

1.1.1.102 – Alternative Opportunities for Hydropower

Rajiv Prasad

Pacific Northwest National Laboratory

Thomas Mosier and Trevor Atkinson

Idaho National Laboratory

Rajiv.Prasad@pnnl.gov

Thomas.Mosier@inl.gov

Trevor.Atkinson@inl.gov

July 27, 2022

Project Overview

Project Summary

 Adoption of new technologies and strategies could leverage both energy and non-energy drivers in new business models that enable growth of additional hydropower capacity. Within the water-energy nexus, hydropower can be integrated in projects that sustain water supplies, improve environmental outcomes, and increase facility and community resilience using new, untapped value streams. Project benefits, associated beneficiaries, and value streams that deliver benefits are identified through extensive stakeholder outreach. Potential new projects are assessed using known examples.
 Additional research needed to quantify values from non-traditional drivers including social and environmental improvements are being identified.

Intended Outcomes

- Identify alternative opportunities for hydropower projects that are ready for implementation.
- Identify and quantify value streams associated with such projects.
- Develop tools, datasets, and guidance for implementing such projects.
- Identify future research needed to unlock additional values from such projects.

Project Information

Principal Investigator(s)

- TJ Heibel, PNNL
- Travis Douville, PNNL

Project Partners/Subs

None

Project Status

New

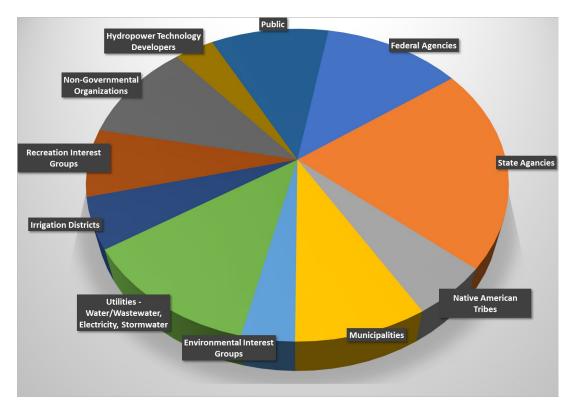
Project Duration

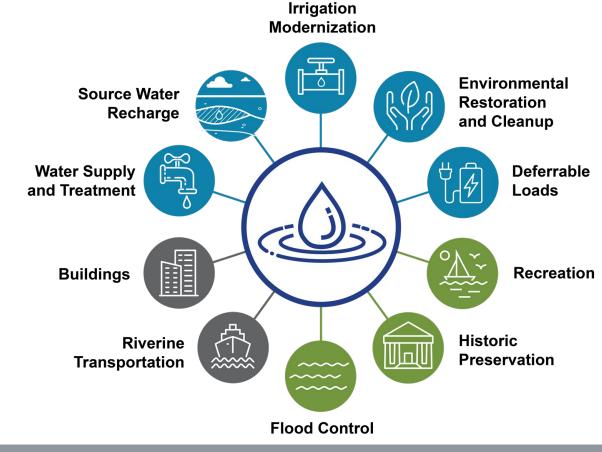
- December 5, 2019
- Continuing

Total Costed (FY20-FY21)

PNNL: \$600,000, INL: \$380,000

Project Objectives: Relevance

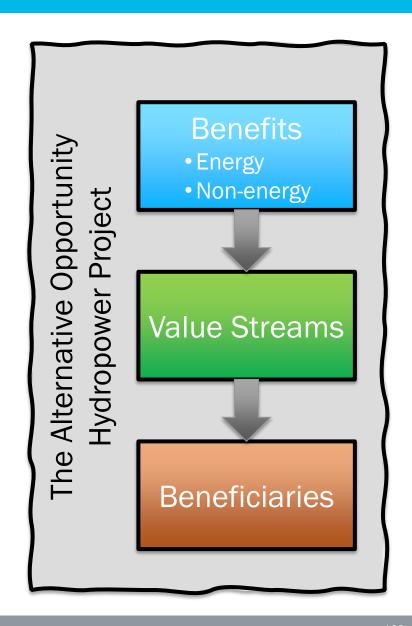

Relevance to Program Goals:


- Identify and quantify new value propositions within low-impact hydropower growth innovations activity
- Increase interest of resource owners, project developers, and investors in these new hydropower projects
- Develop a framework for addressing costs and benefits of these new hydropower projects
- Develop tools, datasets, and guidance for projects' use
- Foster partnerships among stakeholders.

Project Objectives: Approach

Approach:

- Identify alternative opportunities for hydropower
 - Start with water infrastructure where implementing hydropower is plausible
 - Extensive stakeholder outreach



Project Objectives: Approach

Approach:

- Identify new value propositions
 - Identify subopportunities
 - specific outcome within a core opportunity that provides a direct benefit and possible pathway to monetize the value
 - Identify benefits and beneficiaries
 - Identify value streams
- Quantify values and value stacks
 - Market values and non-market values
 - Complimentary
- Develop tools and datasets
 - Hydropower technologies
 - Guidance for assessing alternative opportunity projects
- Conduct future research to fill gaps

Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- Describe alternative opportunities for hydropower projects
- Assess how and why some projects succeed
- Increase awareness of new value propositions for hydropower
- Provide guidance for wider implementation
- Project website:
 <u>https://www.pnnl.gov/projects/alternative-opportunities-hydropower</u>
- Alternative Opportunities information flyer: <u>https://www.pnnl.gov/sites/default/files/media/file/Alternative%200pportunities%20for%20Hydropower.pdf</u>
- FY 2020 and FY 2021 reports to WPTO

Outcomes:

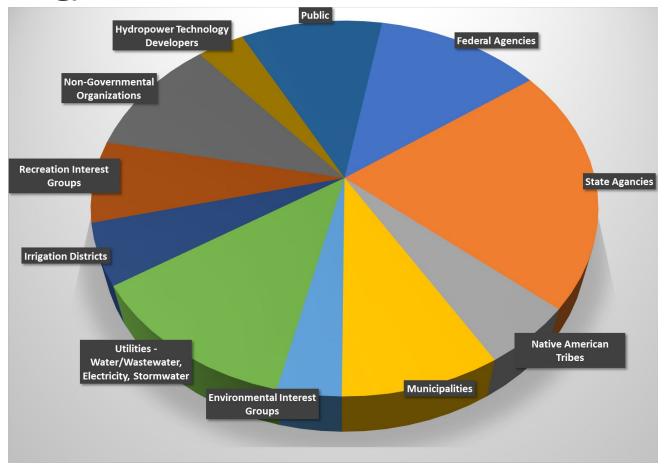
- Increased resource owner, developer, and investor interest
- Increased deployment of new hydropower projects
- Increased local, low-carbon, renewable energy availability

Project Timeline

FY 2020

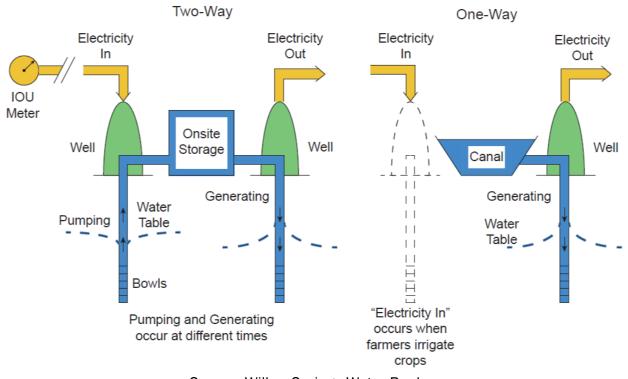
- December 2019: Project start
- January 2020: Scoping memo
- May 2020: Stakeholder outreach summary
- September 2020: Alternative
 Opportunities for Hydropower Draft
 FY2020 Report

FY 2021


- February 2021: Task 1
 - Alternative opportunities categorization and value stacks presentation
- April 2021: Tasks 1 and 2 memo
 - Value stacking and selection of three use cases for preliminary valuation
- September 2021: Task 3 memo
 - Outreach to identify implementations of selected use cases
 - Identification of barriers

Project Budget

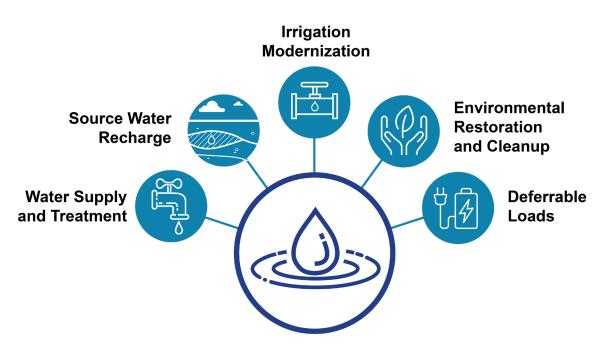
FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
PNNL: \$0K	PNNL: \$240K	PNNL: \$360K	PNNL: \$600K
INL: \$0K	INL: \$128K	INL: \$252K	INL: \$380K

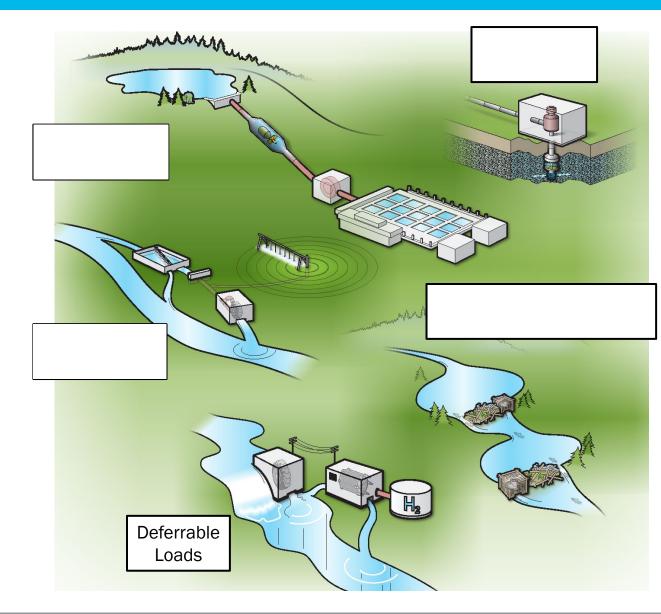

End-User Engagement and Dissemination

- FY20 stakeholder engagement strategy
 - Wide-ranging outreach
 - Ten starting opportunities
 - Learn about existing and likely application of hydropower within water infrastructure
 - Learn about benefits and revenue streams
 - Narrow down selection to most likely alternative opportunities
- Stakeholder outreach summary

End-User Engagement and Dissemination

- FY21 stakeholder engagement strategy
 - Targeted outreach
 - Learn about specific (complete or partial) implementations
 - Learn about technical, financial, and regulatory challenges
 - Learn about revenue potential
 - Derive insights into how alternative opportunity projects can be more widely implemented
 - FY21 memos




Source: Willow Springs Water Bank

Performance: Accomplishments and Progress

Accomplishments:

- Identified alternative opportunities for hydropower
 - Top five alternative opportunities
 - FY 2020 report to WPTO

Performance: Accomplishments and Progress

Irrigation Modernization Source Water Recharge Water Supply and Treatment Deferrable Loads

Accomplishments:

- Identified new value propositions
 - Energy
 - Non-energy
 - FY 2021 reports to WPTO

Benefits

Power & reliability & resilience

Water quality & availability

Agricultural productivity & reliability

Job creation

Environmental protection

Flood protection

Community revitalization

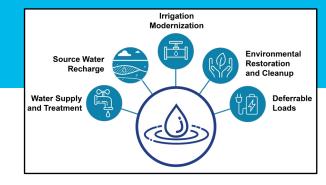
Business development

Value Streams

Increased revenues
Increased system reliability
Reduced net energy use
Reduced rates
Improved water quality
Improved public health & safety
Improved environment
Reduced flood damage
Increased agricultural productivity
Sustainable water supplies
Improved environmental outcomes
Improved quality of life
Improved energy storage & load balancing
New revenue sources

Beneficiaries

Resource owners
Energy and water consumers
Farmers
Commercial entities
Community
The environment

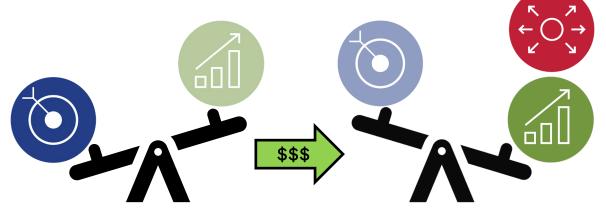

Performance: Accomplishments and Progress

Accomplishments:

- Identified challenges and barriers
 - FY 2021 reports to WPTO

Challenges and Barriers

Information availability
Access to incentives and funding
Policy and legal issues
Market constraints
Technical and engineering constraints



Future Work

- FY 2022 and Beyond
 - Develop a template for replicating known alternative opportunities projects
 - Develop tools and datasets
 - Develop guidance for assessing alternative opportunities projects
 - Obtain stakeholder feedback
 - Identify research gaps

	Technology	Technology				Operational Parameters							
							Head or Water Depth						
				Power Rating		(HK)		Flow or Flow Rate (HK)		Grid			
Provider	à Name	▼ Type	▼ Application ▼	Minimum (kW)	Maximum (kW)	Minimum (ft)	Maximum (ft)	Minimum (cfs)	Maximum (cfs)	Volts			
BR Valve	ASR Generation	Pipeline	IC Application :	33	33	40	2000	0	13				
Amiet Turbine System	ATS-8	Kaplan Turbine	IC	3	50	7	50	6	15				
Amjet Turbine System	ATS-32	Kaplan Turbine	IC, D, ROR, C	50	850	7	50	98	250				
Amjet Turbine System	ATS-63	Kaplan Turbine	IC, D, ROR, C	200	2500	7	50	39	925				
ANDRITZ	HYDROMATRIX	Axial Propeller	D, C, ROR		Small	6.5	65		3500				
ANDRITZ	HyBaTec-Hybrid Battery	Controls	Н					-					
ANDRITZ	Kaplan Turbine	Reaction turbine	D, C, ROR										
ANDRITZ	Francis Turbine	Reaction turbine	D, C, ROR										
ANDRITZ	Pelton Turbine	Impulse Turbine	IC, C										
ANDRITZ	Axial Flow turbing	Reaction turbine	D, OC, ROR										
ANDRITZ	Pump As Tubines (PaT)	Centrifugal Pump	IC, C										
Aqua-Auger	Aqua-Auger	Hydrokinetic	OC, C, ROR	0.5	3.5	10	-		3				
Blade Runner Energy	PAX Rotor	Hydrokinetic	oc		Micro	-	-						
Canadian Hydro	Axial Flow turbine	Reaction turbine	D, OC, ROR			16	115						
Canyon Hydro	Inline Turbines (ILT)	Pipeline	IC	100	2000	50	570	1	67				
Canyon Hydro	Pump As Tubines (PaT)	Centrifugal Pump	IC	5	350	50	500	1	24				
Canyon Hydro	Micro Hydro	Pipeline	IC										
Canyon Hydro	Pico Hydro	Pipeline	IC		0.3								
Canyon Hydro	Kaplan Turbine	Reaction turbine	D, C, ROR										
Canyon Hydro	Francis Turbine	Reaction turbine	D, C, ROR										
Canyon Hydro	Pelton Turbine	Impulse Turbine	IC, C										
Canyon Hydro	Crossflow Turbine	Impulse Turbine	IC, C										
Clean Power	Turbinator	Reaction Turbine	D, OC, C	100	3000	15	180	18	350				
Cornell Pump Company	Pump As Tubines (PaT)	Centrifugal Pump	IC, C			50	600	0.24	18				

