

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

EE00008780 - Geomechanical Pumped Storage

Howard K. Schmidt/ CTO Quidnet Energy

hkschmidt@quidnetenergy.com

22 July, 2022

Project Overview

Project Summary

The objective of the project is to design, engineer, model, build and test a
prototype, and characterize a novel combination of known mechanical
elements (modern plunger pump and early water engine technologies) to
realize a highly efficient and economical bidirectional medium pressure, high
power injector-generator system – the Injector-Generator (INGEN) – for high
head applications including Quidnet's Geomechanical Pumped Storage (GPS).

Intended Outcomes

 The specific outcomes of this project are to produce a 0.5 to 10MW homologous design series capable of operating at 700psi to 3,000 psi, as well as a small-scale prototype used to characterize performance, with the goal of achieving mechanical efficiencies better than alternative reversible rotodynamic machines, targeting >95% mechanical efficiency (each way) in both the pumping and generation modes. This project also will generate a manufacturing plan to achieve <\$100/kw INGEN manufacturing cost atscale long-term.

Project Information

Principal Investigator(s)

- Howard K. Schmidt, Ph.D. / CTO
- Joe Zhou / CEO

Project Partners/Subs

- Mechanical Solutions, Inc.
- ACI Services, Inc.
- Norm Shade, Ph.D.,
- Steve Todaro, P.E.

Project Status

Ongoing

Project Duration

- Project Start Date: 8/1/2019
- Project End Date: 12/31/2022

Total Costed \$1,964,705

Relevance to Program Goals:

- Supports a key HydroWIRES objective developing innovative technologies for improved grid service capabilities
 - Directly optimizes Geomechanical Pumped Storage a new PHS modality
 - Ideal for granular deployment in the 0.5 to 10 MW range
 - Serves longer duration storage > 10 hours
 - Positive displacement platform has inherently high efficiency
 - Applicable to small scale traditional Pumped Hydro Storage
 - All facilities above grade
 - Easier to scale to high efficiency at low power compared to Francis Turbines
 - Applicable to power generation using GeoPressured Brines
 - Module size matches typical well flow-pressure characteristics
 - Easier to scale to high pressure than Pelton/Impulse turbines

Approach:

- Adapt a robust and efficient positive displacement plunger pumping platform with a modified valve train with bi-directional flow to support both INjection and GENeration (INGEN) operations
- Replace unidirectional check valves with novel bi-directional cylindrical rotary valves
- Develop hydrodynamically lubricated sealing pads to optimize life with minimal drag and leakage

Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- 375 KW class INGEN prototype supporting GPS storage in the 500 to 2000 PSI range
- INGEN design guide and performance testing results
- IP covering the basic mechanical device, seal materials and designs, seal dynamic control method
- Technology transfer & license to USbased manufacturer for commercial production.

Outcomes:

- Enable rapid GPS deployment at new sites with reduced capex
- Expand PHS deployment at smaller sites without cavern development
- Enable geopressured cogeneration at hydrocarbon production sites
- Enable rapid low cost production of power from geopressured fluids

Project Timeline

8/01/2019 Start BP1 M 1.1 Complete 3D design, component selection & analysis	FY 2020		
		FY 2021	
	M 2.1 Complete balance of system design		
		4/01/2021 Start BP2	
	M 3.1 Demonstrate path to < \$100/kw cost	6/30/2022 complete bench testing rotary valve ports	
	9/30/2020 Initiate GNG		
		Upcoming: detailed design, fabricate, assemble & test prototype	

Total Project Budget – Award Information				
DOE	Cost-share	Total		
\$1,200,000	\$764,705	\$1,964,705		

FY19	FY20	FY21	Total Actual Costs FY19-FY21
Costed	Costed	Costed	Total Costed
\$52,988 Federal	\$514,209 Federal	\$283,364 Federal	\$850,562 Federal
\$33,767 Quidnet	\$327,681 Quidnet	\$146,896 Quidnet	\$508,344 Quidnet

- No variances from planned budget
- Project timeline increased via no-cost-extensions

End-User Engagement and Dissemination

- End-user engagement strategy
 - First customer is Quidnet Energy for long duration energy storage
 - Initial production with vendors that manufacture for OEMs routinely
 - Potential new applications:
 - Co-generation at high pressure hydrocarbon wells (1000 -6000 PSI)
 - Co-generation from RO desalination facilities
 - Small scale Pumped Hydro Storage (PHS) facilities (< 1 MW)
 - Power generation from geopressured geothermal brine resources.
 - Have engaged participants in
 - Hydrocarbon production
 - RO desal cogeneration
 - GPGT brine resource owners
- Technology transfer & commercialization plans
 - Licensing to established plunger pump manufacturers
 - Peer reviewed publications
 - Direct customer contacts for demonstration projects in new applications

Performance: Accomplishments and Progress

- Technical accomplishments
 - Developed CFD & FEM models for basic cylindrical rotary valve system
 - Identified key factors dominating performance/losses
 - Evaluated dozens of alternative flow geometries and architectures
 - Selected and modeled promising candidates
 - Completed CFC & FEM modeling of improved rotary valve architecture
 - Designed and built full-size single-port test bed for sealing pads
 - Evaluated pad materials
 - Evaluated pad designs and control methods
 - Selected sealing pad design, control and material for prototype

INLET

Performance: Accomplishments and Progress (cont.)

- Intellectual Property
 - IP developed during contract period:
 - Improved flow architecture for bi-directional hydraulic pump/motor
 - Floating sealing pad with hydraulic control method
 - Will file these as continuations to base patent (US 16/913,801) before award
 - Will publish results when testing is completed

Future Work

- Key Steps
 - Just reached final key decision point with successful sealing pad tests on laboratory bench test system
 - Detailed Design for 375 KW Prototype INGEN at MSI
 - Fabricate and Integrate Prototype at ACI
 - Test and Characterize Prototype at Hydro, Inc.
 - Re-sized prototype from 1875 KW to 375 KW to reduce integration time and cost
 - Planned completion by Jan 2023

