LT PEM Cell and Stack Manufacturing Automation: Techno-economic Analysis

2022 DOE Manufacturing Automation and Recycling for

Clean Hydrogen Technologies Experts Meeting

Brian D. James Jennie Huya-Kuadio Kevin McNamara Strategic Analysis Inc. May 24th 2022

Objective

- Provide guidance to DOE/Workshop attendees on:
 - where new & improved automation approaches might best impact cost & throughput
 - remaining RD&D gaps
- Relate ongoing SA Technoeconomic (DFMA) cost analysis to automation
- Focus on automation for low-temperature fuel cells and electrolyzers

Overview

Automation is a broad topic. Today's presentation will focus on select elements of PEM FC & Electrolyzer Fabrication/Assembly

Common Trends

- Desire for automation driven by:
 - Primary: lower cost, higher yield (increased accuracy, fewer errors)
 - Secondary: less floorspace, less labor uncertainty, reduced # of parallel lines
- Automation best serves repeat units of stacks
 - Although also may benefit non-repeat components (endplates, BOP, etc.)
- Two main thrusts (but there are others!)
 - Pick & Place Robots vs. Roll-to-Roll (R2R) equipment
- Minimize parts handling (by delaying singulation as long as possible)
- Many (all?) traditional operations require some form of high-speed loading/unloading
 - leak test, screen printing, ovens, PVD, etc.

Notional PEM Stacks

•	80 kW _{net} Light Duty Vehicle •	275 kW _{net} Heavy Duty Vehicle	 1 MW PEM Electrolyzer
	 1 stack per system 	 4 stack per system 	 100 stacks per 100 MW system
	 310 cells per stack 	 400 cells per stack 	 150 cells per stack
	 250-400cm² active area 	 400-800 cm² active area 	 ~1,800 cm² active area
	- 400-600 cm ² total area	 600-1,300 cm² total area 	 ~3,000 cm² total area
	 Max: 500k systems/year 	 Max: 100k systems/year 	 Max: 50 systems/year (5 GW)
	 500k stacks 	 400k stacks 	 5k stacks
	 155M cells (BPA) 	 160M cells (BPA) 	 750k cells
	 310M plates (BPP) 	 320M plates (BPP) 	 750k plates/GDL/PTL/CCM
	 40 GW/year (net) 	 27.5 GW/year (net) 	 5 GW/year

Fast Handling/Processing Cycle Times are Required for High Volume Operation

Fuel cells are the driving application due to higher expected cell count (smaller cell size, higher stack demand).

Fuel Cells

Electrolyzers

- Based on:
- 2 shifts/day
- 7 productive hours/shift
- 240 work-days/year
- FC: 350 cells/stack, 2 pieces/cell, 80kW stack
- Electrol.: 150 cells/stack, 6 pieces/cell, 1MW stack
- A single FC line with ~35k stacks/year, requires a ~1 sec/cell effective cycle time
- A single Electrolyzer line with ~1k stacks/year (~1GW/yr), requires an 80 sec/cell effect. cycle time

Equipment Flexibility Desired by Stack OEMs

(General desire for equipment to handle multiple products)

Cell Stacking

- Possible to use the same cell stacking process line for FC and electrolyzer stacks
 - Within reasonable part size limits (PEM FC/electrolyzers fine, Alkaline more questionable)
- Number of individual component parts different:
 - Fuel Cell: 2-3 parts per cell
 - Electrolyzer: 5+ parts per cell

MEA Assembly

- R2R Assembly/Fabrication
 - Some flexibility to change cell sizes but a considerable effort. Impacts include:
 - 1. Impact to line speed change hardware and software
 - 2. Change of Tooling/Dies
 - 3. Re-calibration of process line (including web guiding, tension control, and camera systems)
 - 4. Set-up time (6-8 days) for 2nd design
 - 5. Down time for replacements/adjustments/recalibration: >5 hours (once set up for two process)
 - 6. In total, could be >\$400k and >1 week to reconfigure R2R line
- Pick-and-Place Assembly
 - Generally better flexibility to handle part size and part number variations
 - Trade-offs in cycle time and system cost

Level of Automation Demonstrated for Each Stack Component

- Numerous recent discussions with automation suppliers show a broad range in capital cost and cycle times, however, all have common goals
- Faster machines require fewer parallel lines
- Cell Stacking, banding, leak testing can all be conducted in-line

Component	Current Capabilities	Next-Gen Target (Prelim.)	Other Notes
Membrane	R2R: TBD cycle time	R2R: TBD cycle time	Manufacturing process unlikely to change in future
Catalyst Coated Membrane (CCM)	R2R: 10m/min, ~1.5 sec/CCM	R2R: >=15m/min, ~0.5 sec/CCM	Manufacturing process unlikely to change in future
Gas Diffusion Layer (GDL)	R2R: TBD cycle time	R2R: <0.5 sec/GDL	Manufacturing process unlikely to change in future
Bipolar Plate (BPP)	Metallic: 0.8- 3.5 sec/BPP Graphite: TBD sec/BPP	Metallic: <0.5 sec/BPP Graphite: <0.5 sec/BPP	Considerable effort needed to achieve high volumes without many simultaneous production lines
Membrane Electrode Assembly (MEA) (Assembly of the MEA)	Pick-&-Place: >15 sec/MEA (manual)	Roll-to-Piece: <1 sec/MEA Input: rolls of CCM, Gasket, GDL Output: discretized UMEA	R2R MEA fabrication has been demonstrated on pilot lines and likely the next step for high volume MEAs
Cell Stacking	Pick-&-Place: 3-6 s/cell typical, 1 s/cell prototype demo	Pick-&-Place: 0.5-1 sec/cell	Manufacturing process likely to change in future to achieve << 1 sec/cell
Seals (on BPP or MEA)	Screen print: 2-3 sec/BPP	Screen print/Other: <1 sec/BPP	Manufacturing process likely to change in future to achieve < 1 sec/BPP

- (FC/Electrolyzer automation equipment) Industry experiencing rapid product development.
- Next step in production seems to be process lines capable of 20k to 40k stacks per year, then jump to >100k stacks/yr

Recent investigation of Stacking, MEA Assy, and Leak Test equipment vendors shows considerable recent activity*

Companies are global providers, some with US subsidiaries.

* Meant to be illustrative of trends, not a comprehensive company listing

Bipolar-Plate/Separator Manufacturing Needs

Metallic Plates

- Forming via Stamping: current processes will require many simultaneous production lines to meet high-volume capacity
- <u>Coating via PVD or other</u>: pre-coat coil before stamping reduces additional handling of thin parts
- <u>Laser Welding (FCs)</u>: limits to laser speed due to thickness of plates and potential spatter. Need for engineering solutions to reduce simultaneous lines
- <u>Gasket Seal via screen print or insertion mold</u>: Slow indexed process

Source: Schuler Group (50k stacks/yr, 1sec/plate) https://www.schulergroup.com/major/us/technologien/pro dukte/brennstoffzellen/index.html

Number of Simultaneous Production Lines for BPP Forming

LDV: 500k sys/yr at 300 cells/stack (single plate/stamp)

		Operational Up Time (hr/yr)							
		3360	4000	5000	6000	8760			
	0.33	8	7	6	5	3			
Effective	0.5	12	10	8	7	5			
Stamping Cycle Time	1	25	21	17	14	10			
(sec/part)	ec/part) 2	50	42	33	28	19			
	3	83	69	56	46	32			

Source: SITEC (~17k stacks/yr, 3sec/part) https://www.sitec-technology.de/bipolar_plates

Bipolar-Plate/Separator Manufacturing Needs

Composite/Graphite Plates

- <u>Compression Molding</u>: Common for low volume but slow cycle time
- <u>Embossing</u>: Rotary process can be fast however in-line automated systems being developed are limited by other in-line process
- <u>Resin Impregnation</u>: Multi-roll batch resin impregnation systems are feasible but need R&D
- <u>Resin Curing</u>: Currently hot water cured (not ideal), however, alternative methods require R&D
- Joining two plates: currently use adhesive and oven cure
- <u>Gasket Seal via screen print</u>: continuous screen print of interest to explore under R&D

Source: Terrella Energy Systems/Matthews International <u>http://terrellaenergy.com/</u>

SA Cost Projections for LDV

STRATEGIC ANALYSIS

Embossed Flexible Graphite

Robotic Cell Stacking

Two main Development Thrusts:

- 1) <u>Flexible Modular systems</u> to allow equipment customization for variety of uses/models/designs
- 2) <u>Maximize Manufacturing Speed</u> emphasizing high-rate production (mid/far-term use by auto OEMs)

Cell Stacking Specialization	Key Markets	Advantages	Speed Requirements	Accuracy Requirements	Typical Robotics Platform
Modular Assembly for Versatility/ Flexibility	 Modest Production Rates Markets (but numerous models): Materials Handling Equipment Marine and Rail Stationary Power PEM Electrolyzer 	 Ability to rapidly change tooling Cost effectively deploy multiple lines Assemble multiple OEM products on same assembly line 	 Current Average: 5-10s / piece Industry Leading: 2-3s / piece No further speed improvements necessary (to achieve target production rates) 	0.1 - 0.2 mm	Anthropomorphic (but also Cartesian, Delta, SCARA)
High Manufacturing Speed	 High Production Rate Markets: Light Duty Vehicle Heavy Duty Vehicle 	 Industry leading manufacturing speed 	 Current Best: ~1s / piece Future: 0.1s / piece 	0.1 mm	Cartesian, Delta, SCARA

RD&D Issues/Desires:

- Faster speed
- Lower capital cost
- Flexibility to handle different part sizes
- Modularity to allow cell design changes (different # of parts, etc.)

- Lightweight grippers to handle delicate, floppy parts (CCM, gaskets)
- Ability to handle release sheets
- In-line QC (optical or other) with automatic part-rejection
- Digitalization/marking/parts-tracking
- Integration with other steps (leak testing, banding)

Examples of Cell Stacking

Source: Ruhlamat

https://www.youtube.com/watch?v=HB9AQ-2iUh4

Source: **BMW**

https://www.youtube.com/watch?v=NaDHSKgY_ZU

Source: Thyssenkrupp

https://www.thyssenkrupp-automationengineering.com/en/automotive-industry/electric-motorassembly/fuel-cell

Source: Zeltwanger

https://www.hannovermesse.de/apollo/hannover_messe_202 2/obs/Binary/A1170562/Zeltwanger%20E-Mobility%20%281%29.pdf

So http pa in D

Stack can "build up" or the top surface remain flat while stack is lowered.

Source: **Optima** https://newsroom.optimapackaging.com/en/optima-packaging-groupexpands-portfolio-to-include-fuel-cell-productionlines

Delta robot placing GDL

Omron/VAF Concept for Cell Stacking

 Illustrates Module (or "Matrix") concept

- Integrates stack leak testing and banding
- Appears to use:
- 2 parts/repeat cell (MEA & BPA)
- Dual Delta robots with P&P time of ~0.4 seconds
- Thus with 2 robots, 2 parts/cell, can to 1 repeat cell in ~1 second

Source: Mission Hydrogen presentation by Omron and VAF. "The 8 GW Fuel cell and Electrolyzer Factory", 4 May 2022.

Renderings of Omron/VAF Concepts

3 PEM FUEL CELL STACK PRODUCTION

Source: Mission Hydrogen presentation by Omron and VAF. "The 8 GW Fuel cell and Electrolyzer Factory", 4 May 2022.

SA Cost Modeling of Stacking

Cell Stacking

\$10,000

\$1,000

\$100

\$10 100

Stack Cost (\$/stack)

- Robotic assembly of repeat cells (UMEA & Bipolar Plate Assembly (BPA)
- Sub-stack or full-stack leak test
- Assembly of endplates, current collectors, tie-rods, etc.
- Compression and banding

	Year		20	22			2025			2030	
ly of repeat	Production Rate (Systems/Year)	Manual	Low1	Med1	High1	Low2	Med2	High2	Low3	Med3	High3
sembly (BPA)	P&P Time Per Part (sec/part)	10.85	3 (vendor spec.)	3 (vendor spec.)	3	3	3	0.25 (~vendor target)	3	3	0.17 (~vendor target)
-stack leak test	Parts Per Cell	2	2	2	2	2	2	2	2	2	2
lplates, current	P&P Time Per Cell (sec/cell)	21.7	6	6	6	6	6	0.5	6	6	0.34
ds, etc.	Simultaneous Robots/Workers	1	2	6	6	2	6	1	2	6	1
d banding	Effective P&P Time Per Cell (sec/cell)	21.7	3 (vendor spec.)	1 (vendor spec.)	1	3	1	0.5 (~vendor target)	3	1	0.34 (~vendor target)
	Capital Cost (\$/line)	\$10.9К	\$1.7M (~vendor ROM)	\$3.1M (~vendor ROM)	\$3.1M (= Med1)	\$1.4M (= Low1 –15%)	\$2.6M (= Med1 –15%)	\$4.6M (= High1 +50%)	\$1.2M (= Low2 –15%)	\$2.2M (= Med2 –15%)	\$ 3.9M (= High2 –15%)
Stack Cost vs. Production Rate											
1,000	10,000 100,0	000									
Annual Production Ra	ate (Systems/Year)						STI	ATEG		JALYS	SIS

Cell Stacking Cost Comparison

Stack Cost vs. Production Rate

Based on:

- 275 kW_{net} HDV systems
- 2022 & 2025: 4 stacks/sys
- 2030: 2 stacks/sys

Membrane Electrode Assembly (MEA)

Fabrication of (most) sub-components well-suited to R2R production

- GDL, membrane (supported/not-supported), catalyst layer deposition, sheet gaskets
 - All have established R2R production processes
- Exception: PTL (porous Ti, or alterative)
 - Less clear that R2R is best production route

Assembly of MEA Components

- Manual assembly
 - Currently used for (some) FC, (most/all) electrolyzers
 - Slow, labor intensive (by definition), accuracy and error-rate concerns
- Pick & Place
 - Multiple equipment vendors developing systems
- R2R (really Roll-to-Piece)
 - Prototype and First-Full-Systems are under development

Catalyst Application Well-Suited to R2R (slot-die) Processes

- 10 m/min (faster speed requires more expensive stable materials)
- Continuous or patch coating
- Apply directly to membrane or onto carrier sheet (for subsequent decal-transfer to membrane)
- Other catalyst application options:
 - Ultra-sonic spray
 - Other

RD&D Issues/Desires:

- Higher speed
- Lower capital cost
- Ink formulations for high speed
- Wider widths
- Modularity
- Design flexibility
- In-line QC
- Registration of defects

https://www.now-gmbh.de/wp-content/uploads/2021/08/Marktplatz-Zulieferer_Technology-development-and-manufacturing-for-fuel-cells-andelectrolyzers Kolbusch.pdf

MEA Assembly Options

SA Cost Modeling of MEA Assembly

7-layer MEA ("Gasketed MEA", UMEA)

- Roll-to-Piece line
- Input: rolls of CCM, Gasket, GDL
- Output: discretized UMEA
- Further mid-volume production solutions to be explored (e.g., simplified R2R)

Basis: 55/46/37 m2/sys (2022/2025/2030), 275kW/sys

Year		2022		2025			2030		
Production Rate (Systems/Year)	Low1	Med1	High1	Low2	Med2	High2	Low3	Med3	High3
Stacking Method	P&P	P&P	P&P	P&P	P&P	R2R	P&P	P&P	R2R
Line Speed (m/min)						15			25 (vendor target)
Max Width (mm)						650 (vendor spec.)			650
Max Parts Across Width						1			2
P&P Time Per Part (sec/part)	5 (vendor spec.)	5 (vendor spec.)	5	5	5		4	4	
Parts Per Cell	6	6	6	6	6		6	6	
P&P Time Per Cell (sec/cell)	30	30	30	30	30		24	24	
Simultaneous Robots	2	6	6	2	6		2	6	
Effective Time Per Cell (sec/cell)	15 (vendor spec.)	5 (vendor spec.)	5	15	5	0.71	12	4	0.27
Capital Cost (\$/line) (cost basis)	\$1.7M (Vendor ROM)	\$3.1M (~vendor spec.)	\$3.1M (Vendor ROM)	\$1.4M (= Low1 –15%)	\$2.6M (= Med1 –15%)	\$9.4M (Vendor ROM)	\$1.2M (= Low2 –15%)	\$2.2M (= Med2 –15%)	\$8.7M (= High2 -6.5%)

- Technology advances projected for 2025/2030 (speed, design)
- Cost advances projected for 2025/2030 (based on design advances, and increased prod. vol.)

SA Preliminary Selections for MEA Assembly (2022, 2025, 2030)

Based on:

- 275 kW_{net} HDV systems
- 2022 & 2025: 4 stacks/sys
- 2030: 2 stacks/sys

Manufacturing Outlook for GDL

- Major suppliers are globally distributed: Teijin and Toray (Japan), Freudenberg and SGL (Germany), Avcarb (US)
- Patent filings appear to be dominated by system integrators and OEMs
- E4tech industry review (<u>https://fuelcellindustryreview.com/</u>) reported 1.03 GW PEMFC deployed in 2020, which suggests an annual GDL market of 90,000 m² to 170,000 m² (assuming 600-1200 mW/cm²)
- A plant production of 100k 300 kW HDV systems per year would need ~12M m² of GDL

Houchins, James, Huya-Kouadio. "Gas Diffusion Layer (GDL) Manufacturing Needs for Clean Hydrogen Technologies Workshop", 19 April 2022

Leak Testing and Conditioning

- As manufacturing yield improves, <100% part testing may be acceptable
- Scale-up to higher simultaneously tested parts reduces effective cycle time (effective seconds/part)
- Improved high-speed loading & unloading
- Leak test cycle time optimization expected to reduce times (alternative gases)
- Stack conditioning generally has a goal of 1 hour (MEA/stack supplier specific)

Leak Test Scope	Objective	Advantage of Testing this Component	Typical Test Time	Potential for Improvement
врр	Test for proper sealing of the BPP	Typically inline with production	10s	As defects decline, 100% part testing may not be needed
MEA	 Test for perforations or other manufacturing deformities 	Typically inline with production	1-3s	As defects decline, 100% part testing may not be needed
Cell (MEA & BPA)	• Test 3 flow channels (hydrogen, air, and coolant)	• Can rapidly reject cells with poor leak performance	120s-180s	 Alternative/Faster testing gases e.g. Forming Gas (H₂ and N₂) As manufact. yield improves, may elect to omit this leak test
Partial Cell Stack	 Test 3 flow channels (hydrogen, air, and coolant) over multiple cells 	 More economically test bundles of cells as opposed to individual cells 	120s-180s	 Alternative/Faster testing gases e.g. Forming Gas (H₂ and N₂) As manufac. yield improves, may elect to omit this leak test
Full Cell Stack (Leak Test)	 Test 3 flow channels (hydrogen, air, and coolant) of full stack 	 As confidence of manufact. quality rises, this level of cell testing may be sufficient 	120s-180s	 Alternative/Faster testing gases e.g. Forming Gas (H₂ and N₂) Can use cell level "sniffer" to detect leaks from indiv. cells
Full Cell Stack (Conditioning)	 Break in and performance testing of fuel cell stack 	 Performance of fuel cell improves over the break-in period 	~2-8 hours (~2.5 h most common)	 Preconditioning of partial cell stacks may improve the testing time of the final conditioning step Since break-in continues during initial usage by customer, manufacturers may elect to reduce their break-in time as initial fuel cell performance improves

SA Cost Modeling of Stack Conditioning

Stack Conditioning

- Electrical Continuity/Factory-Acceptance-Test (FAT)
- "Conditioning" with steam and electrical load bank
- (Optional) Stack Leak Test

Prelim. RD&D Issues/Desires:

- Optimized/shorter conditioning time
- Multiple stack simultaneous testing
- Reduced capital cost
- Creative ways to recycle gases/electricity

Year	2022				2025			2030		
Production Rate (Systems/Year)	Low1	Med1	High1	Low2	Med2	High2	Low3	Med3	High3	
Conditioning Time Per Stack (hr/stack)	2.5 (2-8+, 2.5 typical)	2.5	2.5	1.5	1.5	1.5	1 (vendor target)	1	1	
Stacks Tested Simultaneously	2	4	8	2	4	8	2	4	8	
Capital Cost (\$/line)	\$1.4M (Vendor ROM)	\$2.3M (= Vendor ROM +70%)	\$4M (= Med1 +70%)	\$1.2M (= Low1 –15%)	\$2M (= Med1 -15%)	\$3.4M (= High1 -15%)	\$1M (= Low2 –15%)	\$1.7M (= Med2 –15%)	\$2.9M (= High2 -15%)	
ý										
luction Rate										

Stack Conditioning Cost Comparison

Based on:

- 275 kW_{net} HDV systems
- 2022 & 2025: 4 stacks/sys
- 2030: 2 stacks/sys

Summary and Key Take-Aways

- Cycle time and Capital Cost are key drivers
 - Suggest "Sec/part" and "Cap Cost \$/stack-processed" as automation metrics
- Desire flexibility to produce various FC/Electrolyzer products with a single line
- Need high-speed, in-line quality control
- Should learn lessons from Battery manufacturing
- Current/Future automation offer Digitalization and 100% part-tracking
- Web registration and ability to tracking defects through process line is planned/contemplated
- Pick & Place robots and R2R systems both have their strengths and best applications
- Assembly increasingly integrated (in sense that processes are combined into single lines e.g., stacking, leak test, compression/banding)
- Many ancillary processes are conceptually low-risk but will take effort to demonstrate/develop for their specific FC/electrolyzer application

Thank you!

Questions?