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Methane is a potent greenhouse gas with a relatively short average atmospheric residence time of about a decade
and is also a precursor of tropospheric ozone (1). The emission-based radiative forcing for methane (including ef-
fects on tropospheric ozone and stratospheric water vapor) is 0.97 W m  since preindustrial times, which is about
60% of that for CO  (2). Roughly a third of the contemporary anthropogenic methane emissions come from the fos-
sil fuel energy sector worldwide (oil, natural gas, and coal) (~100 to 180 Tg a ) (3, 4, 5). Curbing anthropogenic
methane emissions, including those from the oil/gas sector, is considered an effective strategy to slow the rate of
near-term climate warming (1). However, the rapid increase in oil and natural gas (O/G) production in the United
States since around 2005, driven primarily by hydraulic fracturing and horizontal drilling, has led to major con-
cerns about increasing methane emissions and adverse climate impacts (6). By upscaling data collected from �eld
measurements in some of the largest O/G production basins in the United States, Alvarez et al. (7) estimated 13 Tg
annual methane emissions from the national O/G supply chain for 2015, which is 60% higher than the of�cial esti-
mates by the U.S. Environmental Protection Agency (EPA) (8). The largest discrepancy was found in the O/G pro-
duction segment where the estimate by Alvarez et al. (7) (7.6 Tg a ) was more than two times that by EPA, which
relies on inventory-based estimates (3.5 Tg a ) (8).

While �eld measurements provide in-depth information about a particular site or area, it is often challenging to
expand the measurement capacity to observe a diverse set of targets distributed globally over longer periods of
time. Additional challenges exist for areas that are dif�cult to access for technical or proprietary reasons. On the
other hand, global satellite observations of column atmospheric methane offer a unique vantage point to identify
emission hot spots and quantify regional emissions (9). Using data from SCanning Imaging Absorption spectroMe-
ter for Atmospheric CHartographY (SCIAMACHY) satellite observations averaged between 2003 and 2009, Kort et
al. (10) found large anomalous methane levels from the Four Corners region in the United States, with total meth-
ane emissions associated with natural gas, coal, and coalbed sources estimated as 0.59 ± 0.08 Tg a . While the
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Abstract

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the
Permian Basin, which is among the world’s most proli�c oil-producing regions and accounts for >30% of total
U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emis-
sions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a , representing the largest methane
�ux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up
inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e.,
~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by ex-
tensive venting and �aring, resulting from insuf�cient infrastructure to process and transport natural gas. This
work demonstrates a high-resolution satellite data–based atmospheric inversion framework, providing a ro-
bust top-down analytical tool for quantifying and evaluating subregional methane emissions.
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SCIAMACHY data were fairly limited in spatial resolution (30 km × 60 km) and measurement precision [30 parts
per billion in volume or (ppbv)] (9), it was the �rst time that satellite observations were used to quantify a dense
O/G-related methane emission hot spot. This �nding also led to several dedicated airborne studies to better under-
stand methane sources in the region (11, 12), which reported methane �uxes comparable to the satellite-based es-
timate (10).

Here, we demonstrate and exploit the capability of a recent space-borne sensor, the Tropospheric Monitoring
Instrument (TROPOMI), to map atmospheric methane enhancements in the United States and quantify emissions
from the Permian Basin (Fig. 1), which has become one of the world’s most proli�c oil-producing regions in recent
years due to advances in drilling technologies. Located in New Mexico and Texas in a region of ~400 km × 400 km,
Permian is currently the largest oil-producing basin in the United States. In 2018, the Permian Basin produced 5.5
× 10  m  (or 3.5 million barrels) of crude oil and 3.2 × 10  m  (or 11 billion feet ) of natural gas every day (~30 and
~10% of the U.S. national totals, respectively), which was 4 and 2.5 times their corresponding levels in 2007
(around the time of SCIAMACHY observations) (Fig. 2) (13). While the surging production in the Permian Basin
and its importance in the U.S. oil boom during the last decade have been widely covered in mass media (14), the
scale of associated methane emissions from this critical O/G basin is unknown, despite reports of increased �aring
and venting activity (15).

5 3 8 3 3

Fig. 1 Satellite observations of the Permian methane anomaly. TROPOMI satellite data derived elevation-corrected column methane mixing ra-
tio for (A) the conterminous United States and (B) the Permian Basin containing the Delaware and Midland sub-basins. White shading repre-
sents missing data. Purple boundary in (A) indicates the study domain encompassing the Permian Basin. Methane averages are computed
from monthly means of TROPOMI measurements during May 2018 and March 2019.
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Using 11 months of recent data acquired by TROPOMI during 2018–2019, we focus on the distinct methane con-
centration anomaly over the Permian Basin and quantify the associated methane emissions with a state-of-the-art
atmospheric inverse modeling framework. TROPOMI was launched in October 2017 onboard the European Space
Agency’s Sentinel-5P satellite and provides column atmospheric methane measurements with higher spatial reso-
lution (7 km × 7 km at nadir) and precision (0.6%) than was previously available (16), providing near-daily global
coverage with its large 2600-km-wide swath (17). Our integrated satellite-based approach provides new insights
into the dynamic landscape of O/G-related methane emissions in the United States and should pave the way for-
ward toward routine quanti�cation, monitoring, and evaluation of methane emissions from source regions distrib-
uted globally.

Satellite observations of the Permian methane anomaly

Figure 1A shows a map of column-averaged dry-air methane mixing ratio over the conterminous United States, re-
trieved from TROPOMI measurements, with correction for the topography effect (denoted as ; see Materials
and Methods). The data are averaged from May 2018 to March 2019. Substantial enhancements of  relative
to the surrounding background, up to ~30 ppbv, are found over the Permian Basin, indicating strong methane
emissions. Other notable enhancements are observed in California’s central valley, coastal Southeast, and the
Mississippi River Valley, likely associated with anthropogenic (agriculture, dairy) and natural (wetland) sources.
The elevated methane levels in central California were also seen earlier in the SCIAMACHY analysis (10).

The methane enhancements over the Permian Basin show a characteristic two-branch pattern, which aligns with
the two major O/G production sub-basins, the Delaware basin to the west and the Midland basin to the east (Fig.
1B). The enhancement over the Delaware basin, where extensive new exploitation has taken place during the last 5
years (18) (�g. S1), is larger than that over the Midland basin (Fig. 1B). Intensive O/G production activity in these
two sub-basins is also captured by satellite observations of radiant heat from gas �aring [Fig. 3A; nighttime obser-
vations by the Visible Infrared Imaging Radiometer Suite (VIIRS)] and NO  tropospheric column densities (Fig. 3B;
daytime observations by TROPOMI). Flaring is a common practice in O/G operations to burn off unwanted or ex-
cess gas, and NO  is a gaseous pollutant released during gas �aring and other combustion activities in O/G �elds

Fig. 2 Oil and gas production in the Permian Basin. (A and C) Time series of annual O/G production in black and the corresponding fractions of
total U.S. production in blue [data from the Drilling Productivity Report by EIA (13)]. (B and D) Spatial distribution of oil and gas production for
2018 [data from Enverus Drillinginfo (50)]. Oil production includes both crude and condensate production. Gas production represents gross
(before processing) gas production.
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(19, 20). On the basis of measurements by the VIIRS instrument onboard the Suomi National Polar-orbiting
Partnership satellite, we estimate an average �aring rate of 5.9 ± 1.2 billion m  a  during the period of this study,
about 4.6% of the gross gas production (see text S1). A fourfold increase in �aring intensity since 2012, observed by
the VIIRS instrument, is indicative of the rapid growth in O/G production across the Permian Basin (�g. S1).

Methane emission quanti�cation

We quantify the methane emission rate from the Permian Basin and its spatial distribution with atmospheric in-
verse modeling, which optimizes spatially resolved methane emission rates by drawing information from
TROPOMI observations and the prior emission estimate following the Bayesian rule. The inversion seeks to opti-
mize monthly methane emission rates resolved at 0.25° × 0.3125° horizontal resolution in a study domain contain-
ing the Permian Basin and the surrounding region (29°–34°N, 100°–106°W). The solution to the optimization is
found analytically with closed-form characterization of the error statistics (3). An atmospheric transport model (a
nested version of GEOS-Chem over North America with a 0.25° × 0.3125° horizontal resolution) (21) is used as the
forward model to relate atmospheric methane columns with ground-level emissions in the study domain and the
contributions from outside the domain. The optimization by the inversion signi�cantly reduces the observation-
model mismatch with decreased root mean square error (prior, 23 ppbv; posterior, 14 ppbv) and increased correla-
tion (R; prior, 0.30; posterior, 0.62) (�g. S2). See Materials and Methods for more details about the con�gurations
of the inverse modeling including error accounting and prior information.

When aggregating monthly spatially resolved posterior emissions to the basin-level annual average, we �nd a
methane emission �ux of 2.9 ± 0.5 Tg a  from the Permian Basin (30°–34°N, 101°–105°W) (Fig. 4A; see Materials
and Methods for the uncertainty analysis). This estimate is more than a factor of 2 larger than the bottom-up esti-
mate based on an extrapolation of EPA greenhouse gas inventory data (EI , 1.2 Tg a ; see Materials and Methods)
(Fig. 4A), suggesting that current methane emissions in the Permian are underrepresented in national bottom-up
emission inventories (22). Our inversion result is in close agreement with a basin-level estimate based on extrapo-
lation of limited ground-based site-level measurements in the Permian (EI , 2.8 Tg a ) (Fig. 4A). It should be
noted that these site-level measurements were primarily conducted in the New Mexico portion of the Permian
Basin and covered only a small fraction of production sites (see Materials and Methods and text S2). As a compari-
son, we also apply a fast mass balance method following Buchwitz et al. (23) to estimate basin-level emissions,
which yields an annual mean emission rate of 3.2 ± 2.0 Tg a  for the Permian Basin. This result is consistent with
that derived from a full atmospheric inversion. Despite the large uncertainty of the mass balance method, this
data-driven approach provides an independent estimate of emissions derived primarily using TROPOMI data (see
text S3 for more discussion).

3 −1

Fig. 3 Satellite observations of gas flaring radiant heat and NO  tropospheric column density over the Permian Basin. (A) Gas flaring radiant
heat is the annual average of 2018 measured by the VIIRS satellite instrument, and (B) NO  tropospheric column density is the 3-month aver-
age (June, July, and August of 2018) measured by the TROPOMI instrument, indicating colocated hot spots over the Delaware and Midland
sub-basins.
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Removing the non-O/G sources (0.2 Tg a ) from the total �ux obtained via the inversion (2.9 Tg a ), we estimate
the methane emissions related to O/G activity to be 2.7 Tg a  in the Permian Basin. Put in the context of national
emissions, this value is approximately one quarter of total emissions from all U.S. oil and gas production areas in
2015 (10.9 Tg a , including emissions from production, gathering, and processing, which largely occur in the pro-
duction areas) (7). Our estimated emission rate for the Permian is signi�cantly higher than those reported in the
literature for other major U.S. O/G-producing basins. Table S1 summarizes methane emission estimates for 11 U.S.
basins (7, 24, 25) from previous aircraft-based studies [i.e., Haynesville (24, 26), Barnett (24, 27), Northeast
Pennsylvania (26, 28), Southwest Pennsylvania (25), San Juan (12), Fayetteville (26, 29), Bakken (24, 30), Uinta (31),
Weld (32), West Arkoma (26), Eagle Ford (24), and the Denver Basin (24)]. Our estimate for the Permian (2.7 Tg a )
is about a factor of 4 higher than the largest methane emissions from these previously reported O/G basins [i.e.,
Eagle Ford, 0.73 Tg a  (24)] and is even comparable to the 11-basin sum (3.7 Tg a ) (Fig. 4A and table S1). This
comparison with recent literature indicates that the Permian Basin is likely the largest observed methane-emitting
O/G basin in the United States and a substantial contributor to national O/G-related emissions.

Distribution of methane emissions

High-resolution observations from TROPOMI enable us to resolve methane emissions at an unprecedented spatial
and temporal resolution, relative to the previous generation of satellite instruments such as the Greenhouse gases
Observing SATellite (GOSAT) and SCIAMACHY (9). Figure 5 presents the spatial distribution of methane emissions
in the Permian Basin at about a quarter-degree resolution derived from our atmospheric inversion. Compared to
the prior inventory EI , our inversion �nds larger methane emissions near the center of the Delaware and
Midland sub-basins. Sensitivity inversions further show that this spatial pattern is robust against prior emissions

Fig. 4 Methane emission quantification for the Permian Basin. (A) Annual methane emissions from the Permian Basin from two prior emission
inventories (EI  and EI ), and TROPOMI satellite data–based atmospheric inversion and a mass balance method. The breakdown for
Delaware, Midland, and non-O/G sources is shown in pink, red, and white for EI , EI , and atmospheric inversion, respectively. The estimate
for the Permian Basin is compared with total emissions from 11 U.S. basins reported in literature (7, 24, 25) (table S1). (B) Leakage rates for
the Permian Basin and two sub-basins, in comparison with the average leakage reported for the entire United States (7).
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of varied magnitudes and distributions (�g. S3), demonstrating that it is primarily informed by satellite
observations.

The spatial distribution of methane emissions derived from inversion is closely correlated with that of gross gas
production (R = 0.78), but to a lesser degree with that of oil production (R = 0.53) and that of the well number den-
sity (R = 0.31) (�g. S4). Similarly, when we sum up the O/G-related emissions for two sub-basins, the ratio of meth-
ane emissions between Delaware and Midland (1.7/1.0 Tg a  = 1.7) is closest to the ratio of gas production (1.4),
compared to that of oil production (1.0) and well number density (0.7). Because unconventional wells tend to have
much higher production per well than conventional wells (33), the dependence of methane emissions on gross gas
production rather than the well number density suggests that unconventional wells and infrastructure associated
with these wells (e.g., gathering stations), which have been developed recently, are likely the major methane emit-
ters in the Permian Basin.

In addition to the spatial distribution, our monthly inversion also provides information about the temporal varia-
tion of methane emissions during the 11 months of observation (�g. S5). Although the inversion’s ability to resolve
the spatial distribution of emissions varies from month to month because of uneven monthly sampling of
TROPOMI (�g. S5), our inversion ensemble (table S2 and �g. S5) generally results in consistent monthly basin-
level emission estimates (see also uncertainty analysis in Materials and Methods). We speculate that high emis-
sions in December 2018 may be related to a very low in-basin gas price toward the end of 2018, resulting from in-
suf�cient gas gathering and transmission capacity in the Permian Basin (33,34). That said, we do not �nd an ap-
parent increasing trend in methane emissions, although natural gas production from the Permian Basin increased
steadily by ~20% during the overlapping 11-month period (�g. S6). Further investigation is required to delineate
factors controlling the temporal variations of O/G-related methane emissions.

Using an inverse analysis of TROPOMI satellite observations, we estimate a total methane �ux of 2.9 ± 0.5 Tg a  in
the Permian Basin, with 2.7 Tg a  coming from O/G-related activity. Methane losses of this magnitude represent a
waste of an important resource; for instance, this is enough natural gas to supply 7 million households in the state
of Texas (35). Moreover, the 2.7 Tg a  methane emitted in Permian results in the same radiative forcing as ~260 Tg
a  CO  over a 20-year time horizon (86 Tg CO  a  over a 100-year time horizon) (global warming potential of 96
for 20 years and 32 for 100 years) (7, 36), about the same as annual CO  emissions from the entire U.S. residential
sector (290 Tg CO  a  in 2017) (22).

Our estimate (2.7 Tg a ) equates to a production-normalized (73 Tg CH  a , derived from 127 billion m  a  natu-
ral gas production during the study period using 80% methane content by volume) emission rate (or methane leak-
age rate) of 3.7 ± 0.7%, which is ~60% higher than the national average of 2.3 ± 0.3% (7) (Fig. 4B). The leakage rate
is even higher for the rapidly developing Delaware sub-basin (4.1%). Comparable high leakage rates have also been
reported in other oil production–focused basins such as the Bakken (24) (table S1), but these basins produce much
lower natural gas than the Permian Basin does. Previous studies summarized in table S1 show an inverse relation-

Fig. 5 Spatial distribution of methane emission rates in the Permian Basin. (A) Bottom-up emission inventory EI  extrapolated from EPA
greenhouse gas inventory data (prior). (B) TROPOMI observation–derived emissions using Bayesian atmospheric inverse modeling (poste-
rior). The prior and posterior basin-total emissions, indicated on top of the figure, are computed over the area enclosed by the solid blue
boundary, with contributions from two sub-basins, the Delaware (left of the dashed line) and Midland (right of the dashed line).
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ship between the basin-level leakage rate and gas production (24); however, the Permian Basin is an outlier with
high oil production, high gas production, and a high leakage rate.

Overall, the high leakage rate in the Permian Basin appears to be associated with insuf�cient infrastructure for
natural gas gathering, processing, and transportation (34, 37), leading to extensive venting and �aring (Fig. 3),
which contributes to high methane emissions. The greater pro�tability of oil production contributes to a lack of
investment in natural gas takeaway capacity, which, in turn, has resulted in excessive supply of associated gas and
a very low in-basin gas price in the Permian (34). In addition, with the rescinding of U.S. federal requirements on
gas capture and fugitive emissions in 2018, current regulations on O/G methane emissions in the Permian Basin
are less stringent at both federal and state levels (see text S4). All these factors may increase the incentive for op-
erators to vent and �are their product. On the other hand, the higher-than-average leakage rate in the Permian
Basin implies an opportunity to reduce methane emissions in this rapidly growing oil and gas–producing region,
through better design, effective management, regulation, and infrastructure development.

TROPOMI methane observations

We use daily column-averaged dry air column methane mixing ratio (XCH ) data retrieved from TROPOMI mea-
surements (38) between May 2018 and March 2019. TROPOMI, onboard the polar-orbiting Sentinel-5 Precursor
satellite, is a push-broom imaging spectrometer that provides near-daily global coverage with a swath width of
2600 km and a nadir ground pixel size of 7 km × 7 km at approximately 13:30 local overpass time (17). The retrieval
algorithm accounts for the “full physics” of the light path by simultaneously inferring methane concentrations and
physical scattering properties, using the oxygen A-band in the near infrared (NIR) and the methane absorption
band in the short-wave infrared (SWIR) (39). Only high-quality XCH  measurements retrieved under cloud-free
conditions are used in this study (as indicated by the retrieval quality assurance �ags in TROPOMI data product).
These measurements are �ltered for solar zenith angle (<70°), low viewing zenith angle (<60°), smooth topography
(1 SD of surface elevation <80 m within 5-km radius), and low aerosol load (aerosol optical thickness <0.3 in NIR)
(40).

The TROPOMI XCH  product is further corrected for any known retrieval biases (40). The errors in the TROPOMI
XCH  measurements have been assessed against GOSAT XCH  data (38) and were found to correlate with surface
albedo. A global bias correction linearly dependent on surface albedo was then derived and applied to the
TROPOMI data (40). This bias-corrected TROPOMI XCH  product is used in this study. Negligible correlation of er-
rors with other retrieved parameters (e.g., aerosol optical thickness) was found in the assessment. Validation with
independent ground-based measurements from the Total Column Carbon Observing Network shows that the bias-
corrected TROPOMI XCH  has a bias of −4.3 ± 7.4 ppbv, improved upon the uncorrected XCH  product (−12 ± 11.5
ppbv) (40). In addition, we also examine the correlation between bias-corrected XCH  and other retrieved parame-
ters for the subset of TROPOMI data over the domain of this study. We �nd no correlation with albedo (R  = 0.00)
and a negligible correlation with aerosol optical thickness (R  = 0.07), supporting the idea that the XCH  enhance-
ment over the Permian Basin (Fig. 1B) is robust.

Figure S7A shows the average XCH  over the conterminous United States and the Permian Basin between May 2018
and March 2019 before the topographical correction. We derive the elevation-corrected methane column ( )
shown in Fig. 1 by applying a third-order polynomial correction �tted over the U.S. domain following Kort et al.
(10). The mass balance method uses the elevation-corrected data ( ) for emission quanti�cation, while the
inversion method uses XCH  (bias-corrected) directly obtained from the data product, because the topography ef-
fect is taken care of by the atmospheric transport model.

Atmospheric inverse modeling

We perform an inverse analysis of TROPOMI observations to derive optimized estimation of monthly methane
emissions at 0.25° × 0.3125° horizontal resolution in the Permian Basin. Quanti�cation of emissions at this combi-
nation of relatively high spatial and temporal resolution, not achievable with previous generations of satellite ob-
servations such as from GOSAT or SCIAMACHY, is enabled by higher-resolution TROPOMI satellite observations
(41). Figure S7B shows that the Permian Basin is well sampled by TROPOMI during the study period, likely because
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of frequent cloud-free conditions in the region. A total of ~200,000 TROPOMI XCH  retrievals within the study do-
main (29°–34°N, 100°–106°W) between May 2018 and March 2019 are used for the inversion.

Let x be the state vector that we seek to optimize through inversion, including a gridded ensemble of methane
emissions and an additional element representing the regional model bias in XCH . The regional model bias term
(a monthly scalar uniform over the inversion domain) is necessary to account for spatially uniform biases caused
by imperfect lateral boundary condition and emission errors outside the study domain. The inversion solves for an
optimal estimate of x by minimizing the following cost function

(1)

where TROPOMI XCH  observations are assembled in y, x  is the prior estimate of x, S  is the prior error covari-
ance matrix, S  is the observational error covariance matrix, and K is the Jacobian matrix describing the sensitivity
of XCH  to emissions and the regional model bias (∂y/∂x).

Minimization of Eq. 1 at ∇  J(x) = 0 yields the posterior estimation , the posterior error covariance matrix ( ),
and the averaging kernel matrix (A) (42)

(2)

(3)

(4)

Here, I  is an identity matrix where n is the dimension of the state vector x. The trace of A, often called as the de-
grees of freedom for signal (DOFS), quanti�es the number of pieces of information constraining the n-dimensional
state vector.

To solve for Eqs. 2 to 4, the prior estimate (x ) for gridded methane emissions is required. Using different sources
of information, we create two gridded emission inventories for the study region: one based on bottom-up informa-
tion (EI ) and the other based on extrapolation of ground-based site-level measurements (EI ) (see below for de-
scriptions of the inventories). Both emission inventories are time invariant. We use EI  as the prior estimate in
the base inversion, while we use EI  in a sensitivity inversion to evaluate the impact of the prior estimate
(PI_EI ; see table S2). We perform further evaluations using prior emissions constructed by disaggregating the to-
tal O/G-related emission �ux from EI  with varied spatial proxies (i.e., well count, PI_EI , natural gas produc-
tion, PI_EI , and oil production, PI_EI ) (table S2 and �g. S3).

The difference between the EI  and EI  (Fig. 5A and �g. S3A) measures the uncertainty of our prior knowledge,
and we thus specify prior errors (S ) for emissions as the absolute difference between EI  and EI . We also spec-
ify the prior error for the regional model XCH  bias as 10 ppbv. To test the sensitivity to prior errors, we perturb S
in two sensitivity inversions by doubling (PE × 2) or halving (PE × 0.5) prior errors (table S2). S  is constructed with
the residual error method (43), which results in an error averaged at ~11 ppbv. Both S  and S  are taken to be diag-
onal matrices. We also perform a sensitivity inversion to test the impact of error correlations with off-diagonal
terms speci�ed following Cusworth et al. (44) (OE_Cor; see table S2).

A nested version of the GEOS-Chem chemical transport model (12.1.0) is used as the forward model in the inver-
sion to link XCH  to surface emissions. To account for the vertical sensitivity of the satellite instrument, we com-
pute simulated XCH  by applying TROPOMI averaging kernels to simulated methane vertical pro�les. We construct
the Jacobian matrix K, column by column, with simulations perturbing each state vector element independently.
The simulations are performed over North America and adjacent oceans driven by GEOS-FP–assimilated meteoro-
logical data from the NASA Global Modeling and Assimilation Of�ce on a 0.25° × 0.3125° horizontal grid and 47
vertical layers (~30 layers in the troposphere) (21). The boundary conditions for the nested-grid simulation are
from a 4° × 5° global simulation from May 2018 to March 2019 driven by GEOS-FP meteorological �elds. Note that
methane emissions and sinks used in this simulation are optimized with previous-year (2010–2017) GOSAT satel-
lite data following Maasakkers et al. (3). Such generated boundary conditions may be biased (i.e., unable to capture
the growth of global methane concentrations; see �g. S9), and we account for it by introducing a monthly regional
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model bias term in the inversion. The retrieved regional model biases may vary with the extent of the inversion do-
main. To test this sensitivity, we also perform an inversion with a larger spatial domain (27°–36°N, 98°–108°W)
(Bg_Large; see table S2).

Inversion uncertainty

The posterior error covariance matrix ( , Eq. 2) and averaging kernel matrix (A, Eq. 3) evaluate the uncertainty of
an inversion solution given inversion parameters (e.g., S , S , forward model). Figure S5 shows monthly posterior

errors for basin-level emissions (derived from ) and corresponding DOFS (trace of A) from our base inversion.
Overall, the posterior errors for basin-level emissions are <5% of the estimated emission �ux, and the DOFS are
between 5 and 30 for the monthly inversion, indicating that the TROPOMI data are able to constrain basin-level
methane emissions and partially resolve the spatial distribution on a monthly basis. The monthly variations in the
posterior error and DOFS are mainly driven by uneven data coverage from TROPOMI sampling. For example, poor
data coverage in November 2018 results in a large posterior error and a small DOFS (�g. S5).

We also perform an ensemble of sensitivity inversions by perturbing the con�gurations and parameters in the base
inversion (table S2), aiming to characterize the uncertainties resulting from assumptions made in the inversion not
captured by the analytical posterior error. Our results show that all these sensitivity inversions lead to consistent
basin-level emission estimates. Annual mean �uxes from sensitivity inversions are within 0.5 Tg a  of that from
our base inversion (table S2), with general agreement in monthly variations as well (�g. S5). Because the uncer-
tainty resulting from sensitivity inversions are signi�cantly larger than that deduced from posterior error covari-
ance matrix (�g. S5), we report the uncertainty of our basin-level emission estimate (0.5 Tg a ) as half of the range
from the inversion ensemble (2.4 to 3.4 Tg a ).

Furthermore, to assess the uncertainty due to model transport, we compare hourly GEOS-FP 10-m wind speed
against measurements at the Midland Airport (MAF) in the Permian Basin during the period of May 2018 and
March 2019. Airport wind measurements are not assimilated in the GEOS-FP reanalysis (45), so these observations
are independent. We �nd that the GEOS-FP 10-m wind speed compares well with the airport measurements in
both daytime and nighttime (�g. S8), with mean biases of less than 6% in the mean wind speed. We conclude that
errors in the model wind �elds are unlikely to be a major source of error in the inversion.

We introduced a regional model bias term in monthly inversions to correct for regional background biases in simu-
lated methane concentrations, which result mainly from imperfect boundary conditions. To check our estimate for
this regional bias term, we sample the model simulation to compare with independent observations, i.e., surface
measurements at the Mauna Loa Observatory (MLO; a Paci�c free tropospheric site upwind of the North American
continent) (46), tower measurements at Moody, Texas (WKT) (47), and aircraft measurements offshore Corpus
Christi, Texas (TGC) (48). The latter two sites are geographically much closer to the Permian Basin (~400 km from
WKT and ~700 km from TGC) than MLO, but can be affected by local emissions that are not optimized in our inver-
sion. Our results show that the model simulation, when corrected with monthly regional model biases (derived
from monthly inversions over the Permian Basin), is able to capture the observed monthly variation in methane
concentrations, notably the sharp increase from August to October 2018 in MLO and WKT observations (�g. S9),
supporting that it is necessary to optimize the regional model bias in the inversion. Better agreement is observed
at MLO and TGC compared to WKT (�g. S9), likely because WKT is located closer to local sources that are not fully
optimized in the inversion. Overall, most of the differences between the prior simulation and TROPOMI observa-
tions can be explained by the regional model biases, except for the mismatch in the vicinity of the Permian Basin
(�g. S2). We further perform a sensitivity inversion with a varied spatial domain (Bg_Large). Compared to the base
inversion, Bg_Large results in a lower regional methane background (by 3 ppbv on average) and a higher methane
emission �ux (3.4 Tg a ) (table S2 and �g. S5), re�ecting the error correlation between regional methane biases
and methane emissions.

In addition, we note that the inversion cannot fully explain the methane enhancement extending outside the
Delaware Basin in the northwest direction (near 33°N, 105°W), although the inversion overall substantially im-
proves the agreement between observations and model simulations (�g. S2). While our investigations do not attri-
bute an obvious source of emissions causing the northwestern enhancement (whether oil/gas or other sources), the
basin-level O/G emission estimates presented here are robust if this enhancement is caused by non-O/G sources,
but are conservative if it is caused by O/G sources.
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Emission inventory based on bottom-up information

We create a bottom-up methane emission estimate (EI ) for the study domain starting from the gridded version of
the EPA anthropogenic greenhouse gas emission inventory for 2012 (49). Maasakkers et al. (49) developed a proce-
dure to spatially and temporally allocate the national sectorial methane emissions reported in the U.S. Inventory
of Greenhouse Gas Emissions and Sinks (GHGI) by U.S. EPA on a 0.1° × 0.1° grid, using various databases at the
state, county, local, and point-source level. The emission inventory includes methane emissions from agriculture,
coal mining, natural gas systems, petroleum (oil) systems, waste, and other minor anthropogenic sources.

To re�ect the intensifying exploitation activity in recent years in the Permian Basin, we then make an extrapola-
tion of the methane emissions from the oil and gas production sector, using 2018 Enverus Drillinginfo data on well
count, well completion, and production (50). To account for the changes in the national average emission factors,
we further scale the subsectorial production emissions using the ratio between the latest GHGI (22) and a previous
GHGI that Maasakkers et al. (49) was based on (51) for 2013 emissions. The updates result in total methane emis-
sions of 1.2 Tg a  in the Permian Basin (blue box in Fig. 5A), with 1.0 Tg a  coming from O/G-related emissions
and the remainder mainly from agriculture. We use this updated gridded emission inventory (EI ) as the prior
emission estimate for the inversion. The resulting emissions inventory dataset (EI  inventory) is publicly avail-
able for our study region encompassing the entire Permian Basin (https://doi.org/10.7910/DVN/NWQGHU).

Emission inventory based on site-level emission measurements

An alternative prior estimation of methane emissions is obtained by extrapolating ground-based methane emis-
sion measurements from a limited sample of oil and gas production sites in the Permian Basin (primarily in the
New Mexico portion of the basin) during July and August 2018 (52). The measurements found a wide range of site-
level emission rates, which appear to be associated with the complexity of infrastructure, and were classi�ed into
emission rates for simple (with only wellheads and/or pump jacks) versus complex sites (also with storage tanks
and/or compressors). Extrapolating these site-level emission rates to the entire Permian gave a basin-level meth-
ane emission rate of 2.3 Tg a  from O/G production. Additional emissions from compressor stations and process-
ing plants are estimated to be 0.22 and 0.14 Tg a , respectively, using activity data from Enverus Drillinginfo’s
midstream infrastructure dataset, facility-level emission factors from literature (53, 54), and blowdown event
emission factors from GHGI (22). We then disaggregate the basin-level O/G-related emissions to a 0.1° × 0.1° grid
by the spatial distribution of gas production (Fig. 2D). To complete the inventory, non-O/G anthropogenic meth-
ane emissions (0.2 Tg a ) are taken from EI . This emission inventory (EI ), based primarily on extrapolation of
limited site-level measurements, provides an alternative prior estimate for the inversion and is used to test the
sensitivity of the results to the choice of prior information (�g. S3). See text S2 for detailed information regarding
the site-level measurements and the extrapolation procedure. The resulting emissions inventory dataset (EI  in-
ventory) is publicly available for our study region encompassing the entire Permian Basin
(https://doi.org/10.7910/DVN/NWQGHU).
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