

U.S. DEPARTMENT OF ENERGY WATER POWER TECHNOLOGIES OFFICE

1.3.3.602 Cyber-physical Reference Framework Kenneth D. Ham, Ph. D kenneth.ham@pnnl.gov 28 July 2022 **Pacific Northwest** NATIONAL LABORATORY Argonne ATIONAL LABORATORY HDC NATIONAL RENEWABLE ENERGY LABORATORY **PNNL-SA-174701**

Project Overview

Project Summary

Organized a sample of 275 plant configurations into nine types based on the prevalence of data and control signals among critical components. The cyber-physical configurations represented in each type inform what cybersecurity vulnerabilities may exist and potential mitigation approaches. A self-assessment tool allows plant operators to identify the type representing their plant to access relevant lessons learned and best practices information. Findings have been shared and discussed at industry conferences, summarized in a report, and shared with data contributors, MOU partners, and key industry leaders.

Intended Outcomes

- Create a mechanism to classify diverse hydropower plants by mechanical and cyber-physical systems.
- Organize the fleet into a manageable number of types
- Understand the variety and pervasiveness of cyber-physical configurations across the hydropower fleet.
- Guide and accelerate the evaluation and mitigation of cybersecurity risks

Project Information

Principal Investigator(s)

PNNL: Kenneth D. Ham, PhD; Crystal Eppinger; Darlene Thorsen, CISSP; Paul Boyd; Abhishek Somani, PhD

Project Partners/Subs

NREL: Michael Ingram, PE; Charisa Powell
ANL: Vladimir Koritarov
USACE HDC: Mateo Mengis; Jordan Fink, PE

Project Status

Completed

Project Duration

24 September 2019 -28 September 2021

Total Costed (FY19-FY21)

\$485K

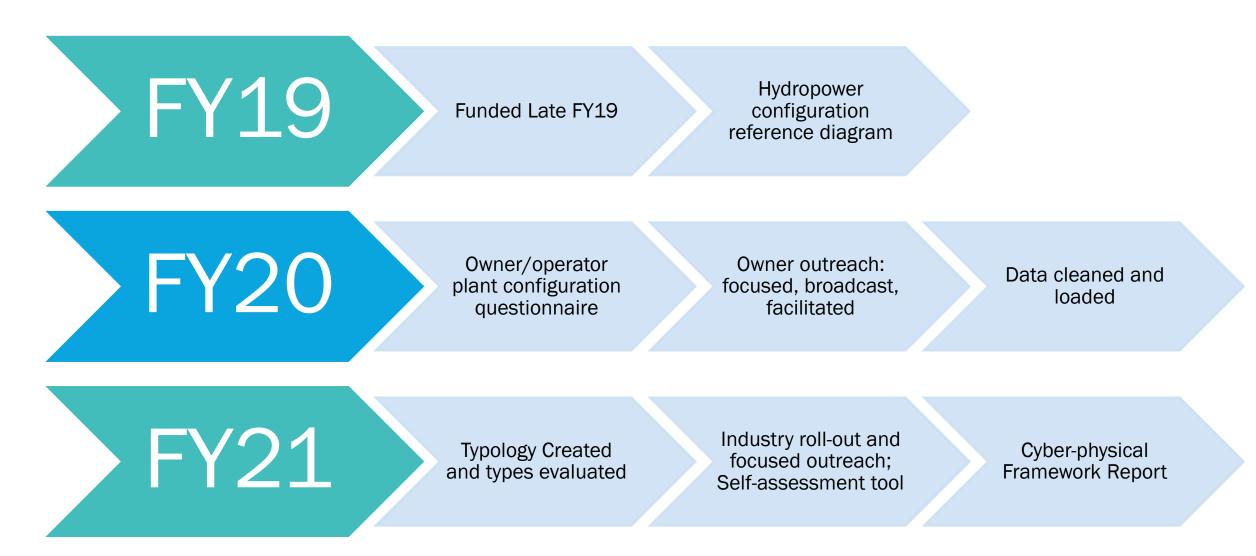
Relevance to Program Goals:

- Foundational information about the hydropower fleet and the variety and pervasiveness of cyberphysical configurations helps focus WPTO strategy.
- Types reduce the inertia of site- and age-related variation among hydropower plants as a hindrance to research, leading to more rapid progress and reduced cost.
- Organizing the fleet into types guides and accelerates efforts to develop effective cybersecurity tools to secure modern digitalized infrastructure, making the electrical system more reliable.

Approach:

- Develop a data request around a hydropower reference configuration created as an extension of the grid diagram in NISTIR-7628 (NIST 2014).
- Multi-pronged outreach to owner/operators to solicit plant configurations via secure channels.
- Classify configurations into logical groupings that form a typology to inform vulnerabilities and mitigation strategies of plants falling within each type.
- Create a self-assessment tool to allow owners/operators to match their plant(s) to a type.
- Communicate findings to key industry groups to enable the typology to inform research, demonstrations, and mitigations.

Project Objectives: Expected Outputs and Intended Outcomes


Outputs:

- Hydropower Reference
 Configuration
- Cyber-physical typology of nine types
 and associated statistics
- Self-assessment key for operators to determine their cyber-physical type
- Report detailing the collection of data, classification into types, evaluation of operational and functional roles in defining the types, and the self-assessment key.

Outcomes:

- Types have become an organizing principle for cybersecurity in hydropower
- WPTO Program planning is integrating the types
- Research is leveraging and building upon the foundational types to deliver targeted tools and mitigations
- Outreach efforts are informed by the types.

Project Timeline

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | WATER POWER TECHNOLOGIES OFFICE

Project Budget

Total Project Budget – Award Information			
DOE	Cost-share	Total	
\$505K	\$15K (in-kind contributions by HDC)	\$520K	

	FY19	FY20	FY21	Total Actual Costs FY19–FY21
PNNL	\$0K	\$118K	\$130K	\$248K
USACE-HDC (thru PNNL)	\$0K	\$0K +\$5K in-kind	\$25K +10K in kind	\$25K +\$15K in-kind
NREL	\$0K	\$95K	\$63K	\$158K
ANL	\$0K	\$47K	\$23K	\$70K
Total	\$0K	\$260K	\$241K	\$516K

End-User Engagement and Dissemination

- Getting Data:
 - -Valuable guidance and assistance from the National Hydropower Association and other industry partners in crafting the messaging and facilitating a request to relevant industry forums
 - In-person outreach to industry professionals (owners and service providers) at NHA Southeastern Regional meeting (pre-covid lockdown)
 - -Identify a targeted set of owners derived from the NHAAP database of hydropower plants to ensure we have coverage across a variety of sizes, functions, and owner types.
 - -Personal, persistent outreach (through email and virtual meetings) communicating the value of the project and requesting plant information.
- Sharing Findings:
 - -Rolled out at industry conferences (virtual due to covid restrictions)
 - -Federal Hydropower MOU (DOE/EERE, Reclamation, USACE)
 - -DOE-Norway Hydropower R&D MOU
 - -Collaboration with new research projects

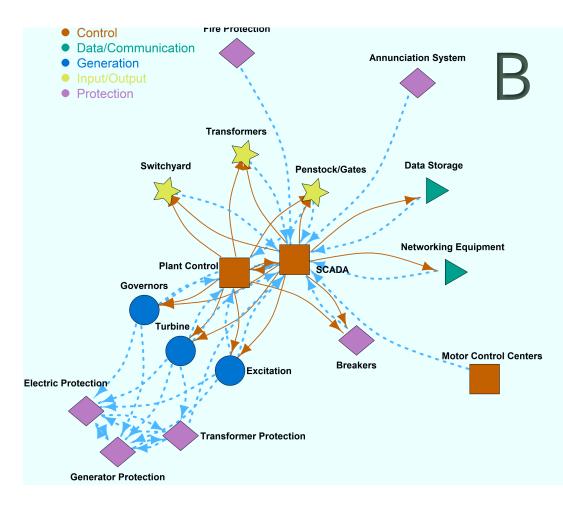
Performance: The Right Questionnaire

- Simple to respond
- Targets essential information and minimizes sensitivities
- Respectful of owner/operator's time
- Secure data transmission to and from any agency
 - Encrypted, password-protected
- Compatible with anonymity and obfuscation
- Ease of data extraction for analysis

	Please indic	ate the systems foun
	Item	
Hydropower Configuration Survey	Number	Subsyst
	0	
The Department of Energy's Water Power Technologies Office has asked Pacific NW National Laboratory		
to summarize information on the configuration of plants in the hydropower fleet so that their needs can	1	Tu
be better served. You can help by describing your plant using the questionnaire below. You will specify below whether specifics can be shared, but fleet-wide summaries will be used to accelerate the	2	
below whether specifics can be shared, but neet-wide summaries will be used to accelerate the development of shared cybersecurity tools and approaches. For any questions contact Project lead:	3	
Kenneth Ham; kenneth.ham@pnnl.gov; 509-371-7156	4	
Kenneur Ham, Kenneur Hamgphingov, 503-571-7136		
Hydropower Project General Characteristics	5	E
1. Project Name Project Owner	6	Ger
2. How should your responses be protected?		
Publicly releasable	7	Trans
Official Use Only		Netw
Commercial Proprietary	8	Netv
3. What is the nameplate generating capacity of your facility (Select one only)?	9	
□ > 30 MW		
10 < MW < 30	10	Unit Back
□ < 10 MW	11	Back
4. How would you classify your facility (Select one only)?	12	Dack
Run-of-river		
Storage	13	
Pumped Storage	14	Ar
Other What type of grid services does your facility participate in (Select all that apply)?	15	Mo
5. What type or grid services does your facility participate in (select all that apply)? D Frequency Response and regulation	16	Transformer n
Spinning Reserves	17	Machine n
□ spinning reserves □ Non-spinning Reserves	18	Partial Discharg
Ramping and load following	19	Back-up power
Voltage and reactive power support	20	Back-up power Bac
 Where do operational changes regarding generation occur: (Select all that apply)? 	20	Dac
Locally, at the controlled equipment, but within the plant		
Centralized, remotely from the controlled equipment, but within the plant	22	
Off-site, remote from the plant	23	
7. How do operational changes in generation occur (Select all that apply)?	24	
Manually, each change in operation needs a separate and discrete initiation		
Automatic, several operations are precipitated by a single action	25	
8. How is your facility operated?	26	
Attended, an operator is available at all times to initiate control action	27	
Unattended, operating staff is not normally available at the facility site	27	
Partially Attended, operating staff present during scheduled hours		
9. How would you describe your plant control system?	28	Generator/Tu
Traditional, hardwired supervisory control - master stations, nonprogrammable RTUs Open, EMS, SCADA - networked PCs, user programmable RTUs	29	Valve and Water P
Closed, stand-alone systems - proprietary controllers/operator consoles		
 Gover, summariance systems - proprietary controllers/operator consoles 	30	
	31	

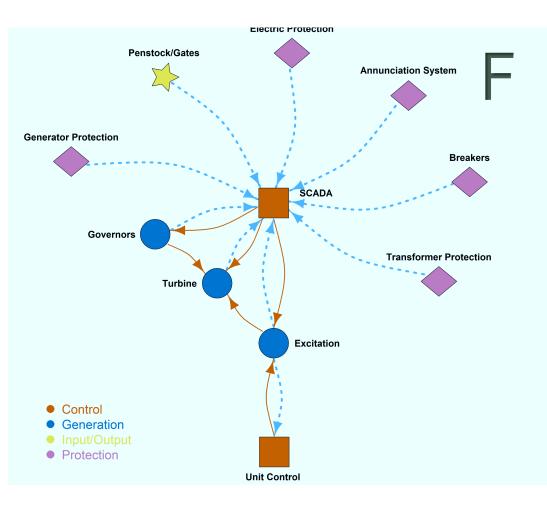
	cate the systems found at your plant and	,		Receives
Item		Found at this	Sends data to:	control from:
Number	Subsystems	Plant (qty)	(list item #s)	(list item #s)
0	Example: Widget	3	2,17	5
	Gener	ration		
1	Turbines/Generators			
2	Excitation			
3	Governors			
4	Penstock/Gates			
	Protection	n Systems		
5	Electrical Protection			
6	Generator Protections			
7	Transformer Protection			
	Networking/ Communica	tions/ Data Man	agement	
8	Networking Equipment			
9	Data Storage			
	Plant Auxilia	ary Systems		
10	Unit Back Up Power Systems			
11	Back up Power Systems			
12	Fire Protection			
13	Plant Security			
14	Annunciation system			
15	Motor control centers			
16	Transformer monitoring systems			
17	Machine monitoring systems			
18	Partial Discharge Analysis systems			
19	Back-up power monitoring system			
20	Back-up Alarm system			
	Station Service	e Equipment		
22	Breakers			
23	Transformers			
24	Switchyard			
	Control a	nd SCADA		
25	SCADA			
26	Plant Control			
27	Unit Control			
	Maintenance Manag	ement (Schedul	ing)	
28	Generator/Turbine Maintenance			
29	Valve and Water Pump Maintenance			
	Level and F	ow Control		
30	Waterway Control			
31	Gates/outlets			
32	Environmental Releases			
	Anythi	ng Else		
33	Other			

Performance: Representing the Hydropower fleet

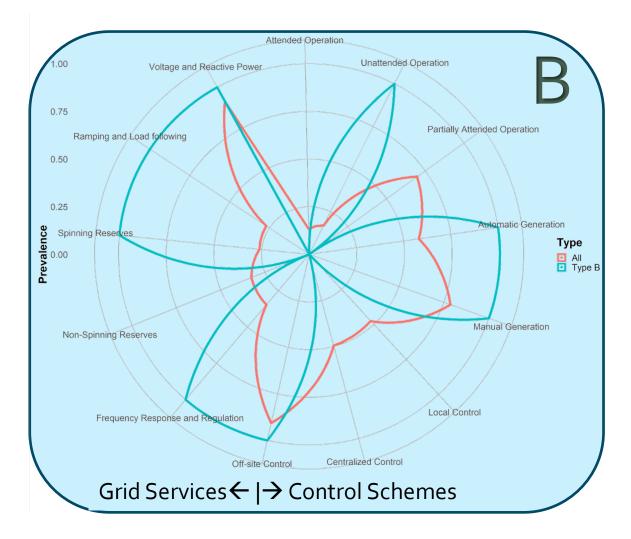

Contributed by: Public utilities, energy companies, power agencies and administrations, and federal power operators

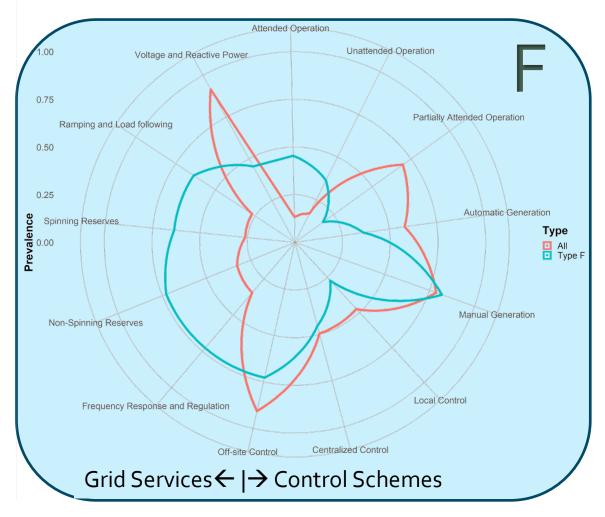
13% of plants in the U.S. hydropower fleet

Туре	Small <10MW	Medium 10 <mw<30< th=""><th>Large >30MW</th><th>Total</th></mw<30<>	Large >30MW	Total
Run-of-River	81	64	43	188
Storage	28	6	40	74
Pumped Storage			7	7
Other			6	6
Total	109	70	96	275


Performance: Sharing and Comparing Types

- Force-directed network diagram
 - Component classes
 - Communication or Control Links
 - Highly connected components group together
- Plants included in Type B:
- Large
- Storage and run of river
- Many feedback/ control loops
- Control integrates flow, power, and information




Sharing and Comparing Types, Continued

- Plants included in Type F:
- Mostly large
- Mostly storage
- Bidirectional data and control with the SCADA is common for generation components
- Because storage drives releases, not generation, control of water is only loosely integrated

Performance: Grid Services and Control Strategies by Type

Performance: Getting the word out

- Reaching back out to contributors
- Industry conferences (virtual due to covid restrictions)
- Federal Hydropower MOU (DOE/EERE, Reclamation, USACE)
- DOE-Norway Hydropower R&D MOU
- WPTO integrating types into research objectives
- Types informing DHS/CISA Scaled Hydropower Cyber Test Range development

Future Work

- Supporting WPTO Hydropower Cybersecurity Roadmap Development
- Ongoing Discussions with Federal Hydropower MOU partners
- Sharing findings in the Digitalization Track at the US-Norway Workshop on Collaborative Hydropower Research
- CISA Energy and Dams Infrastructure Sectors outreach to USACE and Reclamation
- Connecting with FERC and FEMP

