

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

2.1.3.704 – WEC Design Optimization

Presenter(s): Ryan Coe, Giorgio Bacelli Organization(s): Sandia National Labs

Email(s): <u>rcoe@sandia.gov</u>, <u>gbacell@sandia.gov</u> Presentation Date: July 20, 2022

Project Overview

Project Summary	Project Information	
WEC developers need faster, more robust, analytical design	Principal Investigator(s)	
approaches/tools, utilizing optimization algorithms. This project seeks to overcome these critical issues in WEC design by creating a hybrid optimization	Ryan CoeGiorgio Bacelli	
system that simultaneously optimizes geometry and controls of existing WEC concepts.	Project Partners/Subs	
	AquaHarmonicsCalWave	
Intended Outcomes		
The WEC design optimization tool developed by this project is applicable for all	Project Status	
The WEC <u>design optimization tool</u> developed by this project is applicable for all resonating WEC devices and is available on an <u>open-source</u> platform for <u>free</u> , giving developers a means of performing <u>rapid and holistic</u> design optimization studies to <u>improve performance and reduce LCOE</u> .	Ongoing	
	Project Duration	
	Project Start Date: July 2018Project End Date: Sept. 2024	
	Total Costed (FY19-FY21)	
	\$482k	

Project Objectives: Relevance

A holistic tool for WEC modeling, control, and design will streamline design cycles and produce better performing machines

> Directly address difficult engineering problems with <u>new theoretical</u> <u>frameworks</u>

> > Numerical optimization tool allows for <u>fast, complete, and systematic</u> design studies

Project Objectives: Approach

Pseudo-spectral solution method

- Efficient for constrained problems w. nonlinear dynamics
- Find solution and maximize power
- Unstructured & structured (e.g., PID) controllers
- Model entire "wave-to-wire" system

Fully open-source: written in Python (no license fees), available on GitHub (https://github.com/SNL-WaterPower/WecOptTool)

Direct collaboration with developers helps tailor tool for realist problems

Project Objectives: Expected Outputs and Intended Outcomes

Outputs:

- Peer-reviewed journal articles and technical reports
- Presentations and webinars
- Open-source code

Outcomes:

- Developers have access to holistic modeling and design tool
- More efficient and effective design cycles
- Higher performance and lower cost
 WECs

Project Timeline

FY19	FY20	FY21	Total Actual Costs
			FY19-FY21
Costed	Costed	Costed	Total Costed
\$190K	\$172K	\$120K	\$482K

COVID impacts

• Personnel availability

WecOptTool utilized to support

- FOA1663
- FOA1837
- F0A2080
- WEC Co-Design

End-User Engagement and Dissemination

Open-source tool for WEC developers and
researchers to apply to their own problems, request features, and contribute

	0	🗎 snl-waterpower.github.io	¢	0 1	- 123	
# WecOptTool	🐐 » Tutorials	s * Tutorial 1 - WaveBot	View	page source		
Search docs	Tutoria	al 1 - WaveBot				
Theory & Practice						
Tutorials	The goal of the	The goal of this tutorial is to show a simple example of the inner optimization loop in WecOptTool.				
Tutorial 1 - WaveBot	It uses a one-	It uses a one-body WEC, the WaveBot, in one degree of freedom in regular waves. The goal is to				
Problem setup	find the optim	find the optimal PTO force time-series that produce the most energy subject to a maximum force				
Solve	the PTO can	excert.				
Results						
Comparison to unconstrained case				1		
Tutorial 2 - WaveBot Optimization			COLUMN DESIGN AND DESIGNATION OF			
6 A						

Open-source case-studies to investigate
 application of design optimization tool and showcase usage

Webinars to demonstrate usage and receive user feedback

Developer collaborations and published casestudies when possible

Downloads: 3k+ Paper reads: 1.4k+ Webinar attendees: 100+

Performance: Accomplishments

tackle challenging engineering problems

Coe *et al.* Initial conceptual demonstration of control co-design for WEC optimization. *J. Ocean* Eng. Mar. Energy **6**, 441–449 (2020). https://doi.org/10.1007/s40722-020-00181-9

Performance: Accomplishments and Progress

Fully-feature power take-off system modeling now allows users to optimize designs for electrical power

CalWave, with help from EverGreen Innovations, is using WecOptTool to model their device

- Good agreement with existing models
- Initial results for improved control tuning are promising

faster design cycle timelines | developer access to open-source tools

Future Work

- Engage users through outreach and dissemination
- Investigate fundamental cross-cutting design concepts
- Explore and expand capabilities

