

DE-EE0007347 – Reduction of System Cost Characteristics Through Innovative Solutions to Installation, Operations and Maintenance

Michael Ondusko
Columbia Power Technologies, Inc.
(C-Power)

mondusko@cpower.co July 19, 2022

Project Overview

Project Summary

This Project will demonstrate the C-Power SeaRAY wave energy converter (WEC) technology in its largest practical form over an extended period in an open-ocean environment; validating the performance, reliability, availability, and environmental impact of the design, including power output, availability, reliability, installation, operations, and maintenance (IO&M) costs. The goal is to minimize IO&M costs based on operational and research data and to implement and test innovative IO&M-centric design improvements, while also identifying optimization strategies to augment efforts to support wave energy commercialization and industry decarbonizations efforts.

Intended Outcomes

- Fabrication-ready design of novel, standards compliant SeaRAY k20 WEC with advanced hull structure and modular power-takeoff
- Validated performance and logistics capabilities to demonstrate commercial readiness
 - Delivery of ultra-reliable available power through multiple onboard power sources
 - Relevance for Powering the Blue Economy (PBE) applications with higher loads and for applications in lower resource environments and deeper water
 - Optimized handling and transport
- Performance analysis for next-generation WEC improvement

Project Information

Principal Investigator

Michael Ondusko

Project Partners/Subs

- Harris Thermal hull
- Borg-Warner (Cascadia Motion) PTO/PE
- JBJ Techniques, Ltd PTO
- SKF PTO

Project Status

Ongoing

Project Duration

- Project Start Date May 6, 2016
- Project End Date September 30, 2022

Total Costed (FY19-FY21)

\$1,951k

Project Objectives: Relevance

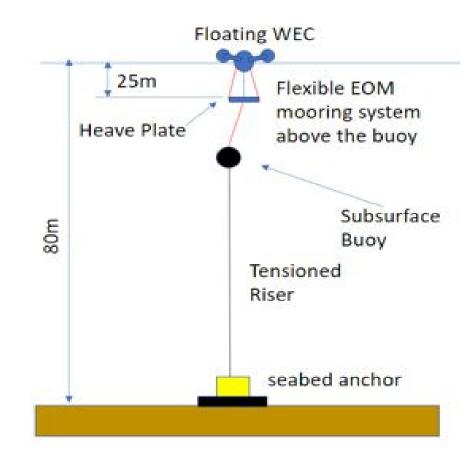
Relevance to Program Goals:

- WPTO challenges addressed
 - Difficult engineering to convert marine energy & Installation and operation of reliable marine energy systems
 - 20kW output WEC is an order of magnitude increase relative to its 2kW design basis
 - Despite relative size and output, WEC designed for optimized handling and logistics using commercially available equipment, including ocean shipping containers
 - Modular PTO design for optimized on-site final assembly and maintenance
 - Novel, cantilever float arms allow relaxed hull tolerances, reduced mass, and reduced risk of shaft binding
 - Initial implementation of mooring design that enables deep-water, reduced watch circle deployments
 - Limited Availability of Technology/Market Information
 - Market-driven design for PBE applications that require higher power levels and deployment in low resource locations
- Intermediate and long-term outcomes supported by SeaRAY k20
 - Utilization of internationally accepted standards (IEC 62600) and performance metrics
 - Increase in private investment and commercial utilization by providing more cost-effective solutions to marine industries' challenges
 - Decarbonization of commercial marine operations
 - Decrease total cost of ownership of low-power marine applications
 - Growth of Blue Economy

Project Objectives: Approach

Approach:

- Leverage C-Power experience and expertise
 - Maximize size/output of patent pending SeaRAY design, while maintaining operations and handling advantages of smaller systems
 - Combine market insights and relationships with internal technical expertise and experience to deliver ultrareliable marine power system for PBE applications
- Customer- and risk-reduction driven design
 - Market discovery process conducted through direct customer and partner interaction
 - Numerical model driven approach to increase scale of current designs
 - Design guided by international standards (IEC 62600)
 - Iterative risk assessment
- Leverage 3rd party experience where possible
 - Utilize components and controls developed in electric vehicle and other industries
 - Structural design by Cardinal Engineering; mooring design by EOM


Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- SeaRAY k20 design and prototype with multiple power sources and deep-water capable mooring
- Marine cost-optimized IO&M procedures validated
- Total Cost of Ownership baseline for 10 to 20 kW applications to be established
- Leverage technology commercially developed for other industries e.g., heavy electric vehicles, machining, and material handling

Outcomes:

- Demonstrate upper power output limit of C-Power's SeaRAY design topology
- Demonstrate commercial appeal for potential customers and partners; initiate engagement in commercial pilots and co-development/cosales opportunities
- Enable deployment opportunities for nextgeneration, non-shallow water applications with a flexible depth mooring design (concept shown right)

Project Timeline

FY 2016 - 2019

Project Management
Plan utilizing procedures
and processes in
conjunction with a
FMECA-based Risk
Management Plan to
address uncertainties in
advance

Complete StingRAY H2 design informing both StingRAY H3 and SeaRAY k2 and k20 design

GO issued on project

Long-lead materials procured

FY 2020

Project Revised to ensure targeted WEC was appropriately matched to available infrastructure to best leverage mutual investment

Establish Constraints and Concepts for Revised Project

FY 2021

Market outreach and investigation K20 Preliminary Design

FY 2022

Final Design
Procurement
Fabrication and

Deployment Planning

Permitting

Fabrication

FY 2023

Fabrication

V&V

Deployment and Testing

Project Budget

Total Project Budget – Award Information			
DOE	Cost-share	Total	
\$4,150K	\$2,105K	\$6,255K	

FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
\$1,773K	\$108K	\$70K	\$1,951K

- Project was paused in 2019 after the utility-scale WEC design was complete.
- The cost reduction and IO&M optimization aspects of the project were continued with the proposed focus of the demonstration revised to develop a 20kW PBE device, the SeaRAY k20.
- Project revisions were approved August 2021 and a new design was initiated to incorporate the project learnings.

End-User Engagement and Dissemination

- Customer engagement strategy
 - Early engagement More 40 customers and partners directly engaged during Project to understand operational and logistical requirements for larger SeaRAY systems
 - Leading to integration and involvement Multiple co-development and integration partners recruited to participate directly or indirectly in Project
- Project dissemination and technology transfer
 - Papers and Presentations Offshore Technology Conference
 2020,2021,2022, North Sea Decarbonization Conference, Subsea Tieback
 2022, and others
 - Podcasts "Through the Noise" and others
 - Development of PBE-appropriate deep-water mooring by EOM
 - Project use of PTO and redundant power supply technologies from automotive and other industries

Performance: Accomplishments and Progress

- Design and build of novel, purpose-built WEC with next-generation SeaRAY hull design and deep-water capable mooring
- Integration of improved logistics and operational opportunities
- Integration of novel PTO cartridge concept that enables faster maintenance and relaxed build tolerances reducing cost
- Upgraded design tool to size optimize the architecture in a family of WECs; this
 design represents the third iteration a 20kW design following 500W and 2kW
 prototypes
- Integration of components from the EV industry which reduces the validation and verification time and effort as well as component mass
- Integration of a hydrogen fuel cell as an auxiliary power unit (reducing mass compared to original diesel genset concept) and using hydrogen storage tanks to achieve greater buoyancy which in turn allows for a less strenuous mass budget

Future Work

- Complete Preliminary Design
- Subcontracting of Suppliers;
- Generator selection with future improvement in conversion efficiency by x% if you can state target efficiency
- Preparation of test plan to accommodate SeaRAY test at WETS
- Continuation of permitting with Navy
- Fabrication, assembly, deployment, operations, maintenance, recovery, and final reporting

