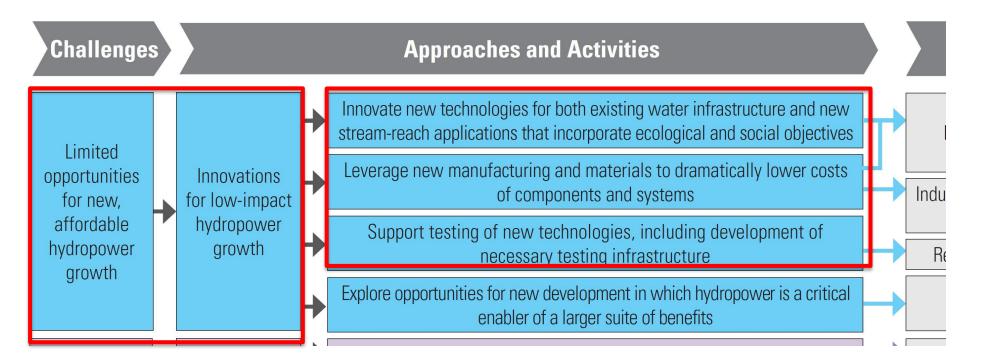


U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

le Design for Support of Standard Modular Hydropowei

Presenter: Jeff Marr Organization: University of Minnesota Email: <u>marrx003@umn.edu</u>

Presentation Date: July 27, 2022


Project Overview

Project Summary Project Information Principal Investigator(s) This project advances the conceptual design and performance testing of sediment bypass technology for new hydropower installations. M.Guala, L.Shen, J.Gulliver (UMN) - Technology meets attributes of the Standard Modular Hydropower program - System seeks to provide CONTINUOUS bypass of sand **Project Partners/Subs** - Advance technology from TRL 2 to TRL 4 over duration of project William Forsmark – Barr Engineering Evaluate opportunities for Advanced Materials/Advanced Manufacturing Rick Voigt – Voigt Consultants - Develop cost estimates for technology and compare to other similar tech. Peter Wilcox – Utah State University **Intended Outcomes Project Status** Advance conceptual design from early stage through 80% complete Budget Period 1 Complete. Go/No-Go Provide performance verification of the technology using models and **Review assessment underway** experiments. **Project Duration** Develop cost estimates for the technology and compare to baseline Project Start Date: 05/01/2020 technologies. Project End Date: 12/31/2023 Total Costed (FY19-FY21) \$323,951 of \$599,304 (Federal Share of BP1; UMN has met 20% cost share)

Project Objectives: Relevance

Relevance to Program Goals:

- Technologies for sediment bypass are vital for next-generation hydropower to mitigate negative ecological impacts.
- Answers challenges from <u>Hydropower Program Goals and Objectives</u>

Project Objectives: Approach

Advance the design toward a commercializable, cost effective technology

- Broad Technical Team (research engineers, faculty, practitioners, experimentalists, modelers)
- Establish clear design context and performance objectives
- Workflow Design | Prototyping | Testing/Modeling | Re-Design
- Project Management
 - Monthly/Quarterly check-in meetings with Dept of Energy
 - Rapidly identify and mitigate issues
 - E.g. schedule delays due to Covid 19

Project Objectives: Expected Outputs and Intended Outcomes

Expected Outputs:

- Journal publications related to fundamental research (3 articles to date)
- Possible update to ORNL Exemplary Design Envelope Guidance, Append C (sediment passage)
- Advancement of new technology for sand bypass at dams.

Short-term Outcomes:

- Re-introduces the importance of sediment bypass technologies with hydropower facilities.
- Provides DOE with early-indication of viability of sediment passage technology informing future FOAs.
- Motivates continued development of technology and path to commercialization.

Project Timeline

Budget Period 1 – February 2020 – June 2022

- Task 1- Task 4 Advancing technology to 40% conceptual design
 - Monthly check in meeting with DOE WPTO project monitors
 - Quarterly report and check-in call including project monitors and WTPO Leadership
- Task 5 Go/NoGo Review (Conducted June 27, 2022)

Budget Period 2 – June 2022 – December 2023

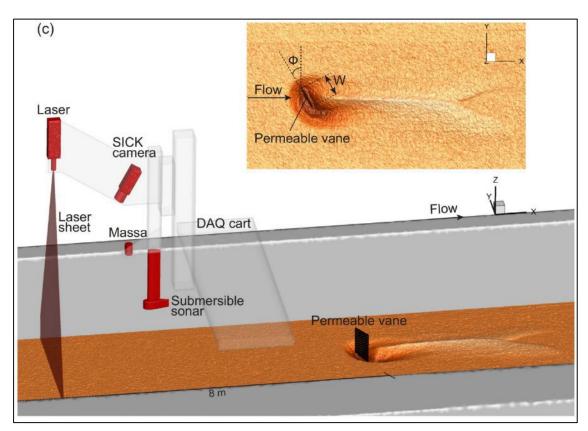
- Task 6- Task 7 Advance technology to 80% conceptual design
- Task 8 Final design report

Project Budget

Total Project Budget – Award Information				
DOE	Cost-share	Total		
\$1,000K	\$252K	\$1,252K		

FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
NA	\$16K	\$453K	\$469K

- Project spending has been inline with proposed plan.
- Project experienced substantial delay due to Covid19 preventing progress on work. Spending was also paused during this time.


End-User Engagement and Dissemination

- Stakeholders: DOE WPTO, Facility owner and operators, watershed managers
 - Creation of viable sand bypass is essential for new stream-reach development in US. Applicable to NPDs and non-hydro as well.
 - Final report will be developed. Summarizing project and outcomes
 - Project will be presented at NHA Hydropower User Groups meetings and other venues.
 - Commercialization plan will be developed plan additional steps to advance technology, demonstrate performance, commercialization pathway.
- UMN will seek to further develop design toward a commercialized technology.
 - Funding for next phases is not determined at this time.

Performance: Accomplishments and Progress

Developed passive permeable vane design to optimize sand capture

• Wind tunnel, flume experiments, and numerical models used to optimize design.

Rendering of small scale flume experiment on vane design

- Structural design
- Array configuration
- Measured impact on sand transport pathways

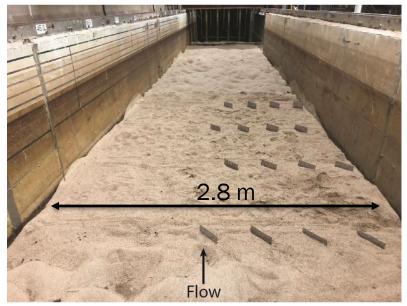
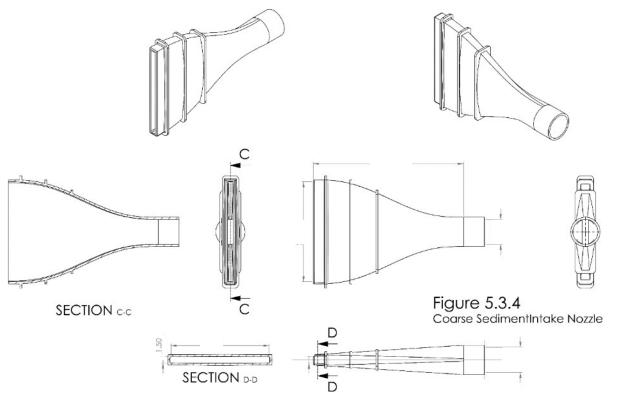


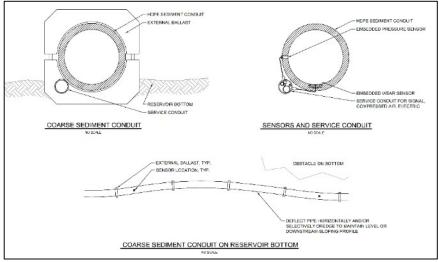
Image from large scale flume experiment of vane array


Performance: Accomplishments and Progress (cont.)

Develop low head-loss intake for sand bypass

- Analytical tools, computation fluid dynamics simulation, flume experiments
- Iterative design
- Exploring advance manufacturing with technical assistance from ORNL.

Image from flume experiments, performance verification



Technical drawings of sand intake

Performance: Accomplishments and Progress

Expanded knowledge-based on sand transport in conduits (pipes) under typical operational conditions.

- Identified lack of information on headloss for lowconcentration sand transport in pipes.
- Constructed facility. Conducted tests to generate needed data
- Developed modular conduit design.

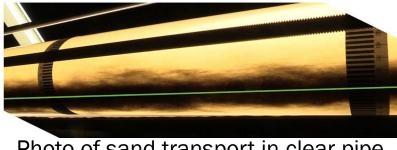


Photo of sand transport in clear pipe

Photograph of conduit test facility

Examples from technical design of conduit.

Future Work

- Completion of Budget Period 1 and Go/NoGo Review
 - Review meeting June 27, 2022
 - Feedback provided by review team. Developing revised Budget Period 2 plan
- Budget Period 2 June 2022 December 2023
 - Continue advancing technology to 80% conceptual design
 - Demonstrate component integration in large flume experiment
 - Vane-intake array + conduits + downstream discharge
 - System health monitoring and control development
 - Cost Modeling and Baseline cost comparison (with ORNL)
 - Advanced manufacturing and materials of sand intake (with ORNL)
 - Final design report

