

Air Source Heat Pumps in Cold Climates

Tom Marsik, PhD, CCHRC-NREL/UAF BBC-ACEP Vanessa Stevens, PMP, CCHRC-NREL

COLD CLIMATE HOUSING RESEARCH CENTER

- **3** Air source heat pump special considerations
- 4 Air source heat pump performance in Alaska
- 5 System approach (heat pump + efficient envelope)
- 6 Main conclusions

7 Additional resources

How does a heat pump work?

Heat sources: outside air body of water ground

Image courtesy of RETSCREEN. NREL | 3

Advantages of Heat Pumps

Low

maintenance

No

combustion

DAIKIN

REAL.

Potential for

lower energy

costs

DAIKIN

84104

Partially

renewable

Coefficient of Performance (COP)

$COP = \frac{heat \ delivered \ by \ the \ heat \ pump}{electrical \ energy \ supplied \ to \ the \ heat \ pump}$

Installed Cost of Heat Pumps by Rated Output

Comparison by Installed Cost

Source: University of Alaska Fairbanks Alaska Center for Energy & Power, Alaska Energy Technology Reports

Comparison by Efficiency

Source: University of Alaska Fairbanks Alaska Center for Energy & Power, Alaska Energy Technology Reports

Air-Source Heat Pumps: Fundamental Challenge

ASHPs – Special Considerations

- Need for a backup heat source in cold climates
- What is the source of electricity and its efficiency?
- Air-to-air versus air-to-water
- For air-to-air: ducted versus ductless
- External thermostat vs. built-in thermostat for ductless
- Outside air cutoff temperature

Emerging Energy Technology Fund Grant

Air Source Heat Pump Potential in Alaska: CCHRC, UAF Bristol Bay Campus, Wrangell Municipal Light & Power

Main Objectives

- Study the field performance of ASHPs in Alaskan conditions
- Study the behavior of ASHPs around cut-off temperatures
- Study the potential of using ASHPs as an electrical demand management tool by replacing resistive heating systems (primarily in Southeast Alaska)

Wrangell City Hall in Southeast Alaska is heated by a heat pump.

ASHP Detailed Monitoring Results

<u>ASHP detailed monitoring – general conclusions</u>

- Manufacturer's specifications do not always correctly reflect field performance
- Most documentation focuses on steady-state performance, but integrated performance data is needed for more accurate representation of cold-climate operation (includes cycling due to defrost)
- Large variations in efficiency among individual models

ASHP Short-Cycling in Low-Load Conditions

Rare Occurrence When COP Drops Below 1

ASHP General Monitoring - Results

30 building owners interviewed about ASHP use

- Commercial/Residential systems
- Ductless/Ducted/Air-to-water ASHP systems
- Retrofit/New Installations

Findings

- 29/30 systems provided adequate or expected heat
- 2 repairs needed, fixed at zero cost to the building owner
- 11 people performed maintenance on the system
- 12 people used their back-up heating system (29 had back-up heat available)

909

ASHP General Monitoring - Results

Selected Sites – direct and/or indirect monitoring of ASHP electricity

Main findings

- Limited data does not confirm that ASHPs will always reduce electrical energy use, even when replacing electric resistance heat.
- ASHPs have only a small effect on peak power demand.
- Demand-side management programs should include measures other than ASHPs.

Current Research

Evaluating ASHP performance at different levels of thermal loading

System Approach: Heat Pump + Efficient Envelope

ASHPs – Main Conclusions

- ASHPs can significantly reduce energy use and energy costs when used in appropriate situations and done right.
- More research needed to gain better understanding of ASHP performance in cold climates to guide future deployment.
- System approach yields biggest savings.

Credits

Individuals:

Colin Craven **Robbin Garber-Slaght Bruno Grunau Clay Hammer** Jim Rehfeldt Chris Pike Erin Whitney Alan Mitchell Dirk Baker Others

Organizations:

Golden Valley Electric Association Alaska Energy Authority National Science Foundation U. S. Dept. of Agriculture Alaska Housing Finance Corporation U.S. Dept. of Defense U.S. Dept. of Energy Others

Thank you!

Questions ?

Tom Marsik tom.marsik@nrel.gov

Vanessa Stevens vanessa.stevens@nrel.gov www.nrel.gov

www.cchrc.org acep.uaf.edu uaf.edu/bbc

COLD CLIMATE HOUSING RESEARCH CENTER

Additional Resources

Alaska Mini-Split Heat Pump Calculator by Analysis North https://heatpump.cf

Air Source Heat Pump Installer and Consumer Resources By Northeast Energy Efficiency Partnerships

https://neep.org/high-performance-air-source-heat-pumps/airsource-heat-pump-installer-and-consumer-resources