

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

DE-EE0008626 Cycloidal Wave Energy Converter

Project Overview

Project Summary Project Information Principal Investigator(s) The Cycloidal Wave Energy Converter (CycWEC) enables cost efficient wave energy conversion by means of utilizing hydrofoil lift and operating as a wave Dr. Stefan G. Siegel ٠ termination device that utilizes economies of scale. **Project Partners/Subs** • As a wave termination device, scales to utility power production (>2.5MW) US Navy MASK Basin for wave tank testing • Uses hydrofoils to efficiently extract energy from deep ocean waves A wave energy converter that operates fully submerged **Intended Outcomes Project Status** • Design and wave tank testing of a 1:15 scale model Ongoing Advance the TRL level from 4 to 6 **Project Duration** • The device will be ready for ocean testing at the end of the program • 2019-09-01 • Experimentally validate the TPL level estimate of 7, which is presently based 2023-03-31 on numerical simulations Total Costed (FY19-FY21) \$1,896K

Relevance to Program Goals:

- Some aspects of this project falls into the *Foundational R&D category:* The next-generation CycWEC improves "*Energy Affordability*" by means of "*Dramatic MHK technology LCoE Reduction*":
 - We estimated a LCoE of 13.5 US Cents/ kWh in the proposal based on the NREL/Sandia spreadsheet model and previous control algorithm performance
 - This has been improved to 10.5 US Cents / kWh due to feedback controller optimization performed in Budget Period 1 of this project
 - At 1GW deployed, LCoE is estimated to be reduced to 6.1 US Cents / kWh
- "Technology-specific system design" was performed in order to:
 - Improve "Energy Security" by optimizing the mooring system design of the CycWEC to survive storms
 - Development of "cost-efficient installation", commissioning and decommissioning procedures by means of a novel mooring latch was performed

Project Objectives: Approach

The CycWEC implements 12 major improvements over 1st generation WEC designs:

- The CycWEC is a wave terminator than scales to large per device power levels (MW)
- Direct conversion of wave power to continuous rotation shaft power / direct drive generator (no mechanical components in between foils and generator)
- Hydrofoils for hydrodynamically efficient interaction with ocean waves
- The hydrofoils rotate faster than the wave particle velocity, reducing PTO size and cost
- Feedback control to achieve efficient operation in all sea states
- Fully submerged to enable storm survival without excessive structural loads
- Mooring system enables lifting device out of water for on site maintenance
- Mooring system orients CycWEC to align with incoming waves
- Mooring system optimizes submergence for sea state and tidal changes
- Direct attachment to mooring points by means of legs, no fatigue in mooring lines
- Deployment without special equipment, floats and can be towed to installation site
- Intermediate water depth to minimize scour at mooring points

Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- Bench testing model and results for the CycWEC leg jacking mechanism (BP1)
- Bench testing 1:15 model and results for the mooring latch (BP1)
- 1:100 scale mooring system mockup and testing results (BP1)
- Control system bench test (BP1)
- Design of wave tank model (BP1)
- Construction of a 1:15 scale wave tank model (BP2)

Outcomes:

- Feedback control design is validated in numerical simulations (BP1)
- Power matrix at wave tank and ocean scale for irregular waves established (BP1)
- Advancement of the CycWEC TRL from 4 to 6 by means of wave tank testing (BP2)
- CycWEC ready for ocean testing at the end of BP2

Project Timeline

Project Budget

Total Project Budget – Award Information				
DOE	Cost-share	Total		
\$3496K (BP:1 - \$1,496K)	\$900k (BP1 - \$400K)	\$4396K (BP1 - \$1,896K)		

FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
\$178K	\$1,108K	\$610K	\$1,896K

- The project was under budget for the 18 months of BP1 until the Go-No Go Decision point
- This was due to some staff members being hired after the starting date of BP1
- The remaining BP1 funds were spent during the no cost extension to perform independent external review with NREL and Sandia staff.
- The project is currently on hold to raise matching funding for BP2.

End-User Engagement and Dissemination

- Atargis has published all BP1 results in open literature, resulting in 4 conference papers:
 - S.G. Siegel, Scalability Limits of Ocean Wave Energy Converters, ICOE International Conference on Ocean Energy, 2021
 - Chitale, K. C.; Fagley, C.; Mohtat, A. & Siegel, S. G., Numerical Evaluation of Climate Scatter Performance of a Cycloidal Wave Energy Converter, 14th European Wave and Tidal Energy Conference, Plymouth, UK, 2021
 - Mohtat, A.; Fagley, C.; Chitale, K. C. & Siegel, S. G., Efficiency analysis of the cycloidal wave energy convertor under real-time dynamic control using a 3D radiation model, 14th European Wave and Tidal Energy Conference, Plymouth, UK, 2021
 - Casey Fagley Ali Mohtat, K. C. & Siegel, S. G., Dynamic Estimation and Control of a Cycloidal Wave Energy Converter in Three-Dimensional Sea States, 14th European Wave and Tidal Energy Conference, Plymouth, UK, 2021
- All of the above conference papers are under peer review for journal publication
- Three US Patent Applications have been filed with the USPTO and are under review:
 - Siegel, S. G. Floating Cycloidal Wave Energy Converter, U. S. Patent Application 17/216,828, 2021
 - Siegel, S. G. Mooring Latch for Marine Structures, U. S. Patent Application 17/149,272, 2021
 - Siegel, S. G. Mooring Structure for Ocean Wave Energy Converters, U. S. Patent Application 17/149,388, 2021
- One Bachelor Thesis: "Programming, Calibration and Commissioning of a 5-Hole Probe", Freia Siegel, Technische Universität Berlin, School of Electrical Engineering and Computer Science, Germany, February 25th, 2022. Supervisor Prof. Dr.-Ing. C. Gühmann.

Scalability of WECs

Maximum possible energy absorption with no viscous or power train losses This is a hard upper limit similar to the Betz limit (59%) for wind turbines

- Atargis 3D Wave Radiation Simulation and Theory for:
 - Wave Period 8s
 - Wave Height 2m
 - Power 30kW/m
 - Wave Length 100m
 - Airy Wave
- Theory is shown as solid lines
- Atargis Numerical Wave Tank Results are shown as symbols

2.5MW Wind Turbine with 105m Rotor Diameter

Source: Siegel 2021

Power Matrix

- JONSWAP spectrum used to approximate irregular waves.
- Wave power calculated based on individual wave components.

Surface elevation at downwave location for a significant wave period of 9s.

Wave spectra at upwave and downwave locations

Source: Chitale et. Al. 2021

Source: Chitale et. Al. 2021

HADCP Estimation

- Goal: Accurately estimate wave state given beam velocities from a Horizontal Acoustic Doppler Current Profiler (HADCP) with addition of typical sensor noise
- Approach: Use both temporal AND spatial POD based estimation (novel approach developed in this program)
- Determined required parameters
 - ARX order
 - POD basis order
 - Cut off frequency
- Demonstrated estimation limitation
- Simulated impact on CycWEC energy extraction efficiency

Source: Fagley et. Al. 2021

HADCP Estimation Results

- Standard wave conditions
 - $-T_s = 8$ seconds
 - $H_s = 1$ meters
 - $-S_{I} = 10$
- Estimation order
 - [na nb nk] = [24, 2, 4]
 - Nsensors = 16 bins/beam
 - Nmodes = 16
- 1542 coefficients in ARMAX
- Prediction performance of validation case
 - 19% reconstruction error
- Error has minimal impact on CycWEC efficiency

Reconstruction Accuracy [%]

60

40

20

Source: Fagley et. Al. 2021

1:15 Scale Model Design

- Defined Model Geometry and scale of 1:15:
 - Span 4m
 - Hydrofoil Chord Length 400mm
 - Radius 400mm
- Selected components and instrumentation
- Performed structural analysis
- Detailed CAD design
- Developed Test Plan
- Commissioning and Decommissioning procedures
- Designed, programmed, built and bench tested CANOpen based DAQ / Control system:
 - 200 measurement parameters
 - Pressure Distribution on Foils
 - 5 Hole Probes on Rotor
 - Structural loads at Struts and Legs
 - Leg jacking pins and spindles
 - Main Shaft Generator and Blade Pitch Actuators

CycWEC in floating (commissioning/decommissioning) configuration

Future Work

Proposed work for Budget Period 2:

- Build the 1:15 scale model that was designed in BP1
- Test the model at the Navy MASK basin:
 - Validate performance matrix
 - Test deployment/commissioning and decommissioning process
 - Demonstrate storm survival
 - Harmonic, irregular and spread spectrum waves
- Post process testing data and compare to simulation results
- Publish results in open literature

