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Real-time prototyping of hydropower plant controls can help reduce the cost and
risk of field deployment. In this project, we (1) collect design and operational data
from actual hydro plants, (2) use a physics-informed machine learning approach
for real-time emulation of hydropower plants, including turbine and penstock
hydrodynamics. Data-driven models will be interfaced with digital real-time

S mu NREL'sF r s Cmpusfrc r er-hardware-in-the-loop (CHIL)
testing of the hydro-governor. This approach will establish connectivity-based
remote CHIL capability using real-time data streams from an actual hydro plant.

As a Seedling project, to demonstrate the ability to test digital governors as CHIL,
the focus will be on establishing an approach for early-stage hydropower control
technologies. The expected outcomes of the R&D in this project are:

e Robust real-time connectivity to stream hydropower plant data from the field.

e Data-driven, physics-informed machine learning representation of hydraulic
models for use in real-time simulations.

e Rapid prototyping environment for hydropower controls using CHIL.

e Integrated CHIL and data-driven control prototyping environment.
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Project Objectives: Relevance

Relevance to Program Goals:
* This project will establish a high-fidelity hydropower controls testing and

prototyping environment using actual hydro plant data for at-scale testing, and
eventually could be used for integration with energy storage technologies,
renewables, and hybrid energy systems.

* The desigh modification and prototyping of hydro controls can be costly and
introduces unnecessary risk during field deployment and commissioning. This CHIL
environment will serve as a platform to risk reduced, cost-effective mechanisms of
controls development and testing using remote hardware-in-the-loop.

* This will also facilitate collaborative research between industry/utilities and
national laboratories for high-fidelity, data-driven, at-scale testing. A research
collaboration with the University of South-Eastern Norway was established under
the existing MOU between DOE and the Research Council of Norway.
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Project Objectives: Approach

Data From Hydro Plant Real-Time Data Streaming Hydro Plant Emulation CHIL and Rapid Control
Operational: Electrical - One-way data stream: Physics-informed machine learning: | Prototyping

Phasor Measurement Units Operational data, collected at Data-driven representation of hydro | RCP with emulated hydro plant
(PMU), and SCADA; hydraulic | NREL for emulation. GPS time- plant based on available data. in DRTS at NREL.

and mechanical - SCADA. stamped data (PMU and SCADA). | Validation of response against Verification of suitability for
Design: Electrical, Bidirectional: To show feasibility | operational data. local and remote HIL under
mechanical, hydraulic, of hydro plant as hardware-in- Emulation using Digital Real Time channel latencies.

controls, concept of the-loop (HIL) under channel Simulation (DRTS) for rapid control CHIL using DRTS programmable
operations. latencies. prototyping and CHIL. hardware controller.
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Project Objectives: Expected Outputs and Intended Outcomes

Outputs: Outcomes:

« Establishment of an approach for * Real-time connectivity to stream
early-stage hydropower control hydropower plant data from the field.
technologies and the ability to test « Data-driven, physics-informed
digital governors as CHIL. machine learning representation of

* Evaluation of data-driven hydraulic models for use in real-time
approaches, including physics- simulations.
informed machine learning, for « Rapid prototyping environment for
hydropower representation in rapid hydropower controls using CHIL.
control prototyping. * Integrated CHIL and data-driven

* Remote data-driven governor CHIL. control prototyping environment.
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Project Timeline

Task 1: Establish real-time connectivity to stream hydro operational
data.
Panel Session on Water Power Generation —
Task 2: Develop physics-informed machine learning hydraulic models. HAFpGVERF AR Maiine Hydmkine s (Par.2)
. . . . . . 21PESGM2211: Machine L ing for P d
Task 3: Establish Quality of Service of communication link and StoraguFiveropowarDperatiy |
latency mitigation. July 26, 2021
[ :Rew:ﬁgre?:: af Laboratol
Task 4: Establish preliminary proof-of-concept rapid prototyping T e
environment through integration of data-driven hydro operational g R
model in digital real-time simulation and controller as CHIL.
Data for Machine Learning fra_:m a 3 MW Run-of-the-River
Task 5: Demonstrate the ability to test digital governors as CHIL. — e —r e
Task 6: Coordinate research with the Research Council of Norway. ol

for real-time emulation of hydropower plants,

* Presented project progress in Seedling Showcase 2021 5 == TN
* Participated in panel presentation on the application of machine I "
. . g
learning to pumped storage hydro at IEEE PES General Meeting 2021. Y
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Project Budget

FY19 FY20 FY21 Total Actual Costs
FY19-FY21
Costed Costed Costed Total Costed
$OK $0K $90K $90K

* No-cost time extension through 6/30/22 to spend the remaining $35K.
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End-User Engagement and Dissemination

» Stakeholder engagement strategy

- As part of the Seedling project, one utility partner (Cordova Electric Coop.) was
engaged to provide hydropower plant operational data (electrical, mechanical,
hydraulic) from SCADA, and high-resolution phasor measurement unit (PMU).

- The data was used for physics-informed machine-learning-based representation of a
hydropower plant.

- Established an approach for early-stage hydropower control technologies and the
ability to test digital governors as CHIL.

* This project was presented in the DOE WPTO Seedling Showcase 2021, and as a panel
presentation for “Machine Learning in Pumped Storage Hydropower Operation” at the IEEE

PES General Meeting 2021 in the Panel Session on Water Power Generation — Hydropower
and Marine Hydrokinetic (Part 2).

* The outcomes of this Seedling project are directly used in the FY22-24 HydroWIRES Hydro
Emulation project at NREL Advanced Research on Integrated Energy Systems (ARIES), where

GE, Stantec, Cordova Electric, and Siemens are engaged as part of an Industry Advisory
Board.
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Performance: Key Accomplishments and Progress

 Data-driven representation using physics-informed machine learning (PIML), i.e.,
multistep neural networks (MNNs) and other data-driven approaches such as
reservoir computing and long short-term memory (LSTM), was done for two
different hydropower plant configurations.

— Realtime electromagnetic transient (EMT) model of a 300-MW pumped storage hydro plant.
— Actual 3-MW run-of-the-river (ROR) hydropower plant in Cordova, AK, with Turgo Impulse turbine.

* Additional EMT models were developed for different Pumped Storage Hydro (PSH)
designs and configurations (conventional, adjustable speed).

* Architecture for real-time data streaming was prepared with Cordova Electric and
NREL ARIES digital real-time simulation.

 DRTS-based evaluation was set up for digital governor hardware testing as CHIL.

* Successfully engaged with University of South-Eastern Norway (USN) for research
collaborations (FY22-24) in support of the existing MOU between DOE WPTO and
the Research Council of Norway.
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Performance: Accomplishments and Progress (cont.)
W Real-Time Field Sensor Data Streaming Architecture

Head level (m) SCADA Water level at intake structure

: ; ) Operator Training via
Water flow (cfs) Estimated Estimated based on penstock and intake pressure R
Nozzle valves position (%) SCADA Percent opening measurement ,\‘i «—> ﬁ b - ;’;‘i;'f:;'lz’;r':;i

Real-time connectivity

Deflector position (%) SCADA Percent opening measurement for streaming remote

Data server, PMUs, hydro sensors, hydropower plant data
controller measurements, etc.

Temperature (deg F) SCADA In-plant RTD measurement to NRELFlatirons

Communication interface {Analcg and Digital)
DNP3, MODBUS, 61850 GOOSE, IEEE C37.118-2 PMU etc.

Digital Real- Hydro Governor Controller

Mechanical speed (rpm) SCADA RPM measurement time Simulation HIL
Electrical frequency (Hz) SCADA Power meter measurement '
Electrical power (MW, MVAr) SCADA Power meter measurement (MW, MVAr) Rapid Control T

Real-time connectivity Prototyping for ’ intensm k|
Time (s) SCADA Programmable Logic Controller time @1s ey o, Fvdre gevemors

Actual hydropower plant e g _ '
Electrical frequency (Hz) Micro-PMU Estimates at 120 samples per second Future Bl enerey stersee
Electrical voltage, current, power Micro-PMU Power calculated based on each phase voltages and
(kV, kKA, MW, MVAr) current (magnitudes and phase angles)
Time (s) Micro-PMU GPS time
Cordova Microgrid Cordova, AK NREL, CO

Schematic = —@
- @ $ @ —El—| Z|_|,|H.. = 2 | Field micro- _I—' Data Server IEEEC37.118 DRTS NREL Data Repo
@ = s &2 PMU T a7 11 . . IEEE €37.118 protocol (existing + new)
- S : OpenHIStOI’IGn (PMU data send/receive)
EEKP ; !

H

MAIN TOWN NEW TOWN LAKE AVE. 13 MILE (Airport)

IEEE C37.118

AN IEEE C37.118/other protocols
O stream splitter + data diode/ON-OFF switch

POWER CREEK HYDRO HUMPBACK CREEK HYDRO ORCA DIESEL
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Results: Cordova’s Hydropower Plant Design and Operational Data

T i Power Creek Waterway: intake, penstock gglgv.) ) Unit and plant power o .
i oo Mechanical speed No direct w.ater flow measurement.
) = Nozzle/deflector positions * Exact location of pressure
a,_i § Indoor and outdoor temperatures measurements is not known.
e . >
POWER TUNNEL N coisirucrion - 7 . S 5 - i
> i, VR @ g No direct flow measurement; estimating by S * Flow estimates are obtained by
e 9 correlating sensor outputs (Hydpsi, Headlevel, S correlating power, pressure
T 2 Penstockpsi) t lectri 4 .
i : 3 enstockpsi) to power (electric) g measurements, and physical
A gl = Pow ~ P, = 1Qpgh o design details.
";’I'./'; s eistng T g g-
k > O/\P?D 'i"'.f\ . n: Urb e Eff ce Cy -:% Flow of water down pipe Actual values of Flow

Q: cu wurb ef w
p:W er es y
g: cceer ue rvy
h:he he urb e mss

Hagen-Poiseuille equation

Function of
controls

Actual Hydro ‘ B E{ )
e BT ]
Available Hydro
96" 0.DX9/16"
I . | S |
Losses 2500 STEEL mﬁnme
S
Spilled Hydro 8——— Normal elevation = 420 ft Turbine elev. = 114 ft
Rasarve l—— Dam height =420 -412 =8 ft Tailrace channel elev. = 102 ft
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Given power, we can estimate actual values of flow:

BuLi
AP = %ﬁ Power = npQgh
AZAP Q o Power
= T8uL " mpgh
Flow Estimates
led q E
= total_power
——  power
254
20
15
10 A
05 | Bﬂ[:
gﬁl 65| QBI cﬁl {l-l _\’5. x’bl 1‘»I 0q.
Q’\,’dl Q’\,’dl Q’\,’dl Q’\,’Q’l Q’\,’O'L Q’\,’Q’l q‘\,’dl Q’\,’dl q‘\,’d5

time_stamp
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Results: Cordova Hydro Plant Prediction Using LSTM in Tensorflow

Results: Baseline, linear, dense, multistep dense, conv, LSTM.
 Data for one day: ~65K pts (clean ~7K). Power output prediction: 1 s ahead with 30 s history.

Bl Validation
B Test

LSTM: Example Batch Profiles and Performance

Normalized

udkw
nozl
hivl
rpm
hydpsi 4
penpsi

Column

Count Mean Std Min 25% 50% 75% Max

E o] udkw 7605.0 1248.594740 44.367676 1177.00 1221.00 1239.00 1265.00 1479.00
_cg § noz1i 7605.0 48.976953 8.945423 20.10 40.96 46.94 58.83 59.99
< N hivi 7605.0 7.672195 0.172342 7.29 7.49 7.70 7.77 8.40
2 E rpm 7605.0 400.168126 0.585754 398.80 399.60 399.80 400.80 401.60
8 8_ hydpsi 7605.0 1798.378698 2.611716 1788.00 1797.00 1798.00 1800.00 1806.00
penpsi 7605.0 129.143853 0.706048 128.00 129.00 129.00 130.00 133.00
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Results: Prediction and Performance Using Reservoir Computing

Mol maaT™ aa_ 1 _1°_ ™ 1

Objective: To learn time trajectories Reservoir Computing using Echo State Networks
using machine learning techniques and F(t + At) = tanh[Ar(c) + W, u(0)]

predict power, speed, etc. to infer v(t + At) = W, (r(t + Ab), P)

dynamic behavior of PSH.

|
m

iH1-¢ 2
19

o Simulation data in turbine mode. o YW P
«  Setpoints varied from 0.8-0.99pu. | — | /R e | RO
e g  Speed, power, gate, water flow, and
= control references are captured. coupter (memoryiess)  {memory)  Coupler (memonyieee)

Prediction Performance: Power Output Prediction and Actual (Left); Error (Right)

0695 — predicled
04

0690

0685

0680

Power [pu]
Error [%]

mso S

i 0875

Q670

0865

e X-axis: xoOms x-axis: xoOms

Training data generated using RTDS . ™ o =y s == i o 060 o= o= i
ime ime

PSH output power based on input features: speed, power, gate, water flow, and control references.
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Results: Prediction Using Multistep Neural Network

A multistep neural network (MNN)* is a numerics-informed approach in which the
underlying physics is learned from data, and then a numerical integration scheme
is used for solving the dynamical representation as ODEs.

 PSH simulation data is employed for training, and prediction is performed for 10
timesteps (each timestep At = 50 ms); recomputed at 10 Hz.

Real-Time Simulation Test Plots

Predicted Output (Test: Offline)

RealHime prediction (red) @
1. — data using MNN; - it . . . . . .
Lo = NN model g ’ ur GATE [E=z ]t
Actual data (black) update oo~
E 102 rate: 10 Hz. e P_statpu T e
U ] : I in3
R Prediction for generator and i Pamner -
Q - D:E?—
) turbine shaft speeds, gate ' —
e position, water flow, speed o SPEERRS
vael and power references, and ;3
00 25 50 75 100 125 150 175 200 electrical power output. e ' ' — ' ' '
*Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. 2018. "Multistep neural networks i 333 : "

for data-driven discovery of nonlinear dynamical systems." arXiv preprint arXiv:1801.01236.
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Performance: Accomplishments and Progress - Hydro-Governor CHIL

* Large cluster of digital real-time simulation for regional-level power system dynamics
— Nine chassis RTDS and four Typhoon HIL emulators

Low-voltage V & |
amplifiers for
hydro-governor
controller HIL

Typhoon HILConnect
with EPC Power Corp.
Controllers interfaced
to RTDS for CHIL

Typhoon HIL Emulator Typhoon HIL RTDS
+ EPC Connect Interface Board GTAO & GTAI RSCAD
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Performance: Accomplishments and Progress - PIML

* Multiple approaches to include physics in the machine learning
— Joint loss minimization of data-driven and physics governing equations is a popular approach.

Ift)
I)— 1-D)

I(t-m) [ B
() Branch B

T{f)—p T(f-ir) —— Net e by
T(t-m) &

L(t)

L(t)— L(t-1)

X~ S50C = G(,T.L)(1)

Lt-m)

[SoCrt- 1)
SoC(r-2)|__ Trunk
Net

SoClt - k)

Julian D. Osorio, Zhicheng Wang, George E.
Karniadakis, Shengze Cai, Chrys Chryssostomidis,
Mayank Panwar, and Rob Hovsapian. “Forecasting
solar-thermal systems performance under transient
operation using a data-driven machine learning
approach based on the DeepONet architecture.”
Submitted to Energy Conversion and Management.

input [d] hidden output [n] output
[m] layers [p—n] constraints [p]

@ —Go—( )
T L
i N ol ) ” traditional

/ W\ multi-layer

perceptron

enforce n
physical
constaints
within NN

K. Kashinath et al. 2021. “Physics-informed
machine learning: case studies for weather and
climate modelling.” Phil. Trans. R. Soc. A 379:
20200093.

https://doi.org/10.1098/rsta.2020.0093.
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Hidden layer 1
Hidden layer 2
Hidden layer 3

. Hidden layer 4

w@ Physical parameters
of the flow

CTL w
Prediction from the
Hess-Smith panel method <
Cpp I

FIG. 2. The representative neural network architecture of the PGML framework
used in this study for the aerodynamic force prediction task. The latent variables at
the third hidden layers are augmented with the physical parameters of the flow (i.e.,
the Reynolds number and angle of attack) and the prediction from the Hess—Smith
panel methed (i.e., lift coefficient and pressure drag coefficient denoted as C; and

Cpp, respectively).

Suraj Pawar, Omer San, Burak Aksoylu, Adil Rasheed,
and Trond Kvamsdal. 2021. “Physics guided machine
learning using simplified theories.” Physics of Fluids 33,
011701 https://doi.org/10.1063/5.0038929.
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Performance: Accomplishments and Progress (cont.)

Procedure to include plant physics in machine learning

* Physics equations (algebraic, differential) in the machine learning can be included in a neural network
directly at the training stage by augmenting the training data inputs with independent variables from
the governing equation at a chosen hidden layer of the network.

* During training, a joint loss function of the complete neural network, including the governing equation,

is minimized.

Steady-state
Ptur &= Pe = nngh

1n: turbine efficiency
Q: actual turbine flow
p: water density
g: acceleration due to gravity
h: head at the turbine admission

Penstock Detailed

dynamics turbine
PDEs/ODEs PDEs/ODEs

(future) (future)

Next steps

* Application of physics-informed machine learning for penstock and
turbine dynamics.

* Non-desirable phenomena such as water hammer, cavitation, etc.
* Off-nominal dynamic and transient operation.

* Scaling nonlinear behavior for different hydro plant sizes and
configurations.

* Rapid prototyping and deployment of real-time predictive controls.
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Future Work

Application of Physics-Informed Machine Learning to other
hydropower desighs and configurations will be evaluated.
This Seedling project proof of concept will be developed
further in a HydroWIRES project for Hydro Emulation at NREL
ARIES (FY22-24). The project objectives are:

1. Establish a controlled real-world hydropower environment
at NREL by leveraging ARIES infrastructure.

* Large cluster of DRTS, controllable grid interface (CGl),
variable speed hydro-generator, and renewable assets:
wind, solar PV, storage technologies (battery, hydrogen).

Develop next-generation hydro controls hardware for the
grid of the future.

* Utility data-driven and machine learning for scalability
analysis. Reduce the cost of integration, increase
technology adoption, reduce the risk of field deployment.

Develop power electronics building blocks (PEBB) for the
hydropower plant as a grid interface.

 The PEBB concept is a modular, standardized hardware
and control interface for existing and new hydropower
configurations, including other grid technologies such as
storage and microgrid connectivity.
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