EE0007248 - The Design and Development of a Composite Hydropower Turbine Runner

Paul Fabian – Composite Technology Development, Inc.
and
Nicholas Jaffa – Advanced Research Laboratory, Pennsylvania State University

Paul.Fabian@ctd-materials.com
naj15@arl.psu.edu

July 26, 2022
Project Overview

Project Summary

- **DOE objective:** Design and test new and innovative conventional hydropower powertrain components
- **Project goal:** Verify that composite materials are a reliable and economic alternative to traditional metallic runners to reduce costs and increase energy capture.
- **Develop cavitation-resistant coatings**
- **Prototype and test a composite runner system under real-world hydropower turbine operating conditions.**

Intended Outcomes

- **Prototype a weight-efficient, fatigue resistant, low-maintenance turbine runner using composite materials to reduce mass and extend service life**
- **Improve runner reliability by developing a high-performance coating system that resists cavitation and sediment erosion**
- **Provide performance test data of the composite runner/coating in true hydropower turbine operating conditions**

Project Information

- **Principal Investigator(s)**
 - Mr. Paul E. Fabian
 - Composite Technology Development, Inc., Lafayette, CO

- **Project Partners/Subs**
 - Penn State University – ARL
 - Sandia National Laboratory
 - Tribologix Inc.
 - Voith Hydro, Inc.

Project Status

- **Completed**

Project Duration

- **July 1, 2016**
- **April 30, 2022**

Total Costed (FY19–FY21)

- **$698,247**
Project Objectives: Relevance

Relevance to Program Goals:
• This program addresses WPTO’s mission of enabling research, development, testing and commercialization of new technologies to advance marine energy as well as next-generation hydropower and pumped storage systems for a flexible, reliable grid through the following:
 – Leverages new composite manufacturing and materials to dramatically lower costs of components and systems
 • Design and manufacture of composite hydroturbine runner
 • Developed new, higher performing liquid polymer resin system for runners as well as a cavitation resistant coating to increase longevity in operation
 • Both reduce costs through increased durability and expected lifetimes
 – Supports testing of new technologies (composite runners), including development of necessary testing infrastructure
 • Testing of composite runners in real-world environment
 • Fabrication of simulated hydroturbine inside ARL's water tunnel for advanced hydropower testing of components
 – Supports goal of utilizing advanced manufacturing and materials to reduce overall cost of energy/electricity
Project Objectives: Approach

Phased Program Approach

• Phase I
 – Develop system requirements
 – Perform materials assessment and cavitation coating development
 – Design a composite turbine runner

• Phase II
 – Fabricate composite hydroturbine blades
 – Perform composite blade mechanical testing to align
 – Fabricate composite hydroturbine runner set with cavitation coating
 – Perform scaled hydroturbine runner testing in ARL water tunnel

• Incorporated input from leaders in hydroturbine materials & testing
 – ARL/PSU
 – Sandia National Laboratories
 – Voith Hydro
Project Objectives: Expected Outputs and Intended Outcomes

Outputs:
- Prototyped a weight-efficient, fatigue resistant, low-maintenance turbine runner using composite materials to reduce mass and extend service life
- Improved runner reliability by developing a high-performance coating system that resists cavitation and sediment erosion
- Provided performance test data of the composite runner/coating in true hydropower turbine operating conditions

Outcomes:
- Further interest by Hydropower community in using advanced composite materials
- Commercial sales of new materials for use in hydropower applications
- Prototype production and field trials by major hydropower commercial partner
- Commercial large-scale production and use of design and materials in hydro applications resulting in lower cost electricity
Project Budget

<table>
<thead>
<tr>
<th>DOE</th>
<th>Cost-share</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,124.4K</td>
<td>$499.5K</td>
<td>$1,623.9K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>Total Actual Costs FY19–FY21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costed</td>
<td>Costed</td>
<td>Costed</td>
<td>Total Costed</td>
</tr>
<tr>
<td>$223.5K</td>
<td>$179.5K</td>
<td>$295.2K</td>
<td>$698.2K</td>
</tr>
</tbody>
</table>

- Phase I (Year 1) started in late 2016
- Phase II (Year 2) work was extended into FY19 due to delays in blade production and water tunnel modification work delays
- Phase II work was further delayed by COVID and resulting shutdown of facilities and availability of personnel. Work was restarted in FY21.
- Additional funding by DOE was provided in FY20 due to increased costs for fabricating water tunnel hardware and performing testing at ARL
End-User Engagement and Dissemination

- Program was initiated with a commercial stakeholder, Voith Hydro, as a partner in design and development
 - Proprietary blade design was supplied by Voith as a baseline
 - Allowed direct comparison to stainless steel material properties
 - Provided operational parameters used to set metrics for testing of composite blades
 - All information was proprietary so could not be shared with outside parties
 - Sandia National Laboratory (SNL), PSU/ARL, and Voith personnel were involved throughout the project and attended monthly program review meetings
 - Allowed regular advisement and input on program
 - Program team also participated in milestone meetings such as Requirements Review, Test Readiness Reviews, and Manufacturing Readiness Reviews
 - Voith included since they were our commercial manufacturing partner that allowed a direct path to the commercial market
 - PSU/ARL were the cavitation testing and water tunnel test experts who could enable simulated real-world test results
 - SNL acted as material coating experts
- Results have been shared with Voith Hydro for evaluation of next steps
Performance: Accomplishments and Progress

• Materials
 – Prior evaluation and screening tests in Year 1 identified materials to be used for water tunnel testing in Year 2
 – CTD-K08/K13916 high modulus carbon fiber provided necessary stiffness and performance to achieve mechanical properties desired for blade
 – CTD-133 coating was found to offer the best cavitation resistance in accelerated cavitation erosion testing conducted at PSU/ARL

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Material</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub interface</td>
<td>410 Stainless Steel</td>
<td>Various</td>
</tr>
<tr>
<td>Composite blade matrix</td>
<td>CTD-K08 resin</td>
<td>CTD</td>
</tr>
<tr>
<td>Composite blade fiber</td>
<td>K13916 carbon fiber</td>
<td>Mitsubishi</td>
</tr>
<tr>
<td>Hub to blade adhesive</td>
<td>EA9394</td>
<td>Loctite Hysol</td>
</tr>
<tr>
<td>Anti-cavitation coating</td>
<td>CTD-133</td>
<td>CTD</td>
</tr>
</tbody>
</table>
• **Composite Blade Fabrication**
 – Blades fabricated using Vacuum Assisted Resin Transfer Molding (VARTM) process
 – Post fabrication machining to achieve exact blade dimensions

Performance: Accomplishments and Progress (cont.)
Performance: Accomplishments and Progress (cont.)

- **Blade Prototype Testing Set-up**
 - Blades tested in bending in fatigue and to failure
 - Point loading in servo-hydraulic test machine at room temperature in air
 - Test results matched to FEA results to validate composite blade performs as designed

![Test Machine Actuator and Load Cell](image)

![Blade Prototype Testing](image)

200 rpm + Max Power

3pt Load (Scaled) BendTwist9

LVDTS (to measure displacement)

LVDT Reaction Plate

CASE: BendTwist9
TOTAL LOAD = 3 x 230 = 690 lbf
Performance: Accomplishments and Progress (cont.)

- **Blade Prototype Testing Results**
 - Deflection near tip of blade during operation biggest concern
 - Quasi-static test results matched FEM results
 - Fatigue testing at operating loads showed no degradation after 10^6 cycles
 - Failure loads averaged over 4,000 lb.
 - Factor of Safety of over 4 from loads for Maximum Power

Maximum Power Operating Condition

<table>
<thead>
<tr>
<th>CASE</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST: Raw LVDT Measurement</td>
<td>0.089</td>
<td>0.093</td>
<td>0.097</td>
</tr>
<tr>
<td>TEST: Compensated for Failure Rotation</td>
<td>0.036</td>
<td>0.039</td>
<td>0.043</td>
</tr>
<tr>
<td>FEM: $E_1=67$MSI</td>
<td>0.022</td>
<td>0.020</td>
<td>0.023</td>
</tr>
<tr>
<td>FEM: $E_1=52$MSI & Modified Load Points</td>
<td>0.033</td>
<td>0.030</td>
<td>0.035</td>
</tr>
</tbody>
</table>
Performance: Accomplishments and Progress (cont.)

• Runner Set Fabrication
 – Runner set of 3 blades + 1 extra fabricated
 – Blades bonded and pinned to SS hub interface
 – CTD-133 anti-cavitation coating applied to outside surface of blade
 – Runner set shipped to PSU/ARL
Performance: Accomplishments and Progress (cont.)

• Turbine Runner Testing
 – Testing performed inside the Garfield Thomas Water Tunnel (GTWT) at PSU/ARL
 – A scaled (76%) version of the Voith Bulb Turbine system was fabricated and installed inside the water tunnel
 – Parts fabricated and installed in water tunnel
Performance: Accomplishments and Progress (cont.)

• Turbine Runner Testing
 – Installation of scaled Voith Bulb Turbine in GTWT
• Turbine Runner Testing
 – Test Plan
 1. Windage test - Remove rotor blades and vary rpm to measure drivetrain windage losses
 2. Hydrodynamic performance sweep - Hold flowrate constant and vary rpm
 3. Reynolds sweep - Vary flowrate and rpm by constant ratio
 4. Condition Based Maintenance (CBM) test - Simulate fault condition by removing IGV blade

![Graph showing Tip Clearance](image)

- Tip clearance of tallest composite blade

![Graph showing Bare Hub Windage Test](image)

- Measured torque from bare hub windage test used to correct the raw torque data from the other tests
Performance: Accomplishments and Progress (cont.)

- **Turbine Runner Testing**
 - The key measurements required for the validation test were:
 - Flowrate, \(Q \)
 - Stagnation pressure change across turbine, \(\Delta P_t = P_{t1} - P_{t2} \)
 - Turbine rotor rotational speed, \(N \)
 - Turbine rotor torque, \(\tau \)

- **Hydrodynamic Performance Sweep Results**

<table>
<thead>
<tr>
<th>Impeller RPM (Estimate)</th>
<th>Flowrate (m³/s)</th>
<th>Turbine RPM</th>
<th>Maximum Power</th>
<th>On Design</th>
<th>Maximum Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.175</td>
<td>0.75</td>
<td>35.42500221</td>
<td>69.69209822</td>
<td>60.20844907</td>
<td>65.709470</td>
</tr>
<tr>
<td>21.55</td>
<td>0.75</td>
<td>40.49500863</td>
<td>65.93561984</td>
<td>63.82045984</td>
<td>69.564384</td>
</tr>
<tr>
<td>26.725</td>
<td>1</td>
<td>70.83702024</td>
<td>113.13802189</td>
<td>113.13802189</td>
<td>121.45798989</td>
</tr>
<tr>
<td>31.9</td>
<td>1.25</td>
<td>83.32502627</td>
<td>131.57892176</td>
<td>131.57892176</td>
<td>141.70045316</td>
</tr>
<tr>
<td>37.075</td>
<td>1.5</td>
<td>106.27503838</td>
<td>151.8219541</td>
<td>151.8219541</td>
<td>167.00492554</td>
</tr>
<tr>
<td>42.25</td>
<td>3.75</td>
<td>129.38705642</td>
<td>184.1700401</td>
<td>184.1700401</td>
<td>212.58901754</td>
</tr>
</tbody>
</table>

Test matrix for correct RPM and speed for safe operating conditions
Performance: Accomplishments and Progress (cont.)

• Turbine Runner Testing
 – Reynolds Sensitivity Sweep Results
 • Reynolds number based on blade chord and relative velocity at tip
 • Hydrodynamic performance insensitive to changes in Reynolds number

<table>
<thead>
<tr>
<th>Variable</th>
<th>Full Scale</th>
<th>CFD</th>
<th>Tunnel Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Pitch (°)</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>IGV Pitch (°)</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>D (m)</td>
<td>1.155</td>
<td>0.887</td>
<td>0.887</td>
</tr>
<tr>
<td>N (rpm)</td>
<td>375</td>
<td>350</td>
<td>182</td>
</tr>
<tr>
<td>Q (m^3/s)</td>
<td>6.03</td>
<td>2.47</td>
<td>1.5</td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>11,000,000</td>
<td>5,900,000</td>
<td>1,500,000</td>
</tr>
</tbody>
</table>
Performance: Accomplishments and Progress (cont.)

- **Turbine Runner Testing**
 - **Condition Based Maintenance Test Results**
 - Generating simulated fault condition to evaluate if sensors in turbine system can be used to detect changes in operation
 - Would allow monitoring of system health
 - Fault condition simulated by removing two Inlet Guide Vanes

- Overall spectra of the torque sensor timeseries indicating no instability
- Minor differences in frequencies, but not significant enough to be indicators for system health monitoring
- Shows that the composite runner system is a robust system hydrodynamically
Summary & Conclusions

• Materials selected in Phase I proven in real-world simulated testing
• Composite runner turbine blades successfully fabricated using VARTM process
• Mechanical laboratory testing showed good correlation between predicted FEA performance and actual blade performance
• Scaled Voith Bulb hydroturbine successfully designed, fabricated, and deployed in PSU/ARL water tunnel
• Composite runner set successfully tested under simulated hydroturbine operational conditions
 – Hydrodynamic performance similar to stainless steel runners
 – Surface roughness and tolerances for the composite runner blades did not have a significant impact on performance parameters
 – No indication of cavitation was experienced, audibly or after visual inspection of the blades, indicating that the anti-cavitation coating performed as expected
• Proved that advanced manufacturing methods and materials used in the composite turbine blades are viable candidates for use in hydroturbines