

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

EE0007248 - The Design and Development of a Composite Hydropower Turbine Runner

PennState Applied Research Laboratory Paul Fabian – Composite Technology Development, Inc. and Nicholas Jaffa – Advanced Research Laboratory, Pennsylvania State University

> Paul.Fabian@ctd-materials.com naj15@arl.psu.edu

July 26, 2022

Project Overview

Project Summary	Project Information			
DOE objective: Design and test new and innovative conventional hydropower	Principal Investigator(s)			
 powertrain components Project goal: Verify that composite materials are a reliable and economic alternative to traditional metallic runners to reduce costs and increase 	Mr. Paul E. Fabian Composite Technology Development, Inc., Lafayette, CO			
energy capture.	Project Partners/Subs			
 Develop cavitation-resistant coatings Prototype and test a composite runner system under real-world hydropower turbine operating conditions. 	 Penn State University – ARL Sandia National Laboratory Tribologix Inc. Voith Hydro, Inc. 			
Intended Outcomes	Voith Hydro, Inc.			
Prototype a weight-efficient, fatigue resistant, low-maintenance turbine	Project Status			
 runner using composite materials to reduce mass and extend service life Improve runner reliability by developing a high-performance coating system 	Completed			
that resists cavitation and sediment erosion	Project Duration			
 Provide performance test data of the composite runner/coating in true hydropower turbine operating conditions 	 July 1, 2016 April 30, 2022 			
	Total Costed (FY19-FY21)			
	\$698,247			

Relevance to Program Goals:

- This program addresses WPTO's mission of enabling research, development, testing and commercialization of new technologies to advance marine energy as well as nextgeneration hydropower and pumped storage systems for a flexible, reliable grid through the following:
 - Leverages new composite manufacturing and materials to dramatically lower costs of components and systems
 - Design and manufacture of composite hydroturbine runner
 - Developed new, higher performing liquid polymer resin system for runners as well as a cavitation resistant coating to increase longevity in operation
 - Both reduce costs through increased durability and expected lifetimes
 - Supports testing of new technologies (composite runners), including development of necessary testing infrastructure
 - Testing of composite runners in real-world environment
 - Fabrication of simulated hydroturbine inside ARL's water tunnel for advanced hydropower testing of components
 - Supports goal of utilizing advanced manufacturing and materials to reduce overall cost of energy/electricity

Project Objectives: Approach

Phased Program Approach

- Phase I
 - Develop system requirements
 - Perform materials assessment and cavitation coating development
 - Design a composite turbine runner
- Phase II
 - Fabricate composite hydroturbine blades
 - Perform composite blade mechanical testing to align
 - Fabricate composite hydroturbine runner set with cavitation coating
 - Perform scaled hydroturbine runner testing in ARL water tunnel
- Incorporated input from leaders in hydroturbine materials & testing
 - ARL/PSU
 - Sandia National Laboratories
 - Voith Hydro

Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- Prototyped a weight-efficient, fatigue resistant, low-maintenance turbine runner using composite materials to reduce mass and extend service life
- Improved runner reliability by developing a high-performance coating system that resists cavitation and sediment erosion
- Provided performance test data of the composite runner/coating in true hydropower turbine operating conditions

Outcomes:

- Further interest by Hydropower community in using advanced composite materials
- Commercial sales of new materials for use in hydropower applications
- Prototype production and field trials by major hydropower commercial partner
- Commercial large-scale production and use of design and materials in hydro applications resulting in lower cost electricity

Project Budget

Total Project Budget – Award Information							
DOE Cost-share Total							
\$1,124.4K	\$499.5K	\$1,623.9K					

FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
\$223.5K	\$179.5K	\$295.2K	\$698.2K

- Phase I (Year 1) started in late 2016
- Phase II (Year 2) work was extended into FY19 due to delays in blade production and water tunnel modification work delays
- Phase II work was further delayed by COVID and resulting shutdown of facilities and availability of personnel. Work was restarted in FY21.
- Additional funding by DOE was provided in FY20 due to increased costs for fabricating water tunnel hardware and performing testing at ARL

End-User Engagement and Dissemination

- Program was initiated with a commercial stakeholder, Voith Hydro, as a partner in design and development
 - Proprietary blade design was supplied by Voith as a baseline
 - Allowed direct comparison to stainless steel material properties
 - Provided operational parameters used to set metrics for testing of composite blades
 - All information was proprietary so could not be shared with outside parties
 - Sandia National Laboratory (SNL), PSU/ARL, and Voith personnel were involved throughout the project and attended monthly program review meetings
 - Allowed regular advisement and input on program
 - Program team also participated in milestone meetings such as Requirements Review, Test Readiness Reviews, and Manufacturing Readiness Reviews
 - Voith included since they were our commercial manufacturing partner that allowed a direct path to the commercial market
 - PSU/ARL were the cavitation testing and water tunnel test experts who could enable simulated real-world test results
 - SNL acted as material coating experts
- Results have been shared with Voith Hydro for evaluation of next steps

- Materials
 - Prior evaluation and screening tests in Year 1 identified materials to be used for water tunnel testing in Year 2
 - CTD-K08/K13916 high modulus carbon fiber provided necessary stiffness and performance to achieve mechanical properties desired for blade
 - CTD-133 coating was found to offer the best cavitation resistance in accelerated cavitation erosion testing conducted at PSU/ARL

Part Description	Material	Manufacturer
Hub interface	410 Stainless Steel	Various
Composite blade matrix	CTD-K08 resin	CTD
Composite blade fiber	K13916 carbon fiber	Mitsubishi
Hub to blade adhesive	EA9394	Loctite Hysol
Anti-cavitation coating	CTD-133	CTD

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | WATER POWER TECHNOLOGIES OFFICE

481001

- Composite Blade Fabrication
 - Blades fabricated using Vacuum Assisted Resin Transfer Molding (VARTM) process
 - Post fabrication machining to achieve exact blade dimensions

Machine to final dimensions

Load carbon fiber plies into mold

- Blade Prototype Testing Set-up
 - Blades tested in bending in fatigue and to failure
 - Point loading in servo-hydraulic test machine at room temperature in air
 - Test results matched to FEA results to validate composite blade performs as designed

- Blade Prototype Testing Results
 - Deflection near tip of blade during operation biggest concern
 - Quasi-static test results matched FEM results
 - Fatigue testing at operating loads showed no degradation after 10⁶ cycles
 - Failure loads averaged over 4,000 lb.
 - Factor of Safety of over 4 from loads for Maximum Power

Maximum Power Operating Condition

CASE	А	В	С
TEST: Raw LVDT Measurement	0.089	0.093	0.097
TEST: Compensated for Fixture Rotation	0.036	0.039	0.043
FEM: E1=67MSI	0.022	0.020	0.023
FEM: E1=52MSI & Modified Load Points	0.033	0.030	0.035

LVDT #2 180 Pre-Fatigue LVDT#2 Post-100k LVDT#2 160 Post-200k LVDT#2 Post-300k LVDT #2 Post-400k LVDT #2 140 - Post-500k LVDT#2 Post-600k LVDT #2 120 Post-700k LVDT #2 Post-800k LVDT #2 (dl) beo. Post-900k LVDT #2 100 Post-1M LVDT #2 v = 7421.1x + 1.2908 Linear (Pre-Fatigue LVDT#2) 80 y = 7466.3x - 8.0531 Linear (Post-100k LVDT#2) y = 7219.7x - 7.8603 Linear (Post-200k LVDT#2) y = 7554.4x - 2.5749 Linear (Post-300k LVDT #2) 60 y = 7387.9x - 3.717 Linear (Post-400k LVDT #2) y = 7407.1x - 0.0288 Linear (Post-500k LVDT#2) 40 y = 7592.8x - 3.4298Linear (Post-600k LVDT #2) v = 7821.1x - 0.579 Linear (Post-700k LVDT #2) Linear (Post-800k LVDT #2) v = 7696.2x + 1.2198y = 7665.2x - 3.1843 Linear (Post-900k LVDT #2) y = 7656x - 4.2122 Linear (Post-1M LVDT #2) 0.005 0.01 0.015 0.045 0.029 0.03 0.035 0.04 LVDT #2 Displacement (in)

Load vs. Displacement up to 10⁶ cycles

- Runner Set Fabrication
 - Runner set of 3 blades + 1 extra fabricated
 - Blades bonded and pinned to SS hub interface
 - CTD-133 anti-cavitation coating applied to outside surface of blade

 Runner set shipped to PSU/ARL

- Turbine Runner Testing
 - Testing performed inside the Garfield Thomas Water Tunnel (GTWT) at PSU/ARL
 - A scaled (76%) version of the Voith Bulb Turbine system was fabricated and installed inside the water tunnel
 - Parts fabricated and installed in water tunnel

Approximate upstream probe

pressure measurement plane

location

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY

Dynamometer current

and voltage signal

analysis for CBM

Upstream pitot-

static pressure probe mounted

mid-passage to

pressure, and total

measure fluid velocity, static

pressure.

FENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | WATER POWER TECHNOLOGIES OFFICE

Torque and rpm

drivetrain windage

measurements

corrected for

losses

- Turbine Runner Testing
 - Installation of scaled Voith
 Bulb Turbine in GTWT

- Turbine Runner Testing
 - Test Plan
 - 1. Windage test Remove rotor blades and vary rpm to measure drivetrain windage losses
 - 2. Hydrodynamic performance sweep - Hold flowrate constant and vary rpm
 - 3. Reynolds sweep Vary flowrate and rpm by constant ratio
 - 4. Condition Based Maintenance (CBM) test - Simulate fault condition by removing IGV blade

- **Turbine Runner Testing**
 - The key measurements required for the validation test were:
 - Flowrate, Q •
 - **Stagnation pressure change** • across turbine, $\Delta Pt = Pt\mathbf{1} - Pt\mathbf{2}$
 - Turbine rotor rotational speed, N•
 - Turbine rotor torque, τ •

Impeller RPM (Estimate)	Flowrate (m^3/s)	Turbine RPM	Maximum	Power			On Design				Maximum Speed
16.375	0.5	35.42510121	40.48583	45.54656	50.60729	55.66802	60.72874494	65.78947	70.8502	75.91093	80.9716599
21.55	0.75	53.13765182	60.72874	68.31984	75.91093	83.50202	91.09311741	98.68421	106.2753	113.8664	121.457489
26.725	1	70.85020243	80.97166	91.09312	101.2146	111.336	121.4574899	131.5789	141.7004	151.8219	161.943319
31.9	1.25	88.56275304	101 2146	113 8664	126 5182	139 17	151 8218623	164 4737	177 1255	189 7773	202 429149
37.075	1.5	106.2753030	121.4575	136.6397	151.8219	167.004	182.1862348	197.3684	212.5506	227.7328	242.914979
42.25	1.75	123.9878547	141.7004	159.413	17,11255	194.8381	212.5500073	230.2032	247.9757	205.0883	283.40080
		\sim									
				/	/						/
Close to gearbox	maximum							\setminus	Safa tra	ncion	t conditior
	maximam	البرمايية مار	moneio	Doufou		C		\rightarrow		ansien	conultion
torque limit		Hydrody	/namic	Perfor	mance	Sweep)				
		Colo Conditions						\rightarrow			
		Safe Conditions						,			
		Warning Conditions					Reynold	ls Num	ber Sw	/eep	
		Reynolds Sweep								,	
		Powering Sweep									

Test matrix for correct RPM and speed for safe operating conditions

0.6 0.8 CFD 0 CFD CFD Ο 0 0.5 Full Scale Full Scale Full Scale 0.6 Power Coefficient Torque Coefficient Head Coefficient 0 0 **Powering Data** Powering Data Powering Data 0 0.4 3 CBM Data CBM Data CBM Data â A 0.4 Reynolds Sweep **Reynolds Sweep** A Revnolds Sweep 0.3 0.2 4 0.2 0.1 0 0 0 -0.2 0.8 0.9 1.2 0.5 0.6 0.7 0.8 0.9 1.2 0.4 1.1 0.4 0.5 1.1 0.7 0.8 0.9 1.1 1.2 0.6 0.7 0.5 0.6 0.4 Capacity Coefficient Capacity Coefficient **Capacity Coefficient** Head Coefficient vs. Capacity Coefficient **Power Coefficient vs. Capacity Coefficient Torque Coefficient vs. Capacity Coefficient**

Hydrodynamic Performance Sweep Results

- Turbine Runner Testing
 - Reynolds Sensitivity Sweep Results
 - Reynolds number based on blade chord and relative velocity at tip
 - Hydrodynamic performance
 insensitive to changes in Reynolds
 number

Variable	Full Scale	CFD	Tunnel Test
Rotor Pitch (°)	19	19	19
IGV Pitch (°)	63	63	63
D (m)	1.155	0.887	0.887
N (rpm)	375	350	182
Q (m^3/s)	6.03	2.47	1.5
Reynolds Number	11,000,00	5,900,000	1,500,000

Dimensional Test Conditions

Hydrodynamic efficiency vs. Capacity Coefficient

- Turbine Runner Testing
 - Condition Based Maintenance Test Results
 - Generating simulated fault condition to evaluate if sensors in turbine system can be used to detect changes in operation
 - Would allow monitoring of system health
 - Fault condition simulated by removing two Inlet Guide Vanes

IGV blades removed to simulate a fault condition

- Overall spectra of the torque sensor timeseries indicating no instability
- Minor differences in frequencies, but not significant enough to be indicators for system health monitoring
- Shows that the composite runner system is a robust system hydrodynamically

Summary & Conclusions

- Materials selected in Phase I proven in real-world simulated testing
- Composite runner turbine blades successfully fabricated using VARTM process
- Mechanical laboratory testing showed good correlation between predicted FEA performance and actual blade performance
- Scaled Voith Bulb hydroturbine successfully designed, fabricated, and deployed in PSU/ARL water tunnel
- Composite runner set successfully tested under simulated hydroturbine operational conditions
 - Hydrodynamic performance similar to stainless steel runners
 - Surface roughness and tolerances for the composite runner blades did not have a significant impact on performance parameters
 - No indication of cavitation was experienced, audibly or after visual inspection of the blades, indicating that the anti-cavitation coating performed as expected
- Proved that advanced manufacturing methods and materials used in the composite turbine blades are viable candidates for use in hydroturbines

