-CHP converter reduces the equivalent grid impedance seen by PV inverters 
Dynamic interactions between PV inverters and the grid are avoided
PV inverters can increase their power generation
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PV 4.5MW, 100% load, 
with F-CHP converter 

PV 4.5MW, 100% load, 
without F-CHP converter 

Impedance-based Stability Analysis



Benefits of F-CHP Converter
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Microgrid

PMU PMU
open

closed

Substation Distribution line
Load1
5 kW

Load2
10 kW

Load3
10 kW

PV Facility
5𝑘𝑘𝑘𝑘 × 4

F-CHP PlantFixed Shunt 
Compensator

Grid-Forming/Grid-Tracking

Grid forming

Microgrid Controller
PMU Measurements

Circuit Breaker Command

Modbus

• Planned/unplanned islanding
• Re-synchronization
• P-Q setpoint 
• Droop parameters adjusting
• …

Converter Command

Islanding Operation in 13-bus Microgrid With Microgrid Controller
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Islanded Operation Control Schemes
• Scheme I: Reactive loop replaced by voltage regulation loop when switching to IS operation mode

• Scheme II: Reactive loop works uninterruptedly
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Islanded Operation Test Results—Scheme I

𝑅𝑅 𝐶𝐶𝑉𝑉𝑝𝑝𝑝

F-CHP

Scheme I

PV

8 𝑘𝑘𝑘𝑘

Grid-Following
4 𝑘𝑘𝑘𝑘

𝟏𝟏𝟏𝟏 𝒌𝒌𝒌𝒌

 𝑉𝑉𝑝𝑝𝑝 = 100 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
 𝑅𝑅 = 3Ω
 𝐶𝐶 = 150𝜇𝜇F

𝟏𝟏.𝟕𝟕 𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌

𝑃𝑃𝑃𝑃 = 98.6%

•
•

𝑓𝑓(𝐻𝐻𝐻𝐻)60 60.03659.964

𝐷𝐷𝑝𝑝
8 𝑘𝑘𝑘𝑘

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

GC

IS

P-f Droop

6 𝑘𝑘𝑘𝑘

islanding
PV Currents

F-CHP Voltage

F-CHP Currents

PV power remains unchanged under grid following mode
Under Scheme I, the F-CHP injects reactive power as 
needed to regulate the PCC voltage
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𝑅𝑅 𝐶𝐶𝑉𝑉𝑝𝑝𝑝

F-CHP

Scheme II

PV

8 𝑘𝑘𝑘𝑘

Grid-Following
4 𝑘𝑘𝑘𝑘

𝟏𝟏𝟏𝟏 𝒌𝒌𝒌𝒌

 𝑉𝑉𝑝𝑝𝑝 = 100 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
 𝑅𝑅 = 3Ω
 𝐶𝐶 = 150𝜇𝜇F

𝟏𝟏.𝟕𝟕 𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌

𝑃𝑃𝑃𝑃 = 98.6%

• 𝑸𝑸𝒎𝒎𝒌𝒌𝒎𝒎 = 𝟐𝟐 𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌

islanding

PV Currents

F-CHP Voltage

F-CHP Currents

• DERs unable to meet the reactive power load demands in 
the islanded system, which caused the instabilities

Islanded Operation Test Results—Scheme II

Center for Power Electronics Systems
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𝑅𝑅 𝐶𝐶𝑉𝑉𝑝𝑝𝑝

F-CHP

Scheme II

PV

8 𝑘𝑘𝑘𝑘

Grid-Following
4 𝑘𝑘𝑘𝑘

𝟏𝟏𝟏𝟏 𝒌𝒌𝒌𝒌

 𝑉𝑉𝑝𝑝𝑝 = 100 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
 𝑅𝑅 = 3Ω
 𝐶𝐶 = 150𝜇𝜇F

𝟏𝟏.𝟕𝟕 𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌

𝑃𝑃𝑃𝑃 = 98.6%

• 𝑸𝑸𝒎𝒎𝒌𝒌𝒎𝒎 = 𝟒𝟒 𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌

𝑃𝑃𝑃𝑃 = 98.6%
islanding

PV Currents

F-CHP Voltage

F-CHP Currents

• After increasing the reactive power injection capability (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚), 
the reactive demand was met, instabilities disappear 

Islanded Operation Test Results—Scheme II
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Concluding Remarks

The proposed F-CHP converter has demonstrated its modularity and 
high efficiency attained by the adoption of SiC devices
The F-CHP converter provides effective static compensation of PV 
inverter generation
The F-CHP converter enhances the electrical system dynamics 
avoiding interactions between converters AND enabling PV inverters to 
increase their active power generation
The proposed grid-forming control enables the F-CHP converter 
operation in grid-connected and islanded modes as well as under 
severe system faults
FINAL STEP: full microgrid P-HIL demonstration
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