Defense-Related Uranium Mines Verification and Validation Work Plan

February 2022
Defense-Related Uranium Mines Verification and Validation Work Plan

Document History

<table>
<thead>
<tr>
<th>Version No./Revision No.</th>
<th>Revised</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>February 2022</td>
<td>Performed a comprehensive review as required by the contractor controlled-document procedure.</td>
</tr>
<tr>
<td>3.3</td>
<td>September 2021</td>
<td>Incorporated requirements of ID-21-08, "Bluesheeting of all Level 1–5 controlled documents."</td>
</tr>
<tr>
<td>3.2</td>
<td>March 2021</td>
<td>Performed minor revision. Revisions of the plan include but are not limited to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Updated glossary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Added method for determining the mean gamma radiation value at mine sites affected by PDOP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Refined method for capturing risk posed by pits containing highwalls.</td>
</tr>
<tr>
<td>3.1</td>
<td>May 2020</td>
<td>Performed minor revision. Revisions of the plan include but are not limited to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Updated glossary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Added BLM removal management level to risk scoring assessment (RSA).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Changed prospect definition and hazard rank.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Added radium-226 concentration to the RSA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Removed the modifying factor magnitude from the RSA.</td>
</tr>
<tr>
<td>3.0</td>
<td>February 2020</td>
<td>Performed a comprehensive review as required by the contractor controlled-document procedure.</td>
</tr>
<tr>
<td>2.0</td>
<td>April 2019</td>
<td>Performed a comprehensive review as required by the contractor controlled-document procedure.</td>
</tr>
<tr>
<td>1.0</td>
<td>September 2018</td>
<td>Erata Sheet: Revised selected portions of the plan to improve the efficiency of sampling methods and clarify specific tasks and concepts.</td>
</tr>
<tr>
<td>1.0</td>
<td>May 2018</td>
<td>Performed a comprehensive review as required by the contractor controlled-document procedure.</td>
</tr>
<tr>
<td>0.1</td>
<td>August 2017</td>
<td>Notice of Future Change sheet added.</td>
</tr>
<tr>
<td>0.0</td>
<td>July 2017</td>
<td>Initial issue.</td>
</tr>
</tbody>
</table>

Approved:

Thomas L. Johnson

Digitally signed by Thomas L. Johnson
Date: 2022.02.10 07:20:21 -07'00'

Thomas L. Johnson
Uranium Related Programs Manager
RSI EnTech, LLC
Defense-Related Uranium Mines Verification and Validation Work Plan
Summary of Procedure-Related Changes

<table>
<thead>
<tr>
<th>Work Plan Version No./Revision No.</th>
<th>Implemented Date</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 3.4 | March 2022 | Annual updates to capture minor programmatic changes.
- Work Authorization updates.
- Removed older GPS equipment no longer in-use.
- Removed older language for Data Transfer processes.
- Added clarification for operations not evident of mining.
- Clarified new sample container size in appendix. |
| 3.2 | March 2021 | Changes made to the field sampling method to increase field productivity and improve quality of data collected:
- Began using the gamma radiation footprint polygon to accurately determine the mean gamma radiation value by capturing all gamma radiation data collected within the disturbed area but appearing outside the disturbed area because of PDOP.
- Began collecting pits containing highwalls as more than one separate feature. The hazard ranking will be based on the highwall.
- Redefined drill holes or vents considered to be wildlife entrapment hazards as having a diameter of 2 to 18 inches.
- Clarified which areas with gamma radiation at or above 256 µR/hr are candidates for opportunistic sampling.
- Established that notifiable features are assumed to pose the greatest physical hazard at a mine and that mines with notifiable features receive a default physical hazard rank of 3. |
| 3.1 | May 2020 | Changes made to improve the hazard scoring and ranking process:
- Revised portions of the risk scoring assessment (RSA) to align with BLM’s new removal management level (RML) criterion.
- Added radium-226 concentration to the RSA.
- Removed the modifying factor magnitude from the RSA.
- Changed prospect definition and hazard rank to address 4 ft depth.
- Changed procedure for shallow excavation data collection in the field. |
| 3.0 | February 2020 | Changes made to field sampling methods to increase field productivity but maintain the ability to achieve DRUM objectives:
- Gamma radiation survey transects increased to 100 ft spacing for large DRUM sites with approval from the V&V field manager.
- Gamma radiation survey transects adjusted from 20 ft to 50 ft spacing for typical mines at the discretion of the team lead.
- Sampling criteria for combining of waste rock pile samples modified to streamline sampling procedures.
- Water sampling procedure modified so that samples are collected only if within 300 ft and potentially impacted by a mine (e.g., downgradient of a mine).
- Sediment or opportunistic sampling made mandatory if private property is immediately downgradient of a mine.
- Sampling protocol revised for operations not evident mines. |
<table>
<thead>
<tr>
<th>Work Plan Version No./Revision No.</th>
<th>Implemented Date</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2.0 | April 2019 | Changes made to observational data collection and sampling protocol so that:
• Suitable camping areas within the disturbed area are recorded.
• Notifiable features and the notifiable feature reporting process are defined.
• Waste rock piles are mapped separately for ecological hazard evaluation.
• If vegetation is similar, several waste rock piles are mapped as a single ecological unit.
• Gamma radiation survey transects are terminated at 20 µR/hr and not background.
• Mine access and ecological hazard evaluation are included in risk scoring.
• Waste rock piles with gamma radiation above 64 µR/hr are sampled separately according to Table C1.
• Grab samples may be obtained from waste rock piles smaller than 100 ft² of accessible area which contribute offsite sediment.
• Ephemeral water bodies that form due to precipitation and are likely to persist for less than approximately 2 weeks are not sampled. |
| 1.0 | September 2018 | Changes made to observational data collection and sampling protocol:
• Sampling protocol revised for operations not evident mines.
• "Medium" added to observable ranking categories of hazards which qualify a mine as "hazards present."
• Soil sampling protocol revised so that GPS can be used to establish node locations. |
| 1.0 | May 2018 | Improvements made to QA/QC and sampling procedures:
• Field QC checklists and reviews added.
• Field GIS abilities and QC protocols added.
• Gamma radiation survey transect spacing increased to 20 ft from 8 ft and automatically extending 30 ft outside the disturbed area before background levels are determined.
• Soil sampling modified to allow for combining several small waste rock piles into a single sample.
• UCL used for background. |
| 0.1 | August 2017 | Revised multiple observational and sampling protocols to increase productivity and meet DRUM objectives. |
| 0.0 | July 2017 | Initial issue. |
Contents

Abbreviations... iii
Forms Referenced in This Manual.. v
Glossary.. vi

1.0 Introduction.. 1
 1.1 Background.. 1

2.0 Purpose and Objectives.. 2
 2.1 Purpose of the V&V Work Plan.. 2
 2.2 Objectives.. 2

3.0 RSA.. 3
 3.1 Recreational Screening Level (RSL), Removal Management Level (RML), and
 Conceptual Site Model.. 3
 3.2 Observational Data Inputs.. 6
 3.3 Quantified Data Inputs... 7
 3.3.1 Gamma Radiation Survey.. 7
 3.3.2 Chemical Survey... 8
 3.4 Risk Scoring and Ranking.. 9
 3.5 Screening Process Limitations... 9

4.0 Preparations for V&V Field Activities.. 10
 4.1 Establish Partner Agency Agreements.. 10
 4.2 Data Reconciliation... 12
 4.3 Prefield Research... 12
 4.4 Work Authorization... 13
 4.5 Field Operations Plan... 14

5.0 Inventory and Environmental Sampling Field Activities.. 14
 5.1 Inventory of Mines... 15
 5.1.1 Pre-Job Briefing... 15
 5.1.2 Verifying the Mine Location... 15
 5.1.3 Determination of Disturbed Area.. 16
 5.1.4 Collecting Mine-Related Features.. 16
 5.1.5 Mapping Waste Rock Piles.. 17
 5.1.6 Photo Documentation.. 17
 5.1.7 Postinventory Data Processing and Data Transfer... 18
 5.1.8 Differential Correction of GPS Data... 18
 5.1.9 GIS Upload... 19
 5.2 Environmental Sampling... 19
 5.2.1 Initial Fieldwork... 20
 5.2.2 Pre-Job Briefing... 20
 5.2.3 Set Up Field Operations Base... 20
 5.2.4 Designate Sample Preparation Area.. 20
 5.3 Determination of Background... 21
 5.4 Assessment of Mine-Related Features and Ecology... 22
 5.4.1 Mine-Related Features.. 22
 5.4.2 Ecology Features.. 23
 5.5 Sampling... 24
 5.5.1 Soil and Sediment Sampling... 25
 5.5.2 Water Sampling... 26
5.6 Gamma Radiation Data Collection .. 27
 5.6.1 Handheld Radiation Dose Reading Measurements ... 27
 5.6.2 Gamma Radiation Surveys ... 28
5.7 Approval of V&V Work Plan Deviations .. 30
5.8 Postfield QC Evaluation ... 31
6.0 Reporting .. 31
 6.1 V&V Reports .. 31
 6.2 Risk Roll-Up Reports ... 32
7.0 Safety and Health ... 33
8.0 Environmental Requirements .. 33
 8.1 Environmental Compliance .. 34
 8.1.1 National Environmental Policy Act (NEPA) .. 34
 8.1.2 Cultural Resources ... 34
 8.1.3 Hazardous Material Transportation ... 34
 8.1.4 Migratory Birds and Bald and Golden Eagles ... 34
 8.1.5 Threatened and Endangered Species .. 35
 8.1.6 Waste Management ... 35
 8.1.7 Spills ... 35
 8.2 Environmental Sustainability .. 36
 8.2.1 Use of Motorized Vehicles at Mines ... 36
9.0 Quality Assurance ... 37
10.0 References ... 38

Figures

Figure 1. Conceptual Site Model for Exposure at a DRUM Program Mine 5
Figure 2. Flowchart of DRUM Program V&V Processes ... 11

Tables

Table 1. Soil Screening Levels and Lab Detection Limits .. 4
Table 2. Gamma Radiation Screening Levels .. 6
Table 3. Summary of Background Gamma Radiation Dataset ... 29

Appendixes

Appendix A Data Quality Objectives
Appendix B U.S. Bureau of Land Management and Office of Legacy Management Technical Memoranda
Appendix C DRUM Soil and Sediment Sampling Procedure
Appendix D DRUM Radiological Measurement and Data Collection Work Instructions
Appendix E Risk Scoring Assessment
Appendix F Mine-Related Features
Appendix G DRUM Program GPS Procedures
Appendix H DRUM Surface Water Sampling Procedure
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSR</td>
<td>after-calibration source response</td>
</tr>
<tr>
<td>AEC</td>
<td>U.S. Atomic Energy Commission</td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>BLM</td>
<td>U.S. Bureau of Land Management</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>cm²</td>
<td>square centimeters</td>
</tr>
<tr>
<td>COC</td>
<td>chain of custody</td>
</tr>
<tr>
<td>COI</td>
<td>constituent of interest</td>
</tr>
<tr>
<td>CPM</td>
<td>counts per minute</td>
</tr>
<tr>
<td>DI</td>
<td>deionized</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>DQO</td>
<td>data quality objective</td>
</tr>
<tr>
<td>DRUM</td>
<td>Defense-Related Uranium Mines</td>
</tr>
<tr>
<td>DSP</td>
<td>DRUM Safety Plan</td>
</tr>
<tr>
<td>EFT</td>
<td>electronic file transfer</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>EQuIS</td>
<td>Environmental Quality Information System</td>
</tr>
<tr>
<td>FOP</td>
<td>Field Operations Plan</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>IDW</td>
<td>investigation-derived waste</td>
</tr>
<tr>
<td>keV</td>
<td>kiloelectronvolts</td>
</tr>
<tr>
<td>LM</td>
<td>Office of Legacy Management</td>
</tr>
<tr>
<td>LMFSC</td>
<td>Legacy Management Field Support Center</td>
</tr>
<tr>
<td>LMS</td>
<td>Legacy Management Support</td>
</tr>
<tr>
<td>µR/hr</td>
<td>microroentgens per hour</td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
</tr>
<tr>
<td>mrem</td>
<td>millirem</td>
</tr>
<tr>
<td>mrem/yr</td>
<td>millirem per year</td>
</tr>
<tr>
<td>NAD 83</td>
<td>North American Datum of 1983</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>ONE</td>
<td>operations not evident</td>
</tr>
<tr>
<td>PDOP</td>
<td>Position Dilution of Precision</td>
</tr>
<tr>
<td>PGIS-2</td>
<td>portable ground information system</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QAM</td>
<td>Quality Assurance Manual</td>
</tr>
<tr>
<td>QAPP</td>
<td>Quality Assurance Program Plan</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RML</td>
<td>removal management level</td>
</tr>
<tr>
<td>RSA</td>
<td>risk scoring assessment</td>
</tr>
<tr>
<td>RSL</td>
<td>recreational screening level</td>
</tr>
<tr>
<td>TLD</td>
<td>thermoluminescent dosimeter</td>
</tr>
<tr>
<td>URP</td>
<td>Uranium Related Programs</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>UTV</td>
<td>utility task vehicle</td>
</tr>
<tr>
<td>V&V</td>
<td>verification and validation</td>
</tr>
</tbody>
</table>
Forms Referenced in This Manual

LMS forms are accessible on the [Document Management](#) homepage > **LMS Forms**.

<table>
<thead>
<tr>
<th>Form Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>After-Calibration Source Response Checks Data Sheet</td>
<td>LMS 1974</td>
</tr>
<tr>
<td>Daily Instrument Response</td>
<td>LMS 1974A</td>
</tr>
<tr>
<td>DRUM Verification and Validation Work Plan Process (QA/QC)</td>
<td>LMS 4501 DRUM</td>
</tr>
<tr>
<td>Plan of the Day/Plan of the Week</td>
<td>LMS 2130</td>
</tr>
<tr>
<td>Pre-job Brief/Safety Meeting Attendance Record</td>
<td>LMS 1554</td>
</tr>
<tr>
<td>Radiological Survey Map</td>
<td>LMS 1553</td>
</tr>
<tr>
<td>Shipping Request</td>
<td>LMS 1051</td>
</tr>
<tr>
<td>Water Sampling Field Data</td>
<td>LMS 1805</td>
</tr>
</tbody>
</table>
Glossary

adit: A mine opening greater than 10 feet (ft) deep driven horizontally for the purpose of providing access to a mineral deposit.

attractive nuisance: A potentially hazardous object or feature that arouses curiosity to the point of enticing an individual into a potentially hazardous situation for the purpose of investigating the object or feature; features may include buildings and structures, adits or shafts, equipment, nearby springs or bodies of water shown on maps, or other attractions that could encourage an individual to spend time on a mine property.

closed: The egress condition of a single mine feature such as an adit or shaft with a barrier which prevents human access to the mine.

decline: A sloping, three-sided (two sides and a floor) excavation trending from ground surface elevation to a subgrade mine entrance.

disturbed area: The portion of the ground surface that is impacted by mechanical mining-related activities. The area includes mine entries, rim cuts, open pits, waste rock piles, topsoil, and overburden stockpiles. Roads providing access to mines and natural features such as ephemeral drainages are excluded from the disturbed area. Features associated with a mine, but which are separated from the disturbed area by undisturbed lands will be mapped as disparate, isolated portions of the disturbed area for purposes of completing the risk scoring assessment. Examples of such features may include vents, buildings, and waste rock piles.

drainage: A large-scale natural erosional feature that is present at a mine but existed before the mining disturbance (e.g., wash, ephemeral or perennial creek, canyon floor).

duplicate mine resolution: The resolution of duplicate mines is complete when two or more mines are reconciled into a single name and location. Irrelevant names and incorrect locations are removed from the Defense-Related Uranium Mines (DRUM) Program database. Merged duplicate records are documented using a certificate generated by the database titled the Defense-Related Uranium Mines Program Verification and Validation Certificate of Completion: Merged Duplicates.

ecological unit: A plant community that is distinct in terms of dominant species and successional stage from proximate communities within the mine disturbed area and surrounding undisturbed areas.

endangered species: Any species that is in danger of extinction throughout all or a significant portion of its range and that is protected by federal, state, or tribal statute.

engineered closure: A mine safety closure designed by a state or federal abandoned mine land program or equivalent. The closure may have been installed by an abandoned mine land program, a mining company, or other entities.
environmental sampling: A verification and validation (V&V) activity designed for the collection of soil, sediment, water, gamma radiation, or other environmental and ecological data at a mine.

environmental sampling completed: Environmental sampling at a mine is complete when the U.S. Department of Energy DRUM Program database is updated with field data collected by the Legacy Management Support contractor or obtained from an approved third party. V&V completion is documented when the database includes the date that field sampling occurred.

erosional feature: Small-scale erosion resulting in sediment transport of mined waste or disturbed soil from wind, water, or slope failure (e.g., rill, gully, unstable slope, soil piping, or sheet wash).

Field Operations Plan (FOP): A plan written to ensure that field teams are ready to perform their work as described in the *Defense-Related Uranium Mines Verification and Validation Work Plan* (DOE 2022) (V&V Work Plan) before initiating field activities. FOPs are used to coordinate fieldwork and document that the necessary sampling and inventory preparations have been completed before deploying to the field. The FOP describes any deviation from the V&V Work Plan to the extent that such are anticipated before initiating environmental sampling work, lists the mines to be evaluated, describes the division of work tasks, identifies the inventory and environmental sampling responsibilities, and lists partner agency contacts and emergency response contact information.

habitat: A specific set of physical and biotic factors to which an individual, a species, or an ecological community is adapted.

hazard: A threat to physical safety of humans, the environment, or animals posed by conditions at a mine; something that can cause harm.

human use: Observable evidence of past and present human activity: Current activity might include mine inhabitation, recent campfire rings showing evidence of burning, or vehicle tracks, and past activity might include weathered foot or vehicle tracks, vegetative growth invading use areas, or relics such as weathered, discarded cans or trash. It is used in the context of the risk scoring assessment to partially describe degrees of mine occupancy.

inventory: A V&V activity designed primarily for the collection of observational data, such as the location of specific points or features at a mine. These geographic points may include the perimeter of the disturbed area, the crest and toe of a waste rock pile, or the location of a mine entry.

mine entry: A point at which people, wildlife, or materials can enter or leave an underground mine. Mine entries include adits and shafts but are not the same as ventilation raises meant for the intake or exhaust of mine air.

mine site location: A point at or immediately adjacent to a defense-related uranium mine from which most, if not all, mine features are visible.
mine size: Determined by the U.S. Atomic Energy Commission-documentated quantity (tons) of uranium ore produced (DOE 1997). Mine sizes by production are as follows:

- small mine = 0–100 tons of ore
- small/medium mine = 100–1000 tons of ore
- medium mine = 1000–10,000 tons of ore
- medium/large mine = 10,000–100,000 tons of ore
- large mine = 100,000–500,000 tons of ore
- very large mine >500,000 tons of ore

needs maintenance: Status of a mine feature indicating that engineered abatement of physical hazards has been breached or otherwise damaged, and the engineering controls require maintenance to remain protective.

not addressed: Status indicating that no work has been conducted to reclaim or remediate the mine.

notifiable feature: A mining-related hazard that could pose a significant and immediate threat to a visitor who encounters such. Notifiable features may include subsidence areas, shafts, explosives, chemicals, or severely compromised structures.

open: The egress condition of a single mine feature such as an adit or shaft either without a barrier to human access or where underground mine workings may be observed from outside of the mine without a safety closure being present.

operations not evident: Status of a reconciled mine location where no evidence of mining operations is apparent during completion of V&V activities.

physical feature: An excavation created for the purpose of exploring for, extracting, or developing an orebody and consequent openings in the ground surface which result from such activities. Examples of physical features include trenches, prospects, pits, shafts, adits, vents, and subsidences.

portal: A surface entrance to an adit.

potential wetland: An area with a vegetation type that is ecologically distinct from surrounding vegetation types because of surface water or shallow subsurface water. Potential wetlands are generally lusher and contain at least one wetland plant species (a plant classified as an obligate or facultative wetland species in the Arid West Region on the U.S. Army Corps of Engineers National Wetland Plant List).

prospect: A mine opening or excavation related to mining activities with a depth between 4 and 10 ft.

reclaimed: Mine description indicating that, in actions not performed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), waste rock or other portions of the mine, such as roads or ponds, have been recontoured or graded to a stable
condition. The primary purpose of these actions is to minimize the potential for future erosion and make items blend with the original site topography. This may include covering the site with enough topsoil to enhance revegetation. Unless otherwise noted in a FOP, complete V&V activities as described herein are conducted at reclaimed mines.

reconciliation: The process of evaluating mine location data, U.S. Atomic Energy Commission production records, and other pertinent information for the purpose of correlating a specific mine with a specific geographic location.

remediated: Mine description indicating that, in CERCLA actions, response actions have been taken or Action Memoranda signed to mitigate the release or potential release of a CERCLA hazardous substance. The primary purpose of these actions is to mitigate potential risks to human health and the environment. Such actions include, but are not limited to, consolidation areas or repositories. Unless otherwise noted in a FOP, only inventory operations will be conducted at remediated mines.

rim cut: A mining technique in which uranium ore is removed by relatively shallow underground extraction methods. Mining follows the trend of the ore-bearing formation parallel with the outcrop and generally occurs at or near the top of a cliff or slope.

risk: Potential exposure to health or environmental hazards posed by conditions at a mine.

safeguard: An engineered barricade constructed for the purpose of preventing site visitors from approaching or accessing a mine or mine feature. Some state and federal abandoned mine lands agencies refer to safeguards as “mine safety closures.”

sediment shed: Earthen material transported from a disturbed area by aeolian or fluvial processes and subsequently deposited outside of the disturbed area of a mine.

shaft: A vertical excavation that provides access to an orebody, sometimes equipped with a hoist at the top that lowered and raised a conveyance for workers and materials at a mine.

shallow excavation: A horizontal or vertical excavation less than 4 ft deep which is associated with mining or exploration activities.

special-status species: Species listed as threatened or endangered or proposed for listing under the Endangered Species Act and species designated for special protection by states, tribes, and other agencies including the U.S. Bureau of Land Management and U.S. Forest Service.

structure: A building or building remnant originally constructed for the purpose of facilitating mining operations. Examples include former offices, ore bins and loadouts, stand-alone powder magazines, workshops, and equipment storage facilities.

subsidence: Downward deflection of the earth’s surface as a result of a roof (back) failure in an underlying mine. The result of subsidence may be a shallow trench, a vertical hole, or a broad downward deflection on the ground surface. The subsidence feature might or might not be open to the underground mine workings.
threatened species: Any plant or animal species likely to become endangered within the foreseeable future throughout all or a significant portion of its range and also protected by federal, state, or tribal statute.

trench: An excavation created for the purpose of exploring a potential ore-bearing formation. They are generally longer than wide and sometimes open at both ends.

utility task vehicle: Vehicle type that also includes off-highway vehicles and all-terrain vehicles that may engage in cross-country travel along roads not suitable for four-wheel-drive vehicles.

verification and validation (V&V): The DRUM Program process of verifying historic records and validating current mine conditions. Collectively, V&V is the process of reconciling mine data, inventorying mine features, performing environmental sampling, and documenting results in a database and report that provides a risk scoring assessment to federal land management agencies.

waste rock: Materials associated with an orebody of interest which, due to their subeconomic value, are disposed of onsite. Waste rock may contain constituents of interest and may exhibit elevated gamma radiation and thus is a focus of the DRUM Program.

waste rock crest: The area of topographic transition of a waste rock pile from a relatively flat surface to a downward trending slope. Generally, the crest is at or near the top of the waste rock pile and is accessible for environmental sampling.

waste rock toe: The area of topographic transition of a waste rock pile from a downward trending slope to a relatively flat surface below the crest. Generally, the toe of a waste rock pile is at or near the base of the pile.
1.0 Introduction

This verification and validation (V&V) Work Plan provides structure and guidance for the successful coordination between field personnel and partnering agencies regarding preparation for and performance of V&V activities. In addition, the V&V Work Plan documents the rationale and develops consistency in procedures and methodologies to achieve the Defense-Related Uranium Mines (DRUM) Program’s objectives. Ultimately the data gathered will be used to evaluate mine risk according to a combination of multiple lines of evidence and risk screening approaches.

1.1 Background

The Defense-Related Uranium Mines Report to Congress (DOE 2014b) (Report to Congress) found that U.S. Atomic Energy Commission (AEC) records were frequently inaccurate regarding the locations and descriptions of mines at which uranium ore was extracted for defense-related atomic energy activities from 1947 to 1970. In addition, information about the status of these mines was largely unknown or not well documented. To develop a record of locations and current conditions of these legacy uranium mines, the DRUM Program was created within the U.S. Department of Energy (DOE) Office of Legacy Management (LM). The DRUM Program, through its V&V work, will determine the location, status, and current environmental, human health, and safety conditions of legacy uranium mines throughout the country. In addition, the DRUM Program has established a system to provide a relative assessment and ranking of these mines for their potential risk to human health and the environment, physical hazards, and accessibility.

In this document, the word “mine” refers to a mine in the DRUM Program. LM defines a mine as a feature or complex that is generally associated with a patented or unpatented mining claim (established under the General Mining Law of 1872, as amended) or a lease of federal, state, or tribal lands (DOE 2014b). A mine may be a feature such as a surface or underground excavation, or it may comprise an area containing a complex of multiple, interrelated excavations. Associated mining-related features typically include adits and portals, surface pits and trenches, highwalls, overburden piles, mine waste rock piles, structures, shafts for ventilation or other purposes, stockpile pads, mine-water retention basins or treatment ponds, close-spaced development drill holes, and trash and debris piles.

Based on information obtained from AEC records, various federal and state agency databases, tribal abandoned mine land programs, maps, and other documents, DOE estimates 4225 mines may exist across the United States. It was further determined that approximately 2500 of these mines may exist on public land managed by the U.S. Bureau of Land Management (BLM) and the U.S. Forest Service (USFS) (DOE 2014a). Mines in the DRUM Program fall under various land ownership scenarios that influence V&V strategies and the overall program organization (e.g., various campaigns). Mines are generally associated with patented (private property) or unpatented (public land) past or present mining claims. Some mines listed as abandoned may have been reclaimed or remediated, while others have a current operating permit but may have abandoned mine features within the permitted area that are not yet reclaimed or remediated. Mines in any of these categories could be included in this V&V Work Plan; inclusion will be determined by affected federal and state partner agencies.
2.0 Purpose and Objectives

2.1 Purpose of the V&V Work Plan

The purpose of the V&V Work Plan is to provide objectives, direction, and methodologies for how LM and partner agencies will collect, store, and report information during V&V activities at mines on federal- and state-managed public land. Partner agencies may collect inventory information in a way consistent with the V&V Work Plan. At mines on private property and where applicable, state partner agencies through their authorities might conduct only the inventory (Section 5.1) portion of the V&V activities. Environmental sampling activities will not be conducted on private property at this time.

2.2 Objectives

The primary objective of the DRUM Program is to verify the location, production records, and status of reclamation or remediation and validate current site conditions of legacy uranium mines. The data gathered will further be used to evaluate mines’ human health and environmental risks and physical hazards using a combination of weight-of-evidence and risk screening approaches that will help land management agencies recognize and prioritize mines for possible future actions.

To accomplish these objectives, DOE is assessing various datasets and collecting new data to make mine-specific determinations and perform risk scoring assessments (RSAs) of these mines. Most of the data will be observational and descriptive in nature (e.g., the location, complexity, and general condition of mine features); however, some are newly acquired analytical data. The objectives and data inputs for the observational and analytical data consist of the following:

1. Existing information garnered from AEC historical records, including mine location; historical production; partner agency records; status of permitted mines; and other resources (e.g., the U.S. Fish and Wildlife Service’s [USFWS’s] Information for Planning and Consultation System) pertaining to habitat for ecological resources that include sensitive species and game animals, area geology, watersheds, and the presence of surface water. As described later in the V&V Work Plan, information gathered from existing sources will be evaluated during the reconciliation and inventory and sampling processes.

2. Observational data will be collected during inventory efforts by partner agencies or by the DOE Legacy Management Support (LMS) contractor. Data will include the following: the mine location; physical hazard locations and photographs; evidence of human use or visitation of the mine; evaluation of the potential for human access to the mine; location of significant mine features, including the footprint and volume of waste rock piles; and evidence of sensitive flora or fauna species or their potential habitat.

3. Analytical data regarding metals and radiological activity are obtained through gamma radiation measurements, radiological screening, and soil and sediment shed sampling. Such data are compared to benchmarks established by BLM and DOE and will be used to screen for potential human health risks.

The multiple lines of evidence screening approach (the RSA) is used to evaluate the potential risks posed by a mine and is described in Section 3.0 and Appendix E. The data quality
objectives (DQOs) process (Appendix A) provides a strategic planning approach to ensure that the analytical sample collection and subsequent results are adequate in quality and quantity to support determinations regarding potential risks to human health. Appendix A presents a detailed summary of the steps that embody the planning for analytical sample and data collection. Although observational data are collected for physical hazards, this data type is not considered relevant to the DQO process.

3.0 RSA

To meet the objectives described in Section 2.0, LM defined data needs and assembled an RSA approach based upon a conceptual site model describing exposure at a mine (Figure 1) to objectively evaluate observable risks and hazards at each mine. V&V activities at each mine will establish multiple lines of evidence from observational and analytical data to generate risk scoring information based on the primary hazards of physical safety and risks to human health as well as modifying factors that include ecological and environmental hazards and site access. Results will include a risk scoring table that will be provided to partner land management agencies as part of the final reporting for each mine. This approach will include sufficient flexibility to allow the land management agencies to establish priorities based on their needs, requirements, and budget.

3.1 Recreational Screening Level (RSL), Removal Management Level (RML), and Conceptual Site Model

The potential human health risks at a given mine are compared to benchmarks associated with recreational use on public land. For the chemical constituents, risk scoring is based on ratios comparing chemical constituent concentrations in waste rock samples to two BLM screening levels: the RSL and the RML. The RSL (BLM 2017) and the RML (BLM 2019) conservatively assume an exposure duration of 14 days per year for 26 years (2 years as a child and 24 years as an adult). However, the RSL assumes an equivalent hazard quotient of 1 for noncarcinogens and a threshold of 10^{-6} for carcinogens. The RML, which is calculated using the U.S. Environmental Protection Agency’s (EPA’s) RML calculator (EPA 2019), assumes an equivalent hazard quotient of 3 for noncarcinogens and a threshold of 10^{-4} for carcinogens. The radium-226 results from waste rock samples are compared to benchmarks described in Brown (2017). The lower benchmark assumes a recreational-use scenario for a 2-week per year exposure, while the highest benchmark assumes a 1-week per year exposure. Screening levels and lab detection limits are shown in Table 1. Appendix B contains supporting documentation pertaining to the screening levels and methods of deriving these values. In developing these screening levels, BLM assumed an individual would be exposed to mine site constituents of interest (COIs) as a result of soil ingestion, dermal contact with soil, and inhalation of airborne particulates. Figure 1 provides a graphic representation of a conceptual site model for exposure at a mine. This figure depicts simplified processes for human and ecological receptors of potential DRUM mine-related contaminants.
Table 1. Soil Screening Levels and Lab Detection Limits

<table>
<thead>
<tr>
<th>Chemical</th>
<th>RSL (mg/kg)a</th>
<th>RML (mg/kg)b</th>
<th>Lab Detection Limits (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>>1,000,000</td>
<td>>1,000,000</td>
<td>8</td>
</tr>
<tr>
<td>Antimony</td>
<td>782</td>
<td>2,350</td>
<td>0.4</td>
</tr>
<tr>
<td>Arsenic</td>
<td>30.6</td>
<td>2,620</td>
<td>0.7</td>
</tr>
<tr>
<td>Barium</td>
<td>390,000</td>
<td>>1,000,000</td>
<td>0.1</td>
</tr>
<tr>
<td>Beryllium</td>
<td>3,910</td>
<td>11,700</td>
<td>0.02</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,780</td>
<td>5,350</td>
<td>0.02</td>
</tr>
<tr>
<td>Chromium</td>
<td>>1,000,000</td>
<td>>1,000,000</td>
<td>0.2</td>
</tr>
<tr>
<td>Cobalt</td>
<td>586</td>
<td>1,760</td>
<td>0.01</td>
</tr>
<tr>
<td>Copper</td>
<td>78,200</td>
<td>235,000</td>
<td>0.3</td>
</tr>
<tr>
<td>Iron</td>
<td>>1,000,000</td>
<td>>1,000,000</td>
<td>8</td>
</tr>
<tr>
<td>Lead</td>
<td>800</td>
<td>2,400</td>
<td>0.1</td>
</tr>
<tr>
<td>Manganese</td>
<td>46,700</td>
<td>140,000</td>
<td>0.2</td>
</tr>
<tr>
<td>Mercury</td>
<td>271</td>
<td>814</td>
<td>0.004</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>9,780</td>
<td>29,300</td>
<td>0.1</td>
</tr>
<tr>
<td>Nickel</td>
<td>39,000</td>
<td>117,000</td>
<td>0.1</td>
</tr>
<tr>
<td>Selenium</td>
<td>9,780</td>
<td>29,300</td>
<td>0.04</td>
</tr>
<tr>
<td>Silver</td>
<td>9,780</td>
<td>29,300</td>
<td>0.1</td>
</tr>
<tr>
<td>Thallium</td>
<td>19.6</td>
<td>59</td>
<td>0.1</td>
</tr>
<tr>
<td>Uranium</td>
<td>391</td>
<td>1,170</td>
<td>0.01</td>
</tr>
<tr>
<td>Vanadium</td>
<td>9,850</td>
<td>29,600</td>
<td>0.1</td>
</tr>
<tr>
<td>Zinc</td>
<td>587,000</td>
<td>>1,000,000</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Radionuclide Activity (pCi/g)

| 226Ra | 147c | 294d | 0.1 |

Notes:
- a RSLs for metals were determined by BLM (2017), and RSLs for radionuclides and gamma radiation were determined by Brown (2017).
- b RMLs were developed by BLM (2019) to help determine when removal of mine-related wastes may be appropriate.
- c This level of 226Ra soil activity is based on the 2-week per year recreational-use exposure scenario and the 100 mrem/yr exposure benchmark (Brown 2017).
- d This level of 226Ra soil activity is based on a 1-week per year recreational-use exposure scenario.

Abbreviations:
- mg/kg = milligrams per kilogram
- mrem/yr = millirem per year
- pCi/g = picocuries per gram
- 226Ra = radium-226
Metals concentrations in waste rock and potentially other mine media will be compared to concentrations in the background sample and both BLM screening levels. These screening levels are based on conservative assumptions: a recreational-use scenario that assumes a child or adult is potentially exposed for 14 days each year over 26 years. A concentration in soil below the screening level indicates that chemical or radiological factors at the mine-related feature should not pose an unacceptable human health risk. Where concentrations of a COI equal or exceed a screening level, the potential for human health risk may be present. Human health risk screening will include consideration of multiple lines of evidence to further assess the potential for complete exposure pathways. These multiple lines of evidence will include observations such as ease of public access, proximity to roads and recreational features such as trailheads, and evidence of past use such as the presence of campfire pits or historical structures. The relative degrees of risk are differentiated in the RSA, which is presented in Appendix E.

The conservative recreational-use scenario is defined as 2 weeks of exposure to a mine by a recreationist (camper). Both risk-based screening levels assume that the exposure duration for recreational visitors is 26 years, 2 years of which occur as a child and 24 years of which occur as an adult. The 2 weeks of exposure may be accumulated continuously or may be the result of multiple visits during the course of a year. LM established screening levels based on this recreational-use scenario. The DRUM Program utilizes established radiological exposure limits and converts them into their equivalent dose and exposure levels as shown in Table 2.
Table 2. Gamma Radiation Screening Levels

<table>
<thead>
<tr>
<th>Dose Standards</th>
<th>^{226}Ra Soil Activity</th>
<th>Exposure Level</th>
<th>Screening Level</th>
<th>Relative Priority Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 mrem/yra EPA (general public)</td>
<td>16 pCi/g</td>
<td>32 µR/hr</td>
<td><32 µR/hr</td>
<td>0 (None)</td>
</tr>
<tr>
<td>25 mrem/yr NRC (unrestricted use)</td>
<td>37 pCi/g</td>
<td>64 µR/hr</td>
<td>32–64 µR/hr</td>
<td>1 (Low)</td>
</tr>
<tr>
<td>100 mrem/yr 10 CFR 20 (public exposure)</td>
<td>147 pCi/g</td>
<td>256 µR/hr</td>
<td>64–256 µR/hr</td>
<td>2 (Medium)</td>
</tr>
<tr>
<td>>256 µR/hr</td>
<td></td>
<td></td>
<td>>256 µR/hr</td>
<td>3 (High)</td>
</tr>
</tbody>
</table>

Note:

a Based on the recreational-use exposure scenario, the 12 mrem/yr dose level is approximately equivalent to the 32 µR/hr exposure level, given the assumptions used in calculating the exposure benchmarks.

Abbreviations:

CFR = Code of Federal Regulations
µR/hr = microroentgens per hour
mrem/yr = millirem per year
NRC = U.S. Nuclear Regulatory Commission
pCi/g = picocuries per gram
^{226}Ra = radium-226

3.2 Observational Data Inputs

The following are the primary categories of observational lines of evidence related to mine conditions, along with the measurement endpoints and objectives supporting them:

- Physical hazards: Record the number, type, and dimensions of physical features and associated structures.
- Access: Record the ease of access to a mine, including the types of vehicles which can access it (or difficulty of accessing it by hiking) as well as the visibility of the mine from the surrounding areas and any potentially visible attractive nuisance features.
- Suitability of use: Record signs of recent human use, including those associated with camping (e.g., fire rings, tent stakes) or more limited recreation (e.g., trash, tire tracks) and make note of any suitable areas for camping within the disturbed area.
- Size and nature of mine waste rock piles: Estimate and record the length, width, and volume of waste rock piles. Document the general surface condition of waste material (particle size, vegetative cover, etc.) and any visual evidence of significant mineralization, including the presence of sulfide minerals or other acid-generating compounds.
- Waste rock migration potential: Observe and record the steepness of slope, the stability of waste rock pile materials, any visual evidence of mineralization, the presence or development of erosional features, the presence of sediment derived from waste rock piles, and the proximity of the piles to arroyos and surface water.
- Ecological hazards: Observe and record the presence or absence of the following: surface water within 0.25 mile of the mine, signs of intermittent ponding or flowing water, and nearby potential wetlands; the estimated foliar cover of vegetation on each waste rock pile and dominant, secondary, and trace plant species present; signs of nesting, burrowing, foraging, and other signs of wildlife activity on each waste rock pile; evidence of
special-status species; and any mine-related features that present a potential hazard to migratory birds, special-status species, or large or small animals.

3.3 Quantified Data Inputs

In addition to the observational data, LM determined that radiological screening and collection and analysis of metals content in soil and sediment would be required to screen for potential impacts on human health. Environmental data will be collected in accordance with the DQO process described in Appendix A. This process ensures that the sample collections, analytical laboratories, analytical methodologies, and quality assurance/quality control (QA/QC) methods used are valid and of adequate quality and quantity to produce a reliable RSA.

3.3.1 Gamma Radiation Survey

The gamma radiation survey will be the primary methodology used to screen for potential radiological risks to human health. Field data collection activities are described in detail in Section 5.6. LM has established human health dose-based screening criteria for evaluating radiologic data collected at a mine. These criteria are based on an assumed recreational use of a mine explained in the following discussion.

The characteristics of recreational exposure scenarios as they apply to abandoned mines like those in the DRUM Program are described in the technical memoranda Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites (BLM 2017), Decision Making Manual/Risk-Based Ranking Strategy for Utah Abandoned Mine Sites (BLM 2019), Establishing Radiological Screening Levels for Defense-Related Uranium Mine Sites on BLM Land Using a Recreational Future Use Scenario (Brown 2017), and Addendum – Establishing Radiological Screening Levels for DRUM Sites on BLM Land Using a Recreational Future Use Scenario (Brown 2018). These references are in Appendix B.

The gamma radiation screening levels of 64 microroentgens per hour (µR/hr) and 256 µR/hr above background were developed to equate to dose levels of 25-millirem (mrem) and 100 mrem standards, respectively, for the hypothetical 2-week RSL. To provide a point of reference to standards relevant to the general public, a lower threshold of 32 µR/hr above background was developed. The 32 µR/hr level coincides approximately with EPA’s protective dose level recommendation of 12 mrem per year (mrem/yr) (EPA 2014). This additional benchmark of 32 µR/hr above background is intended to improve certainty about whether or not a mine presents a hazard from gamma radiation. If the average gamma radiation dose rate is below the 32 µR/hr screening level, the mine scores a 0. Mines with average gamma radiation dose rates between 32 and 64 µR/hr, between 64 and 256 µR/hr, and greater than 256 µR/hr receive scores of 1, 2, and 3, respectively. See Table 2, “Gamma Radiation Screening Levels.”

When average soil gamma radiation levels are less than 64 µR/hr (after background is subtracted), potential radiological risks to both humans and environment are sufficiently low that no further evaluation of radiologic risk is required. If soil gamma radiation levels are equal to or exceed 256 µR/hr (after background is subtracted), a visitor to the mine could receive the entire annual dose in a 2-week period from a single source, and radiological conditions may warrant future evaluation. Mines with soil gamma radiation concentrations between the two screening levels will likely require further evaluation depending on other contributing factors, such as how
near the survey data values fall to the upper screening level, as well as factors related to mine accessibility, mine attractiveness to visitors, and other lines of evidence.

Two of the primary objectives of the DRUM Program are: (1) understanding the spatial distribution of elevated gamma radiation and the risks associated with materials left on mine sites and (2) evaluating the potential for those materials to migrate outside the mine disturbed area. Risks associated with exposure to gamma radiation at mine sites are focused only on gamma radiation levels within the disturbed area, with the lowest benchmark of exposure being levels greater than 32 µR/hr above background. Further, the risk ranking criteria for ecological and environmental hazard evaluation establishes that a gamma radiation value of greater than 64 µR/hr is indicative that radioactive and nonradioactive materials may have migrated offsite. Assuming the disturbed area is properly defined, assignment of an established background gamma radiation value has no impact on the risk ranking associated with the potential gamma radiation exposure being evaluated using the DRUM recreational-use scenario (established radiological benchmarks of 64 and 256 µR/hr) when evaluating the potential for offsite ecological and environmental pathways. Therefore, a bounding gamma radiation value that is safely below these values (to account for uncertainty and variability) would address the objective of enclosing each site using background gamma radiation data while allowing for appropriate evaluations of risks to human health. The DRUM Program has established 20 µR/hr as a surrogate background gamma radiation value for the purpose of conducting gamma radiation surveys.

As a point of reference, a screening level of 25 mrem/yr corresponds to the U.S. Nuclear Regulatory Commission decontamination criteria for unrestricted use, excluding radon (NRC 2006). A 100 mrem/yr above background dose (i.e., total dose effective equivalent) is the basic international consensus (including DOE) standard for public exposure from all sources (Title 10 Code of Federal Regulations Section 20 [10 CFR 20]; DOE Order 458.1 Chg 4 [LtdChg]; ICRP 2007).

3.3.2 Chemical Survey

Mining-related features with elevated gamma radiation readings—primarily mine waste rock piles and sediment shed areas—will be sampled to evaluate risks to human health. Field data collection activities are described in detail in Section 5.6. COIs are metals and radionuclides associated with mine exploration and mining activities. The COIs listed in Table 1 include those identified by BLM (2017; 2019) plus radium-226 and associated radionuclides (Brown 2018).

It is likely that when water is present at a mine, it will occur as an adit discharge, spring, or seep or be contained in a seasonal livestock (cattle) pond. Water samples will not be collected from ephemeral water sources, such as recent storm event water. Care will be taken to collect nonephemeral water that has the potential to have been impacted by the mine; therefore, priority will be given to downgradient or onsite water resources. As described in Section 5.5.2, LM will note the presence of surface water and collect samples in cases where surface water could be impacted by the mine. Additionally, discharge measurements will be made if water is observed to be flowing from open adits or adits closed with backfill. Analytical results of surface water sampling and discharge rates, when recorded, will be reported for each mine at which surface water is encountered. However, no screening or evaluation of water quality results or discharge will be performed, and results will not be incorporated into the risk score or ranking.
Potential consumption of surface water is not considered in the screening criteria. The limited duration and seasonal nature of water availability and variability of water quality in many uranium mining districts and the generally unpalatable appearance of water discharging from hard-rock uranium mines drastically limit the potential for consumption of the water by a 14-day recreationist. Therefore, the water quality data collected represent a “snapshot in time” analysis which does not consider seasonal or annual variations.

3.4 Risk Scoring and Ranking

After identifying and collecting the various data inputs needed to screen each mine for physical hazards and potential risks to human health, LM will use the RSA criteria to evaluate each mine. This RSA process, as described in Appendix E, includes evaluation criteria for physical hazards and potential human health risks. Modifying factors include the degree of public access to a mine, cumulative risk ratios, complexity criteria, and ecological and environmental hazards. This system incorporates numeric evaluations with broad risk ranking categories of “none,” “low,” “medium,” or “high” based on the information collected for each mine. The RSA criteria were established for the purpose of individually evaluating specific groups of hazards at a mine. Therefore, each evaluation criterion in the RSA may be considered independently in the assessment by the data user. The individual RSA is included in the final V&V report issued for each mine.

In addition to individual V&V reports, DOE prepares risk roll-up reports for project areas to facilitate the review of mine information and relative risks. The roll-up reports support concurrence with land management agencies on mine risk rankings and provide recommendations on prioritization and safeguarding decisions. This is accomplished by providing side-by-side summary information comparisons of the individual mines and by delivering a programmatic means to consistently evaluate and rank risk to identify the most significant hazards associated with a mine or group of mines in the DRUM Program (DOE 2020).

3.5 Screening Process Limitations

Because the V&V process is designed as a screening process, there are inherent limitations to the datasets that are evaluated. The limitations of the screening process include the following:

- **Snapshot in time:** V&V activities at each mine may be conducted during a single day. Thus, mine observations are limited to a snapshot in time. Although the datasets are representative of the individual sampling events, some factors, particularly weather and human activity, may alter mine conditions over time. Some plant species are only evident seasonally, and wildlife species may move in and out of the area.

- **Background gamma radiation variability:** Background gamma radiation exposure values are collected from a specific area. These background sample points may represent regional or mine-specific background gamma radiation values. The measurements are typically made at undisturbed areas on native soil units. The soil may shield background gamma radiation from naturally occurring outcrops or formations which may surround or be present at a mine.

- **Statistical uncertainties resulting from combining samples:** Compositing multiple samples into a single analytic unit is an acceptable screening tool. However, the compositing
methodology has the potential to mask certain mine conditions, such as high COI concentrations in a small area or small volumes of radiologically elevated materials.

- **Unknown subsurface mine conditions:** Subsurface mine conditions, such as bat habitat and mine stability (though they may potentially be noted by the ecologist), are not accounted for during the evaluation process. As a result, physical hazards within the mine, subsidence potential, and species-specific habitat are unaccounted for. Physical hazards within an abandoned mine, including the potential for roof fall and flooding, are not documented.

- **Mine atmosphere:** Atmosphere discharging from subsurface mine entries is not evaluated for COIs, including radon and radon progeny. Such exposure was determined to be a minimal factor in the recreational exposure scenario (Brown 2018).

- **Subsurface waste rock and soil concentrations:** The composite sample only collects surficial material. The subsurface rock and soil are not sampled, and any variations in chemical concentrations are not known. This approach is consistent with the overall conceptual site model, which assumes that human exposure will occur primarily, if not exclusively, to the surface material of a waste rock pile.

- **Safety considerations:** Worker safety concerns may limit access to some mine features, including steep slopes associated with waste rock and surface mining operations.

4.0 Preparations for V&V Field Activities

V&V work is essentially a four-step process designed to focus LM efforts on identifying mines, taking inventory of mining-related features, collecting environmental data, and reporting on the findings of the investigations. Figure 2 describes these tasks and the general progression of data collection and reporting activities. This section provides a description of the tasks required to prepare for V&V field activities (shaded in Figure 2). Preparation includes identifying project areas, creating agreements with partner agencies, reconciling mine location data, establishing work authorization, and developing Field Operations Plans (FOPs).

4.1 Establish Partner Agency Agreements

LM has determined that an efficient method of collecting prefield data and inventory data pertinent to the mission of the DRUM Program is to develop agreements with partner agencies. Generally, partner agencies are federal land management organizations, such as BLM or USFS, and state agencies. Interagency agreements between LM and federal agencies fund the relevant organizations to effectively share information, efficiently screen identified mine locations, and make informed future land management decisions. Cooperative agreements between LM and state agencies fund those agencies to inventory mines. This is desirable given state agency expertise in abandoned mine land evaluation and given their authority, in many cases, to enter private property to conduct inventory of mines.

LM will prepare a FOP for each project area or set of mines to be assessed. FOPs, which are described in Section 4.5, will be developed individually to facilitate field operations for specific project areas. The FOPs will be developed in consultation with partner agencies to identify unique needs for field activities.
Figure 2. Flowchart of DRUM Program V&V Processes
4.2 Data Reconciliation

Initially, the estimated 4225 mines and their locations identified for the DRUM Program were compiled from historical AEC production records for 1947 through 1967 and from existing federal, tribal, and state databases. In many cases, the data associated with a mine are both incomplete and potentially inaccurate and thus require reconciliation of the various datasets to be useful. The need for increased integrity within the dataset is behind the reconciliation process, which is geared toward correlating all pertinent location data in an effort to assign a specific mine to a specific geographic point. Issues typically found and resolved during reconciliation include inaccurate location information, duplicate records, the listing of multiple mines under one record, and missing records. To promote efficient task completion, the reconciliation process ensures that the most accurate location data are available to inventory teams before they conduct V&V activities.

During the reconciliation process, location and production data for each mine listed in AEC production records are individually evaluated and corrected as needed. The reconciliation team assesses mines within a predetermined geographic area or mining district by using multiple data sources and reference materials. The primary focus of the reconciliation team includes a determination of the mine name, the number of mine workings, detailed latitude and longitude coordinates, land ownership status, the amount of ore produced, and the period of time in which it was produced. Permit status (if applicable), physical hazard safeguard status, and reclamation and remediation status are also determined from available information. Location data sources include AEC claim and area economic maps and other AEC publications; topographic and geologic maps and other publications from the U.S. Geological Survey (USGS), DOE, and state geological surveys; aerial imagery; state mining data; and other historical mining claim maps and documents. Correlation of several of these documents and maps is used to confirm the mine location and to further verify mine-specific data. Also, mine location data are collected from partner agencies and other stakeholders, including state abandoned mine land programs that are involved with the DRUM Program. All records and location data are recorded in the DRUM Program database during the reconciliation process. Duplicate records and missing records within the DRUM Program database are identified and addressed. Duplicate records are consolidated via the merging of the existing records, and missing records are added to the database as needed. Merged duplicate, nonmine, and non-DRUM records are documented using a certificate generated by the DRUM Program database titled the Defense-Related Uranium Mines Program Verification and Validation Certificate of Completion: Merged Duplicates.

QA during the reconciliation process is completed as staff geologists check one another’s work against available data sources. A reconciliation worksheet is used to ensure records and locations are documented consistently from all available references. A final location check using the reconciled coordinates in the DRUM Program geographic information system (GIS) is also completed. Upon completion of reconciliation, vetted records and mine locations are updated in the DRUM Program database and made available to the inventory and environmental sampling teams and partner agencies.

4.3 Prefield Research

Most prefield research pertains to evaluation of existing ecological data resources. Ecological data are researched before field investigations begin to develop the framework for performing
mine-specific ecological screening. These data are communicated to the sampling team before fieldwork begins. Data are collected from federal, state, or tribal agencies when available. Data are collected from publicly available resources and websites, including (1) the USFWS Information for Planning and Consultation System, (2) state special-status species lists, (3) state natural heritage programs, (4) the U.S. Department of Agriculture Natural Resources Conservation Service Web Soil Survey, (5) the National Wetlands Inventory, (6) the USGS National Hydrography Dataset, and (7) applicable agency-specific management plans (e.g., BLM Resource Management Plans).

Relevant data to be collected include the following, as appropriate and available:

- Lists of special-status species and their potential habitat
- Designated critical habitat for federally listed threatened and endangered species
- Habitat for big game species (when available)
- Surface water, potential wetlands, and riparian resources
- Soils information, including areas with sensitive soils when appropriate
- Areas of critical environmental concern
- Vegetation community types
- Noxious weed lists specific to mine localities
- Applicable mine-specific environmental compliance guidelines relevant to DRUM inventory and sampling activities (noted in the appropriate FOP)

4.4 Work Authorization

Following completion of the prefield tasks described above, an authorization to proceed with fieldwork is issued by the LMS Uranium Related Programs (URP) manager for activities implemented by the LMS contractor. The work authorization process requires completion of a *Plan of the Day/Plan of the Week* form (LMS 2130) before the start of work each week. The *Plan of the Day/Plan of the Week* form documents the URP manager’s authorization of work activities to be performed in the field. The URP manager authorizes work activities only after verifying that the proposed work activities are within the contractually approved scope, that the work has been adequately defined and planned, that appropriate work controls have been established, and that qualified personnel and necessary equipment are available to perform the work safely. Furthermore, the URP manager will verify with LM that other interested state and federal agencies have been notified of the planned work. The LMS contractor or subcontractor personnel will only perform work preauthorized by the URP manager.

The *Integrated Work Control Process* (LMS/POL/S11763) details the process for initiating, authorizing, performing, and conducting work within the scope of the LMS contract. Line management, project leads, and other staff will be capable of understanding and applying the requirements of the *Integrated Work Control Process*, as outlined in associated manuals specific to the planned work scope. All managers and field personnel are required to adhere to this process.
4.5 Field Operations Plan

A FOP is prepared for each defined project area after reconciliation efforts are complete. These project areas may be mining districts, specific regions, or other predetermined geographic areas. Partner agencies, LM, and the LMS contractor all provide information which is incorporated into individual FOPs. In turn, FOPs convey to LM, the LMS contractor, and partner agencies information pertinent to the V&V activities being undertaken at the specified project area. Each FOP is unique to the requirements of the individual field investigations and is meant to supplement and expand upon the V&V Work Plan as circumstances require. FOPs will list pertinent information regarding field activities, including the mines targeted and their locations, specific access issues, known environmental compliance and conservation-related information, and logistical contact information. An important component of a FOP will be the reporting of any mines that are permitted or that were closed, reclaimed, or remediaded by partner land management agencies. A tabulation of permitted, closed, reclaimed, or remediaded mines in the FOP will facilitate observation of closed, reclaimed, and remediaded mines by the field teams. The location and status of permitted, reclaimed, and remediaded mines is included in the FOP. The field teams will observe and record the current status of mine safeguards and previous reclamation or remediation efforts at affected mines.

For each field project, a FOP will provide coordination instructions for the inventory and environmental sampling teams so that field operation work is conducted efficiently and with appropriate emergency response guidelines established. The FOPs will also address specific activities to be undertaken by inventory and environmental sampling crews to the extent that these activities are conducted separately. A FOP may define modifications to the inventory checklist; therefore, inventory and environmental sampling teams will be familiar with the applicable FOP to ensure that all necessary information is collected. Each FOP will be developed in coordination with the appropriate partner and stakeholder agencies and will describe the roles and responsibilities of the inventory and environmental sampling teams to ensure all required data are collected. FOPs will be completed by LM and the LMS contractor and will be distributed to partner agencies.

5.0 Inventory and Environmental Sampling Field Activities

DRUM fieldwork consists of two primary components: inventory and environmental sampling. There are multiple purposes for conducting these field operations. However, the primary focus of these activities is to locate the mine via GPS technology; identify the area impacted by mining operations, including offsite areas impacted by sediment shed; locate and sample waste rock materials; obtain gamma radiation measurements from the mine and adjacent areas; and document hazardous mine entries and unstable structures. Inventory activities may be undertaken by either state or federal partner agencies or by LM, whereas environmental sampling is specifically the responsibility of LM.

This section describes the various components of the inventory and environmental sampling tasks. Figure 2 provides a graphic representation of how these activities are conducted.
5.1 Inventory of Mines

Inventory tasks are intended to maximize the efficiency of the overall field effort by collecting information that documents current field conditions while optimizing planning and preparation for the environmental sampling effort. Inventory will be completed at all mines unless otherwise indicated by the relevant FOP. Generally, permitted mines will be inventoried by partner agencies, but sampling activities will not occur at these mines. Similarly, remediated mines will be inventoried, but sampling activities will not occur there unless the relevant FOP indicates otherwise, or sampling is requested by the partner agency. Although inventory tasks may be conducted before visits for environmental sampling, the majority of the time it is more efficient to acquire both inventory and environmental data within a single mobilization—particularly in areas where no partner agency is participating in the inventory work, at very remote mines, or in small project areas. Overall, the objectives of the inventory task are to ascertain a primary route to access the mine, verify that the mine visited is the intended target, preliminarily define the disturbed area, use a GPS unit to locate and record mine features, and photographically document site conditions. The inventory team will also complete other measurements, such as mapping the crest and toe and estimating the thickness of each waste rock pile and identifying those areas within a mine’s disturbed area which are suitable for camping. A checklist of the information collected by the inventory team and an example of the DRUM Verification and Validation Work Plan Process (QA/QC) (LMS 4501 DRUM) (Process Form) are included in Appendix F. Because much of the inventory effort is based on observations of existing conditions, the checklist and the example Process Form included in Appendix F act as QA tools for the inventory teams. The team will use the checklist and Process Form to ensure that all required information has been accurately collected before they leave a mine.

5.1.1 Pre-Job Briefing

Upon arriving at the mine, inventory teams will conduct a pre-job briefing (tailgate safety meeting) to review the work to be performed. This briefing should include information on job-specific safety considerations. Job-specific safety considerations should include potential hazards that may be encountered at a mine, including hazardous mine openings, slips, trips, falls, wildlife considerations, and emergency contacts. The inventory team will continue to analyze mine conditions and, if unanticipated safety issues arise, pause or stop work and communicate the hazard to the rest of the team.

5.1.2 Verifying the Mine Location

Verification of a mine location using the reconciled data presents specific challenges. Many of the mines, claims, and survey markers have changed names and locations over the years, thus making positive identification a tedious process in some circumstances. Claim corner markers with posted claim papers (although quite rare) are a good way to verify that the mine name is correct in the DRUM Program database, as is any information scribed or painted onto mine entries, ore bins, or other mine features. The location coordinates of the mine area will be collected by the inventory team using a handheld GPS unit with sub-meter accuracy. The mine site location point will be at or immediately adjacent to the mine being evaluated so that most, if not all, of the mine features are visible. The mine site location point is important as it is used to represent the physical mine location in the DRUM Program database. The GPS procedure is described in Appendix G.
In rare circumstances, field verification efforts for a particular mine location may reveal that no mining-related disturbances are observable (in which case the mine is called an operations not evident [ONE] mine). In these instances, the inventory crew will investigate adjacent areas to determine whether the mine can be located or not. If the mine cannot be located, field crews will navigate to the coordinates identified by the reconciliation team, log that location using a handheld GPS unit, and note that no evidence of mining-related activity was observed. Section 5.5 describes the environmental sampling efforts which will be completed when inventory reveals that no evidence of previous operations can be identified.

5.1.3 Determination of Disturbed Area

The disturbed area is that portion of the ground surface associated with a mine that is impacted by mechanical mining-related activities. In some cases where the mechanical disturbance is not obvious, a determination of the disturbed area perimeter may be made through use of gamma radiation measurements. Such measurements and a final determination of the disturbed area boundary will be made by the environmental sampling team. The inventory team will use a GPS unit with sub-meter accuracy to record the location. Due to steep terrain or other obstacles, it might be unsafe or impossible for the field crews to map the perimeter of the disturbed area. In such cases, the team lead must record this data gap, and the disturbed area perimeter will be delineated using GIS technology in the office.

Generally, the disturbed area includes mine entries, rim cuts, open pits, waste rock piles, topsoil and overburden stockpiles, and mine support facilities. Roads providing access to mines and natural features, such as ephemeral drainages, are excluded from the disturbed area. Features associated with a mine but which are separated from the disturbed area by undisturbed lands will be mapped as disparate features for purposes of completing the RSA. Examples of such features may include subsidences, vents, buildings, and waste rock piles. Some mines may have multiple unconnected disturbed areas. Multiple disturbed areas will be mapped as disparate, isolated features when they are separated by undisturbed land.

5.1.4 Collecting Mine-Related Features

The inventory team will use a GPS unit with sub-meter accuracy to record the location of all mine-related features (portals, adits, shafts, waste rock piles, headframes, vents, drainages, trash dumps, claim corners, etc.). Access roads to the mine will also be located with a GPS unit to delineate the most efficient route to the mine.

The inventory team will note whether mine entries are open or whether barriers to human access exist. Generally, shallow mine-related features such as prospects are considered to pose little to no inherent risk and will be documented as such. The team lead narrative described in Appendix C will capture this information with a brief description of each feature, including dimensions and other important observations.

When existing physical hazard safeguards are observed at a mine site, the inventory team will note whether they are constructed to be effective safeguards (e.g., intended to prohibit entry into the subsurface), and if so, whether they function as designed or if maintenance is required. An existing engineered safeguard indicates the mine may be designated as “no hazard,” while evidence of an ineffective safeguard indicates that the mine may be designated as “hazards
present” (nonengineered safeguards may have been installed at a mine by a private company without the safeguard being structurally competent).

Inventory teams will note and locate mining-related hazards that could pose a significant and immediate threat to a visitor who encounters such. These notifiable features may include subsidence areas, shafts, explosives, chemicals, or severely compromised structures. When notifiable features are identified, the inventory team will provide the mine name, LM ID number, coordinates, and a description of the problem or issue to the appropriate land management agency and the LM project manager as soon as practicable.

5.1.5 Mapping Waste Rock Piles

The inventory team will use a handheld sub-meter accuracy GPS unit to build polygons defining the extent of each waste rock pile to the level that is practicable without compromising worker safety. The inventory team will use the GPS unit to identify the location of the crest and toe (base) of each waste rock pile. If the crest of the waste rock pile is not identifiable or cannot be located safely, that situation will be described in the inventory field notes. Similarly, if the toe of the waste rock pile cannot be mapped, circumstances and other pertinent information will be described in the inventory field notes. A visual estimate of waste pile thickness will be recorded.

Due to steep terrain or other obstacles, it might be unsafe or impossible for field crews to map the perimeter of a given waste rock pile. In such cases, the team lead must record this data gap, and the waste rock pile perimeter will be delineated using digital mapping technology in the office.

5.1.6 Photo Documentation

The inventory team will take photos of the mine and related features. Photo documentation will include close-up, detailed photos of features as well as larger-scale photos of the entire area. Photographs must include an object or person that can be used for scale. Photos will help the sampling teams determine staging areas, disturbed area of the mine, ecological units, and physical hazards. The adequacy of photo documentation will be evaluated in the field before the field team demobilizes from a mine. Field evaluation of photos should include a review to ensure that the photos depict both detailed and overview images of the mine site and specific features of interest, particularly those that are potentially hazardous or unstable. Digital photos will be logged with descriptions and will include the information described below. This information as well as other pertinent descriptors will be documented in field notes or by other suitable means, such as embedded metadata, that facilitate data transfer.

When using a device with geotagging capabilities and where the camera is able to access the GPS function, latitude and longitude will automatically be populated in the photo metadata. However, the user must provide a description of the image with each photo. For digital cameras that cannot connect to the GPS function or are not GPS-enabled, specific information must be recorded and transferred to the appropriate LM electronic file transfer (EFT) site. This required information includes the approximate location of the photo and a description of the image. An acceptable data format for digital photographs is a JPEG file that can be included in an electronic transfer of data and information. Specific data transfer information is included in Appendix F.
5.1.7 Postinventory Data Processing and Data Transfer

Observational data will be collected by a handheld GPS unit, as described above. Typically, data will be collected and transmitted in a Trimble GPS Pathfinder Office-compatible format. Both corrected (.COR) and uncorrected (.SSF) data from GPS units will be transferred to LM using an assigned EFT site for storage, correction (postprocessing), and use.

5.1.8 Differential Correction of GPS Data

Field data are collected using handheld GPS units, which accumulate information in .SSF files. A real-time correction is automatically applied to the .SSF files at the time data are collected. The .SSF files are also differentially corrected at the discretion of the field team lead or team geologist upon return from the field using the Pathfinder Office software to create .COR files. The inventory information collected via GPS units will be transferred to the environmental sampling team as uncorrected data when it is collected by the LMS contractor and as both corrected and uncorrected data when collected by partner agencies. By correcting the GPS information before transmittal to the LMS contractor, partner agency inventory teams complete a QA step to ensure the accuracy and validity of the data. By accumulating both the corrected and uncorrected data, the LMS contractor is able to compile an accurate record of all information collected at a mine and ensure that all information is corrected using identical methodologies to enhance data quality and consistency. Submittal of both corrected and uncorrected data also makes it possible to evaluate the accuracy of the information collected so that the most accurate location information is utilized in the DRUM Program database. Specific data transfer information is included in Appendix F.

Once the GPS data have been collected and transferred to the LMS contractor, the GPS Pathfinder Office or a similar differential correction algorithm will be run against the uncorrected GPS data by the LMS contractor. Differential correction is a mathematical computation used to improve the accuracy of GPS data by comparing the coordinates collected in the field via GPS satellites to Continuously Operating Reference Stations. These stations consist of survey-grade GPS receivers that transmit radio signals to GPS units in the field to correct the minor inaccuracies of GPS signals caused by atmospheric, solar, and terrestrial interference. The procedure to run differential correction in GPS Pathfinder Office is described in Appendix G.

A comparison will be made between the differentially corrected data and the real-time corrected .SSF files to select the most accurate information for export. This QC step is critical to ensuring that the most accurate data possible are used. It also supports the QA process by allowing all data to be assembled, corrected, and stored in the same manner, thus reducing potential errors. As a QC step, the .SSF file exported from the GPS unit is never altered and is saved to the proper directory for future reference.

The selected data are exported into Esri file geodatabase format. The exported geodatabase features are then loaded into the DRUM geodatabase.
5.1.9 GIS Upload

Upon completion of the data evaluation efforts, the corrected data and the information described in the inventory checklist in Appendix F will be stored by the LMS contractor for use by the environmental sampling team. The data evaluation procedure described in Section 5.1.8 is a QA/QC step that ensures collected data are free of inherent errors created during the collection process. The corrected GPS data will be loaded into ArcGIS for use by the environmental sampling team and in the final V&V report. The procedure for loading corrected GPS data into ArcGIS is described in Appendix G.

5.2 Environmental Sampling

This section describes environmental sampling field activities, including reviewing inventory data for completeness, determining background conditions, conducting gamma radiation surveys, and collecting samples. Figure 2 is a flowchart that depicts the DRUM Program work tasks, including inventory and environmental sampling, and the sequence of steps taken to complete each task in the V&V process.

An environmental sampling checklist and the example Process Form included in Appendix F act as QA tools for the environmental sampling teams. The primary purpose of this checklist is twofold: to help ensure data completeness, particularly as information is exchanged between inventory and environmental sampling activities, and to help ensure the completeness of information collected during environmental sampling. Teams will primarily rely upon the example Process Form, which will be uploaded to field computers, to ensure that all required information has been collected before they leave a mine. Individual FOPs may require modifications to the environmental sampling data collected; therefore, environmental sampling teams will be familiar with the applicable FOP, so the appropriate information is collected.

Each environmental sampling team consists of a multidisciplinary team of scientists and engineers who are cross-trained and able to perform multiple field activities if needed. At a minimum, each team will comprise the following personnel who perform specific tasks:

- **Field team lead:** The field team lead directs the field team, provides overall technical assistance, and is responsible for ensuring data collection is thorough, accurate, and completed safely and in accordance with the V&V Work Plan and applicable FOP. The field team lead is responsible for completing the field documentation portions of the example Process Form in Appendix F, composing a narrative describing mine conditions and including relevant observations to clearly describe the mine, documenting sampling events including opportunistic sampling and variances from sampling protocols and data collection, as well as for providing any other pertinent information which will facilitate reporting.

- **Radiological control personnel:** The radiological monitoring personnel are responsible for implementing the personal dosimetry program for the field team, which could include setting up a supplemental dose rate instrument for the purpose of collecting dose information. The radiological monitoring personnel will also use the gamma radiation scanning backpack unit to collect gamma radiation exposure rate data at program mines.

- **Sample team (typically comprising the team lead and geologist):** The sample team collects composite soil samples, sediment shed samples (when present), and surface water samples (if water is present); ensures that samples are representative of the mine; and
ensures that chain of custody (COC) procedures are properly followed. The sample team also verifies that GIS data derived from inventory activities adequately represent the mine and collects additional GPS information as needed to ensure that all data points are accurately represented.

- **Ecologist**: The ecologist collects GPS data to properly designate and characterize vegetation on waste rock piles; document ecological units on and surrounding the site; note the presence of wildlife; and record evidence of any wildlife use, special-status species or their habitat, and wildlife hazards at or near the mine.

5.2.1 Initial Fieldwork

Initial fieldwork consists of delivering the pre-job briefing, setting up the field operations base, and designating a sample preparation area.

5.2.2 Pre-Job Briefing

Upon arriving at the mine, the environmental sampling team will conduct a pre-job briefing (documented on the Pre-Job Brief/Safety Meeting Attendance Record form [LMS 1554]) to review the work to be performed. This will include a briefing on the Defense-Related Uranium Mines Safety Plan (LMS/DRM/S15804) (DRUM Safety Plan [DSP]) as needed. Based on the DSP, the team will discuss the potential hazards that may be encountered as they prepare to verify and validate mine-related conditions. The team will continue to analyze the mine conditions and, if unanticipated safety issues arise, communicate the hazard to the rest of the team. Other topics which potentially impact data collection efforts, including information and restrictions related to conserving natural resources and complying with species-related laws as noted in the applicable FOP, will be discussed during the briefing.

5.2.3 Set Up Field Operations Base

A field operations base will be established outside the mine disturbed area on an as-needed basis. The field team lead, team ecologist, and the radiological monitoring personnel will choose an area for the environmental sampling team to park vehicles and set up the field operations base for the particular site being surveyed, or for the day, depending on the size and complexity of the mine. As low as reasonably achievable (ALARA) principles will be employed to determine a safe work area. The gamma radiation detector will be used to verify that the area chosen for the field operations base is at or near background levels for radiation and dose rate. The ecologist will look for evidence of special-status species in the proposed field operations base area when these resource concerns have been identified in the applicable FOP. If evidence is found, the base area will be set up in a different location. The field operations base may consist of a shade awning, tables, and chairs, as needed, and may be used as a makeshift field office and rest area, as needed, depending on the size and complexity of the mine.

5.2.4 Designate Sample Preparation Area

The field team lead, ecologist, and radiological monitoring personnel will determine a safe place to set up the sample preparation area where samples and sampling equipment will be handled on an as-needed basis. The gamma radiation survey instrument will be used to verify that the area is at or near background exposure rate levels. The ecologist will look for evidence of special-status
species in the proposed sample preparation area when these resource concerns have been identified in the applicable FOP. If evidence is found, the proposed sample preparation area will be set up in a different location. The ecologist will also determine if liquids used for sample preparation have the potential to be discharged or spilled into surface water, potential wetlands, or sensitive ecological areas. If these resources are present and could be affected by the work, samples will be prepared in a different area. The sample preparation area may consist of a table, chairs, and sample collection and decontamination equipment and should be separate from the field operations base location to minimize contamination potential.

The following are safety precautions that will be taken when working in the sample preparation area:

- While performing soil sampling or working in and around the soil sampling preparation area, all personnel will wear the proper personal protective equipment.
- No eating or drinking will be allowed in or around the sample preparation area, and no samples should be handled in or around the field operations base.
- All personnel will practice ALARA principles while handling soil samples (the least number of people handling samples for the least amount of time).

5.3 Determination of Background

Background soil samples will be collected, and gamma radiation measurements will be made on a regional or mine-specific basis. This information will be used to document specific baseline conditions to which individual mine COIs and gamma radiation data may be compared.

In addition, the surrogate gamma radiation background value of 20 µR/hr is used to control the areal extent of the gamma radiation survey, as described in Appendix D.

Background data will be collected on a regional basis in cases where these measurements adequately represent conditions at specific mine locations within a region or mining district. A single background location will be chosen as a regional marker for multiple mines if the data point meets specific criteria. The criteria require that a suitable background location consist of an undisturbed area with vegetative cover, soil, and geologic conditions similar to those of the mine and that the area be in the same region or district as the mine or group of mines being investigated.

Circumstances may dictate that mine-specific background data need to be collected. Such circumstances include instances when mine conditions, whether because of geology, environment, or mining method, are not encompassed by demonstrable regional trends; in those cases, regional conditions are not representative of mine-specific circumstances. The decision to obtain mine-specific background measurements will be made by the field team lead in conjunction with appropriate team members (e.g., the team geologist and radiological monitoring personnel) who can provide scientific guidance and insight.

Background soil sampling procedures are identical to those employed at other sample sites and are described in Appendix C. Appendix D describes background gamma radiation collection processes. The background gamma radiation collection and background soil sample collection processes are conducted at the same plot. Appendix C describes background soil sample
collection processes. USGS developed a statistically based strategy for sampling the surficial material of mine waste dumps, drainages, and background areas for use in screening historical abandoned mine lands (Smith et al. 2000). This procedure has been adapted for use during the environmental sampling process. Background soil data must be collected within an area of representatively similar geologic conditions to those within the region or district in which the mines are located. If there is significant variability in mining conditions at mine locations encountered within a district, mine-specific background samples may be taken so adequate screening information is collected. Soil samples and gamma radiation measurements will be taken at every background location. If the applicable FOP identifies any potential special-status species, or their habitat, that may be encountered in the area, the ecologist will ensure that background data collection will not adversely impact these resources.

5.4 **Assessment of Mine-Related Features and Ecology**

The following section describes the data points collected in the field for the purpose of documenting conditions encountered at a mine at the time of the sampling event. Various QA points are incorporated into these processes to validate specific sampling activities and to verify measurements collected during inventory.

5.4.1 **Mine-Related Features**

Field data will be collected by trained staff using documented, repeatable methods with QA checkpoints to ensure that high-quality, accurate information is obtained. Field data are reviewed as they are collected to ensure that the information is complete and accurate and that any anomalies are accounted for.

Each mine may vary in the number and complexity of mine features. The purpose of the inventory task is to observe and record those features. Appendix F describes the features catalogued during inventory. To establish accurate correlations between the inventory data and environmental sampling points, five data validation points are completed as part of the sampling process.

Five important inventory data checkpoints occur at the onset of the environmental sampling data collection process when inventory is conducted by non-LMS entities. These are (1) verification of the disturbed area perimeter, (2) evaluation of mine entry status, (3) confirmation of waste rock pile locations and dimensions, (4) verification of mine accessibility observations, and (5) verification of observations of previous human use associated with the mine. These observations are field-confirmed by the sampling teams as a QC checkpoint and to facilitate environmental sampling and aid in the RSA process.

The disturbed area is mapped during inventory activities, as described in Section 5.1.3 above. However, to ensure the validity of the disturbed area determination, the field team lead, team geologist, and team radiological monitoring personnel (while recording gamma radiation) will walk the disturbed area margins and either confirm its location or make adjustments as necessary to ensure that the most accurate possible representation of the disturbed area boundary is identified given observed conditions. Although the disturbed area boundary is defined as the margin of mechanical disturbance associated with a specific mine, there may be unique instances in which that margin is unclear. In these cases, relatively elevated gamma radiation
measurements may be used to determine the disturbed area boundary. Any adjustments to the disturbed area boundary will be mapped with a GPS unit.

To aid in the sampling QA process, the checklist described in Appendix F will be utilized by sampling teams to determine the scope of the data that need to be collected. The checklist will also be utilized to ensure that the appropriate information is observed and recorded during each mine visit given the extent to which the features are safely accessible. FOPs, however, may outline modifications to the checklist. The environmental sampling team will use a GPS unit to map any mine-related features not recorded during the inventory.

Critical components of the QA process include use of the example Process Form (Appendix F), data checks while in the field, and the best professional judgement exercised by field teams while relying on the authority of team leads to make field decisions. Visual observations of site conditions and sampling locations and procedures are undertaken by the team lead and complement the field QA process. The rationale for field decisions and any modifications required to sampling or QA procedures will be documented by detailed field notes to ensure that an accurate record of work accomplished is preserved for final reporting.

5.4.2 Ecology Features

Ecological information relevant to each field activity area is collected in advance to direct field activities and address special-status species likely to be present in a given area. Field teams are provided with special-status species lists and information about collecting evidence of these species. They will also receive soils information when appropriate as well as relevant data related to surface water, potential wetlands, and other ecologically sensitive areas.

Data are collected to describe the ecology at each mine and evaluate potential hazards pertinent to ecological resources. Evidence of flora and fauna and their potential habitat on or near the mine is collected and evaluated in relation to mine features and sources of contamination. Appendix F contains checklists and additional information about the ecological features which will be recorded at each mine.

Ecologists will collect the following information and document it with a GPS unit and photographs:

- **Vegetation on waste rock piles:** Estimated foliar cover and dominant, secondary, and trace species present on each waste rock pile. Species are documented using their common and scientific name or Natural Resources Conservation Service standardized code. Although waste rock piles may not represent separate ecological units, they will be mapped separately from the rest of a mine so that this information can be used in the ecological hazard evaluation. If vegetation is similar, several waste rock piles may be mapped as a single unit.

- **Ecological units:** The general location (normally recorded as a representative GPS location point) of distinct ecological units at and surrounding the mines. Descriptions will include dominant and secondary species present. Trace species will be recorded as time allows, especially when they have special significance (e.g., if the species is a noxious weed, if it indicates that an area may have been reseeded in the past).

- **Special-status species:** Evidence may include sightings, calls, or physical evidence, such as distinctive burrows, prints, bones, feathers, or plant parts.
• **Potential habitat for special-status species:** Evidence many include specific soil or ecosystem types, structural features that could provide nest or shelter habitat, primary food sources, or riparian areas present.

• **Wildlife use:** Signs of animal presence (e.g., bones, scat, burrows, nests, roosting areas).

• **Wildlife hazards:** Any physical features present at a mine that could pose a threat of injury or death to wildlife will be recorded. Examples include: open drill holes or vents (2–18 inches in diameter), wells or pipes, tangled barbed wire, subsidence features, and confining structures.

The Endangered Species Act, described in Title 16 United States Code Section 1531 et seq. (16 USC 1531 et seq.), requires all federal agencies to further the conservation of endangered and threatened species and consult with USFWS for all actions that have the potential to affect these species and their designated critical habitat. In support of this requirement and to support USFS, BLM, state, and other USFWS conservation efforts, field ecologists will notify managers if a federally listed endangered or threatened species is found at or near a mine, or if any special-status species is found outside of its known range during the course of V&V work. Managers will contact DOE and request that the appropriate land management agency (USFWS, state, BLM, or USFS) be notified of the occurrence.

5.5 Sampling

Evaluation of potential human health risk at a mine involves the sampling and analysis of materials encountered there. Three important environmental elements that may be analyzed are the chemical constituents found in mining-impacted soil and sediment, gamma radiation, and surface water. Soil and sediment analytic data, as well as field-generated gamma radiation data, are compared against established criteria, and the results are used when evaluating the human health risk of a mine. In addition to the soil samples typically collected from accessible areas of the waste rock piles, opportunistic samples and water samples will often be collected at mines. Analytic results of opportunistic samples are used to provide a snapshot in time of a specific small area of a mine. Opportunistic sample results are not utilized in the risk scoring or ranking. Similarly, analytic results of water samples are used to provide a snapshot in time of the quality of the sampled water and are not utilized in the risk scoring or ranking.

For ONE mines, team members will perform a reconnaissance search of the immediate area in an effort to locate the mine or evidence of past mining operations. The reconnaissance search will be recorded using GPS technology to document the extent of the area evaluated. If no evidence of operations is found during the reconnaissance search, sampling will consist of performing a gamma radiation survey of a 0.25-acre area, where safely accessible (see Section 5.6.2 below and Appendix D). Ecological information will also be collected as described in Section 5.4.2. For cases in which the reconciliation point is on a bench, the gamma radiation survey will be performed 200 feet (ft) on either side of the coordinates located by the inventory team. If the mean gamma radiation value recorded during the survey is greater than 64 µR/hr, an opportunistic sample (see Section 5.5.1 below and Appendix C) of the area of elevated gamma radiation will be collected.
5.5.1 Soil and Sediment Sampling

Soil and sediment sampling is primarily conducted at mine waste rock piles. Waste rock is a derivative product of mining operations and as such is the primary mine feature where chemical COIs would occur. Waste rock material, when graded into a level configuration, may be utilized by recreationists for camping and in these instances act as a pathway for exposure (Figure 1). Due to this exposure scenario, samples are collected to quantify the COIs from each waste rock pile with more than 100 square feet (ft²) of accessible area. Furthermore, offsite mine-derived sediment which exhibits an elevated gamma radiation signature greater than 64 µR/hr is sampled so that an evaluation of this material may be made for purposes of assessing the migration of material that could be a source of gamma radiation.

Soil sampling is conducted from waste rock piles, as described in Appendix C. Sample areas are defined as the safely accessible portions of waste rock piles. Sample areas are identified by visually assessing the perimeter of a waste rock pile and then evaluating the gamma radiation signature of the area to ensure that all necessary materials are considered in the sampling strategy. The area to be sampled is then mapped using a handheld GPS unit. Samples are collected from all but the smallest of piles (those measuring less than 100 ft² of accessible area). The Appendix C sampling procedure contains detailed instructions for collection of soil samples using a 30-point composite sample collection strategy. The procedure covers pretrip planning for sample collection, the use of COC forms, QC, sample identification and handling, analytical program requirements, equipment decontamination, and documentation. Soil samples will be analyzed at a subcontracted analytical laboratory that is accredited in multiple states and through the U.S. Department of Defense Environmental Laboratory Accreditation Program.

In some circumstances, only the toe or crest of a waste rock pile may be accessible for sampling because of safety considerations. In these instances, deviations from the prescribed compositing sampling scheme (Table C1, Appendix C) will be required, which typically result in a reduction of the prescribed sample nodes. When such deviations occur, these samples will still be utilized as waste rock samples, but a note regarding the sampling restrictions will be included in the V&V report. Nonetheless, field crews will be sure to collect an appropriate amount of sampling nodes at waste rock piles where the recreational-use scenario (camping) may be fulfilled. Due to worker safety considerations and the fact that camping on steep, inaccessible waste rock pile side-slopes is not feasible, refraining from sampling these slopes is deemed appropriate in achieving program objectives. As a result, sampling is conducted in safely accessible areas.

In addition to soil samples collected at waste rock piles, sediment shed samples may be collected from other locations outside the disturbed area to quantify potential offsite releases. The environmental sampling team will determine if sediment shed samples need to be collected from ephemeral drainages and downgradient areas by using the gamma radiation detector and visual evidence to determine if radiological material has migrated via erosional processes from the mine into nearby drainages or onto the surrounding landscape, which will be of particular importance when the mine is in close proximity to private property. Sediment shed samples are collected using a sampling protocol identical to that used for soil samples obtained on waste rock piles, except that sediment sampling grids are generally established in the field.

If material is encountered in the field that differs from that typically encountered at a mine, the field team lead will determine the need for an opportunistic sample (see Section C3.2.4 of
Appendix C). Opportunistic samples may be obtained for the purpose of identifying mine features that may have unique COI characteristics (e.g., they might be collected from an area at the base of a loadout or at an ore stockpile location).

Opportunistic samples may also be collected to provide additional information to land management agencies (e.g., to identify isolated areas at a mine where gamma radiation exceeds 256 µR/hr or to confirm or analyze sediment migration onto nearby private property when it is visually identified, even though the gamma radiation of that sediment is below 64 µR/hr). Opportunistic samples of surface water may also be obtained when such sampling adds value to the information collected at a mine. Notations regarding the circumstances of opportunistic sampling and pertinent observations at opportunistic sample locations will be recorded by the field team lead and team geologist.

As described in Appendix D, the gamma radiation survey data will establish the areas of ephemeral drainages and other downgradient areas to be sampled. When gamma radiation data demonstrate that material with a dose rate of greater than 64 µR/hr has been transported from the disturbed area, a GPS located polygon will be built around the area of elevated gamma radiation, a sediment sample grid will be constructed, and a sample will be taken. The sediment shed area will be mapped to 60 ft beyond its 64 µR/hr limits or to the point where values of 20 µR/hr are recorded, whichever comes first. If visual evidence of additional large areas of downgradient waste rock erosion and deposition are present, the team lead may elect to perform additional gamma radiation survey work. If the gamma radiation survey data demonstrate that the dose rate of sediment transported outside the disturbed area is less than 64 µR/hr, no sediment shed sampling will be performed, unless the sediment shed area is adjacent to private property and an opportunistic sample is deemed necessary. All areas which are sampled as a result of elevated gamma radiation (greater than 64 µR/hr) will be mapped with corresponding sample locations noted. The threshold of 64 µR/hr is equivalent to the lower benchmark of 25 mrem/yr discussed in Section 3.3.1 and Appendix B.

Soil and sediment shed samples will be sent to an accredited laboratory for analysis. Generally, shipment of environmental soil samples does not require special notices or placards as these materials are exempted from such requirements when the radioactivity concentration is unknown.

Before shipment of an environmental soil sample with an unknown radioactivity concentration to a lab, the radiological monitoring personnel will complete a contamination survey of the sample containers and measure the dose rate of the shipment packaging. This information will be enclosed in the shipment container as a courtesy to the analytical lab.

5.5.2 Water Sampling

The purpose of sampling surface water is to document the presence of water at a mine, provide discharge information if water is flowing, and provide for a chemical analysis of that water while recognizing that the analysis provides a snapshot in time of the surface water quality. The observation of surface water is the only factor used in the RSA; the chemical analyses and discharge information are provided in the final V&V report for information purposes only.
For sampling purposes, surface water is defined as water present within the disturbed area, or within 300 ft of the disturbed area of a mine. Water samples are collected when site conditions suggest surface water could potentially be impacted by the mine. Water bodies could include stock ponds, perennial streams, water discharging from an adit, or water discharging from springs or seeps within or adjacent to the disturbed area. Water samples are not collected from ephemeral water bodies that form due to precipitation and are likely to persist for less than 2 weeks. Analytes and sampling procedures for surface water samples are listed in Appendix H. Surface water samples and discharge information will be collected by personnel trained to the specifications outlined in Appendix H.

5.6 Gamma Radiation Data Collection

Gamma radiation data are used to determine the radiation signature of a mine. This is appropriate because the uranium isotopes are present in their naturally occurring isotopic abundances and are in secular equilibrium with all of their progeny. Several of the uranium progeny are relatively high-energy gamma radiation emitters and are readily measured in the field.

Two types of gamma radiation data collection may be employed at each mine: handheld measurements and gamma radiation surveys. Handheld measurements may be used for features where radiologic information is needed to facilitate other data collection efforts, as described in Section 5.6.1. Gamma radiation surveys are used to map the extent and magnitude of gamma radiation at each mine and associated sediment shed areas, as described in Section 5.6.2.

Both types of gamma radiation data will be collected from safely accessible portions of a mine. These areas may include the crest and toe of waste rock piles where the intervening slopes are inaccessible. Gamma radiation surveys will not be performed in locations within the disturbed areas that are not accessible because of steep slopes, physical obstacles, or similar hazards. These limitations will be documented. Due to worker safety considerations and the fact that camping on steep, inaccessible waste rock pile side-slopes is not feasible, refraining from sampling these slopes is deemed to be appropriate in achieving program objectives. As a result, sampling is conducted in safely accessible areas.

5.6.1 Handheld Radiation Dose Reading Measurements

Handheld radiation dose rate measurements may be performed during V&V activities for the purpose of providing radiologic-specific information to the field crew. Typically, handheld radiation dose rate instruments are used to measure the gamma radiation emanating from a source of radiation in µR/hr. Additionally, once elevated radiation dose rates are identified at a mine, then ALARA techniques can be implemented to minimize personnel radiation doses. This is accomplished by avoiding higher-dose areas, such as ore stockpiles and former ore storage pads, or by working as quickly and efficiently as possible in these areas to minimize exposure to elevated gamma radiation.

Handheld radiation dose rate instruments usually consist of an integrated unit (the instrument) in which the radiation detector and associated electronics are built into a single instrument or a separate detector interfaced with a rate meter. When using the gamma radiation survey instrument, the surveyor will document the range of readings observed around the feature being surveyed. Measurements performed using a radiation dose rate instrument (e.g., Thermo
Scientific FH 40 G Multi-Purpose Digital Survey Meter or equivalent) are conducted in accordance with Appendix D.

For consistency, the radiation dose rate instrument should be positioned approximately 3 ft above the ground surface or 3 ft from the feature being investigated. It is acceptable to perform radiation dose rate measurements at distances of less than 3 ft above the ground surface or feature when attempting to identify or delineate discrete points of radioactivity. When the instrument is used to obtain radiological-type characteristic information, those measurement results will generally not be recorded as the information is intended to guide further field investigation. However, if relevant, reportable information is captured with the handheld instrument, the data will be stored in an electronic form created for radiological surveys, and the measurement point will be recorded with the handheld GPS units.

5.6.2 Gamma Radiation Surveys

Gamma radiation surveys are performed to obtain radiological data that represent the magnitude and spatial distribution of gamma radiation across the mine. This information is used to understand the general radiological conditions that could contribute to the radiological risk to future mine visitors. Due to the natural mineralization surrounding most mines, spatial variability in soil radionuclides is expected to be high, potentially exhibiting order-of-magnitude changes in concentrations and associated exposure rates over a distance of 20 or 50 ft. It has been the experience of the DRUM Program that 20 or 50 ft transect spacing conservatively and reliably documents site conditions for most mines surveyed and that greater spacings could be employed with the awareness that additional transects may be added after QA procedures have been completed to ensure adequate coverage and achievement of the objective. After delineating the total disturbed area, the field team lead and the radiological monitoring personnel will decide what spacing, ranging from 20 to 50 ft, is most appropriate for a given mine. A survey that involves spacing above 50 ft will have additional requirements outlined in Appendix D. For larger mines where the disturbed area exceeds 10 acres, a modified transect spacing is appropriate to efficiently collect the screening level data needed to evaluate site conditions without jeopardizing the overall data objective. For these larger mines, transect spacing may be increased to as much as 100 ft if the field team lead, in consultation with the radiologic monitoring lead, determines that an increased transect interval is appropriate given site conditions and areal extent. If gamma radiation readings are greater than 256 µR/hr, the area in question will be further delineated and surveyed with a 20 or 30 ft transect spacing. A gamma radiation survey can identify these spatial variabilities and the resultant gamma radiation exposure rates when used in conjunction with location data collected with a GPS unit. The resulting map of the gamma radiation survey visually displays, in a color-coded isocontour fashion, the extent and magnitude of gamma radiation at a mine to clearly identify potential onsite sources and offsite releases. This information is used to understand the potential radiological risk to visitors and the overall area of gamma radiation elevated above background. Observations of gamma radiation will be used to target subsequent soil sampling sediment shed areas.

The DRUM Program uses gamma radiation survey data to define and delineate the mine sites, an approach that was modified in 2018. Before 2018, the DRUM Program used measured local or regional background values to differentiate the mine from the surrounding area and to identify waste materials that may be migrating offsite. Although the concept is sound, the extensive
background dataset indicates that using a single upper-end value for background gamma radiation provides several advantages while still meeting the same objectives of performing gamma radiation surveys until the background values were encountered. Table 3 provides a summary of the updated background gamma radiation dataset, which as of May 2020 includes 255 gamma radiation background areas (n = 255). The statistics provided in Table 3 are based on the minimum (i.e., the lowest gamma radiation value measured at each background location), maximum, or mean gamma radiation values for each background location dataset. Mean gamma radiation values are calculated using gamma radiation data from within the disturbed area only.

Table 3. Summary of Background Gamma Radiation Dataset

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of gamma radiation data points per location</td>
<td>10</td>
<td>1303</td>
<td>157</td>
</tr>
<tr>
<td>Mean gamma radiation values (µR/hr)</td>
<td>4.4</td>
<td>54.8</td>
<td>8.7</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.7</td>
<td>8.2</td>
<td>4.4</td>
</tr>
<tr>
<td>95% UCL</td>
<td>7.8</td>
<td>11.7</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Abbreviation:
UCL = upper confidence limit

Table 3 shows that the background gamma radiation values are somewhat variable for the locations sampled, but the 95% upper confidence limit for the maximum data values from each background location is well below 20 µR/hr. Moreover, only 3 of the 255 background locations had mean gamma radiation values greater than 20 µR/hr (these three values were 23.5, 26.6, and 54.8 µR/hr). This indicates that 20 µR/hr is a reasonable higher-end background estimate. It is also safely below the lower risk threshold of 32 µR/hr and well below the sediment shed threshold of 64 µR/hr to account for uncertainties associated with the instrumentation or impacts from surrounding geologic conditions. For these reasons and to continue to meet the objectives of the gamma radiation surveys, 20 µR/hr is used as the surrogate background gamma radiation value for the surveys. Therefore, the gamma radiation survey transect endpoint value is 20 µR/hr, as described in Appendix D.

Surveys performed using the gamma radiation survey instrument (e.g., Nuvia Dynamics Inc. model portable ground information system [PGIS-2] or equivalent) will be conducted as follows (and in accordance with Appendix D).

The gamma radiation survey system (instrument) consists of three primary components: an Android phone, a GPS receiver, and a sodium iodide-type detector. The system, carried in a backpack or mounted on an all-terrain vehicle, is used to collect GPS and corresponding gamma radiation measurements over a wide area at a rate of approximately one measurement every second. The system records, compiles, and then stores the radiological survey and GPS location data in the Android phone.

The goal for survey coverage density is to collect data sufficient in degree of magnitude and spatial proximity to portray gamma radiation conditions encountered at the site in order to identify and spatially map onsite sources and potential offsite releases. The area to be surveyed includes the disturbed area; impacted sediment shed areas, if any; the safely accessible crest and toe of waste rock piles where the intervening slopes are inaccessible; and areas adjacent to the
disturbed area margins which are safe to access. Adequate coverage will be achieved by walking transects of adequate spacing across the disturbed area and until the surrogate gamma radiation level of 20 µR/hr outside the disturbed area is encountered, as described in Appendix D. Data will be reviewed in the field as described below to ensure that the gamma radiation survey adequately covers the area of interest.

When utility task vehicles (UTVs) are used in conjunction with gamma radiation surveys, UTV speeds shall keep within a range of 3 to 10 miles per hour.

The sufficiency of gamma radiation data collected at each mine will be evaluated in the field following completion of the gamma radiation survey. This will be done by overlaying real-time gamma radiation data with an aerial image of the mine. In this way, the gamma radiation survey coverage of the mine and gamma radiation conditions relative to the value of 20 µR/hr as measured at the termination of each transect may be reviewed before the field team leaves a mine. This step provides the opportunity to confirm the quality of the data collected and to complete any data gaps which may be identified as a result of this evaluation before demobilizing from the mine. Areas of insufficient information will be identified, and additional data will be collected as conditions allow before demobilization from the site. Examples of insufficient data may include the presence of areas of possible offsite migration between transects and the delineation of onsite gamma radiation anomalies above 256 µR/hr.

Field QA steps also frequently involve informal evaluation of real-time data generated by the gamma radiation instrumentation and the GPS units. These checks are made in the field as data are collected and again before demobilization. As noted in Section 5.0, many of the data collected are based upon observations of existing conditions.

Due to geographic conditions at some mine locations (e.g., deep canyons or a cliff wall), GPS units may not operate with full precision. This can cause Position Dilution of Precision (PDOP), and gamma radiation points collected within the disturbed area may appear outside the disturbed area when mapped. In these instances, to ensure all appropriate gamma radiation points are included in the mean gamma radiation calculation, a gamma radiation footprint polygon will be generated. This represents that these points will be included in the overall calculation. The gamma radiation footprint feature will only be utilized when PDOP places gamma radiation points that were walked inside the disturbed area outside the disturbed area.

5.7 Approval of V&V Work Plan Deviations

Depending on field conditions observed during the inventory of mines, specific procedures pertaining to environmental sampling may be modified by the field team lead only in consultation with and approval of the URP manager. It is anticipated that V&V Work Plan deviations would only occur when site-specific circumstances do not allow for implementation of the V&V Work Plan procedures specified here. If deviations from these procedures are necessary and approved by the URP manager, in consultation with LM if available, the changes shall be documented and described in the field notes, saved electronically, and referenced in mine-specific V&V reports. If there is a need for substantive deviations from the procedure during project execution as determined by the URP manager, then an addendum to this procedure will be prepared and implemented, and LM will be notified.
5.8 Postfield QC Evaluation

Postfield QA/QC evaluation of the environmental data collected during V&V activities is completed the week following the site visit. The purpose of the evaluation is to ensure that data were collected as specified in the V&V Work Plan. The data review includes an evaluation of the following: the accuracy of GPS data; the field assessment of the number, type, and condition of mine entries; the sufficiency of background and mine-specific gamma radiation data; and whether the number of waste rock piles, impacted drainages, and corresponding number of sample nodes were collected accurately.

6.0 Reporting

6.1 V&V Reports

A V&V report is written for each mine following compilation and examination of data collected during the field visit. The purpose of a mine-specific report is to summarize the results of V&V activities and to facilitate the transfer of information to help inform agency decisions regarding potential remnant hazards and risks to human health and the environment. The report also serves as documentation that DOE has completed DRUM Program objectives and has addressed discrepancies in historical records for mines identified in the Report to Congress. Each report will be a stand-alone document summarizing the findings for the mine it represents and will include the following:

- An introduction to the DRUM Program and V&V activities
- A description of reconciliation information and documentation
- Regional geologic information
- A mine inventory information table
- Figures showing mine location, topographical features, mine inventory features, gamma radiation survey results, and environmental sample locations
- Photos of mine-related and other relevant features
- Environmental sampling information including:
 - Gamma radiation survey information.
 - A table summarizing soil and water (if applicable) sampling activities and a table containing soil sample results with corresponding analytical data.
 - A risk scoring summary that ranks and describes hazards and risks presented by the mine.
 - Appendixes with a glossary of terms, investigation methods, RSA criteria, RSA tables, and when applicable, mine merged duplicates forms, environmental sampling laboratory reports, and any other relevant documentation related to the mine.

Using the multiple lines of evidence from the field data collected, each report will focus on the evaluation of physical hazards and potential human health risks at a mine, as well as the modifying factors (potential ecological and environmental impacts, access and suitability, and
complexity). Details on the RSA process can be found in Section 3.0 and Appendix E. A copy of the RSA table is included in Appendix E.

The report writing process begins with an initial evaluation of the data by the field teams and management to ensure data QA. Any conflicting or missing data are addressed by the field team members and resolved. Once data review is complete and applicable lab analysis is validated (over the course of approximately 60 days), a V&V report is assembled. Individual reports are tracked through the writing and review process to ensure accuracy and timely completion. Reports and appendixes are formatted and edited to LMS and program-specific style standards.

To assure the validity of the dataset, QA/QC checks are performed before data evaluation and report development. QA/QC checks are completed via the data QA process described in Section 9.0 and during the qualitative and quantitative field data generation steps described in Sections 4.0 and 5.0.

V&V reports are subjected to multiple reviews to ensure completeness and accuracy. Reviews are conducted in accordance with the Defense-Related Uranium Mines Quality Assurance Program Plan (LMS/DRM/S15867), also called the QAPP. The basic methodology for V&V report reviews involves several evaluations conducted by field team members, Document Management, a technical reviewer, and the report manager. This process is outlined in detail in DRUM Report Writing Desktop Procedures (LMS/DRM/S24089). These reviews evaluate the report using the following criteria:

- Adherence to the V&V Work Plan
- Accuracy of mine information
- Accuracy of figures
- Sample results
- RSA accuracy
- Spelling and grammar
- Consistent formatting
- Consistent use of terminology
- Incorporation of LM concerns and comments

Final reports are submitted in PDF format to LM through the DRUM Program administrative assistant. LM reviews the report using a standard checklist created and approved by LM specifically to review V&V reports. Any comments are addressed, and the document is sent through an additional review process, revised accordingly, and resubmitted. Final reports are uploaded to the EFT site for partner agency access. Storage and version control of reports are managed locally by Records Operations and Document Management.

6.2 Risk Roll-Up Reports

DOE will prepare risk roll-up reports for project areas to facilitate the review of mine information and relative risks and to support concurrence on mine risk rankings and priority determinations. The primary objective of the risk roll-up reports is to facilitate the review of a
A large amount of V&V information, develop an understanding of risks to identified resources, and to provide the basis for management decisions for the land management agencies. The risk screening process provides a programmatic means to consistently evaluate and rank risk to identify the most significant hazards associated with a mine or group of mines in the DRUM Program. The groupings (which are based on categories such as state, region, and FOP) have been established in collaboration with the appropriate land management agencies to best address their priorities and to further collaborate with DOE to safeguard physical hazards. For additional information on the risk roll-up process and reports, consult the *Defense-Related Uranium Mines Risk Screening Process* (DOE 2020).

7.0 Safety and Health

Safety and health considerations for V&V activities at the mines are focused on physical and environmental hazards as well as some potential radiological risks.

The *Worker Safety and Health Program (10 CFR 851)* (LMS/POL/S14697) is the basis for how the LMS contractor safely performs work. The *Integrated Safety Management System Description* (LMS/POL/S14463) defines how the LMS organization, in performing work, systematically integrates safety management and work practices at all levels. Both documents apply to all work conducted by LMS employees and subcontractors at any location.

The *Integrated Safety Management System Description* and the DSP ensure clear roles, responsibilities, and procedures are in place to achieve an integrated approach to ensuring worker safety and health consistently with 10 CFR 851.11(a)(2)(ii).

The DSP identifies hazards and defines health and safety policies and procedures for site workers (including subcontractors) who perform work for the DRUM Program; it also applies to vendors and visitors.

V&V work performed at the mines will also follow the requirements of the *External Dosimetry Procedure* (LMS/POL/S16263). Specific requirements, limitations, goals, and actions associated with radiation protection for this project are defined in the DSP. Field workers will wear thermoluminescent dosimeters to monitor their radiological exposure. If the dosimeters are not available, the DRUM Safety and Health coordinator will be contacted before the team mobilizes to a field location.

8.0 Environmental Requirements

Environmental protection is maintained by all DRUM Program employees with the assistance of the program’s Environmental Compliance point of contact. The joint LM/LMS Environmental Management System (EMS) is a framework that includes environmental compliance and environmental sustainability, both of which are described below as they relate to DRUM Program work.
8.1 Environmental Compliance

The environmental compliance area of the EMS consists of regulatory compliance and monitoring programs that implement federal, state, tribal, and local compliance requirements and obligations. Because it is investigative in nature, work at DRUM Program mines has a minor impact on the environment. The following sections describe areas of compliance most relevant to the program. Additional regulations may apply to special situations. Any special or unusual situations will be addressed in individual FOPs on a case-by-case basis.

8.1.1 National Environmental Policy Act (NEPA)

Regulations for implementing NEPA are in 40 CFR 1500–1508. NEPA provides a process for federal agencies to evaluate the impacts of their actions on the environment. A NEPA review is required for each federal agency before undertaking activities. New scope must be evaluated to determine the need for additional NEPA documentation. For DRUM Program activities, NEPA documents will be prepared consistently with the individual FOPs to avoid confusion, further compliance, and enhance planning.

8.1.2 Cultural Resources

Under the National Historic Preservation Act (NHPA) (36 CFR 800), it is illegal to remove, pick up, or relocate items that have historical or cultural value without prior consultation with the appropriate State or Tribal Historic Preservation Officer. Artifacts and cultural resources are further defined in Appendix F. Items with historic or cultural value may be difficult to distinguish from items without historic or cultural value. Therefore, if an item is not obviously recent, it will be assumed to be protected under NHPA.

8.1.3 Hazardous Material Transportation

Small quantities of hazardous materials (e.g., nitric and sulfuric acid) are used to preserve surface water samples during DRUM Program environmental sampling work and therefore must be transported to the field locations. The U.S. Department of Transportation regulates the transport of hazardous materials (49 CFR 172; 49 CFR 173) and specifies allowable quantities, packaging, and training requirements. In accordance with the regulations, the acids used for sample preservation qualify as materials of trade because they are packaged as required, and the drivers of all vehicles are trained to safely transport these materials.

8.1.4 Migratory Birds and Bald and Golden Eagles

Migratory birds are protected by the Migratory Bird Treaty Act (16 CFR 703–712), and bald and golden eagles are protected by the Bald and Golden Eagle Protection Act (16 USC 668). The acts prohibit harassment or destruction of birds, eggs, and nests, including removing bird parts, eggs, or nests from a site. To prevent disturbance or take of birds as defined by the acts, restrictions may apply to activities or UTV use in some areas or at times in a bird’s life cycle where they are susceptible. These restrictions will be provided by Environmental Compliance and included in individual FOPs to avoid confusion, further compliance, and enhance planning.
8.1.5 Threatened and Endangered Species

Threatened and endangered species and designated critical habitat are protected by the Endangered Species Act and in some areas by other state, tribal, or local laws. This act requires all federal agencies to further the conservation of threatened or endangered species. It also requires all agencies to consult with USFWS regarding all actions that have the potential to affect these species or their designated critical habitat. In some areas and at certain times of year, DRUM inventory and environmental sampling activities have the potential to affect threatened or endangered species or designated critical habitat. Different species may experience different impacts from planned activities; therefore, Environmental Compliance will provide guidelines specific to the Endangered Species Act to the DRUM Program during FOP development to avoid confusion, further compliance, and enhance planning. Environmental Compliance staff will assist LM in consulting with USFWS in cases where impacts on threatened or endangered species or designated critical habitat cannot be avoided.

8.1.6 Waste Management

The Resource Conservation and Recovery Act (RCRA) (42 USC 6901 et seq.) is the primary federal law for generation, management, treatment, storage, and disposal of hazardous waste (defined in 40 CFR 261). Radioactive waste is primarily addressed by the Atomic Energy Act (42 USC 2011 et seq.) in addition to multiple DOE orders. Some investigation-derived waste (IDW) may qualify as hazardous, radioactive, or mixed waste (waste that is hazardous waste and also radioactively contaminated); however, RCRA addresses a solid waste exemption pertaining to uranium mining waste products in 40 CFR 261.4(b)(3).

IDW is generated in the process of investigating a potentially contaminated mine site and may include surface water sample material intended for disposal, used personal protective equipment, used decontamination solutions, and used sampling supplies and equipment. IDW may be generated at the site being investigated or offsite, such as at an analytical laboratory. Uncontaminated IDW (including materials that have been decontaminated) may be bagged and disposed of as trash. Contaminated IDW must be characterized and managed in accordance with the applicable environmental laws and regulations. In the case of samples and sample containers, this will normally be done by the analytical laboratory.

Samples sent for analysis will be managed by the receiving laboratory. Unaltered soil and water sample material (e.g., unpreserved water samples) that are not sent for analysis must be returned to their originating location. Altered sample material (e.g., preserved water samples) as well as other types of contaminated IDW must be evaluated to determine whether they are hazardous or radioactive before disposal. Such materials are subject to applicable laws and regulations as described in Section 4.0 of the Environmental Instructions Manual (LMS/POL/S04338).

8.1.7 Spills

Management of fuel and other petroleum products and refueling operations must be conducted in accordance with the DSP. Spills may include fluid leaks from vehicles, spills from sample preservatives or calibration standards, or spills from other equipment used to assist with mine evaluations. If a spill occurs, the approximate volume and concentrations of the spill will be recorded, and the Environmental Compliance point of contact will be notified as soon as
possible. The Environmental Compliance point of contact will report the spill to LM and to the appropriate land management agency. If the spill involves hazardous or suspected hazardous materials, notification must be made before leaving the site to determine proper management, notification, and transport procedures. Spills involving hazardous materials are considered to be environmental releases and will be immediately cleaned up according to instructions on Safety Data Sheets.

Small spills are those involving less than 10 gallons (liquids) or 50 pounds (solids). Personnel will follow established protocols for preventing and responding to small spills as outlined in Section 11.0 of the Environmental Instructions Manual.

Dry, absorbent materials may be used to clean up small spills. Soil that contains the spilled material will be overexcavated about 3 inches on all sides and will be placed in a container labeled with identifying information, a contact name, and a phone number. If the material is known or suspected to be hazardous, then the term “Hazardous Pending Analysis” will also be included on the label.

8.2 Environmental Sustainability

The environmental sustainability area of the EMS, mandated by Executive Orders and DOE orders, promotes and integrates initiatives such as energy and natural resource conservation, waste minimization, and the use of sustainable products and services in all phases of work. Sustainability teams applicable to the DRUM Program include the EMS Sustainable Acquisition, Electronics Stewardship, and Vehicle and Fuel Use Teams. Sustainable acquisition and electronics stewardship requirements are integrated into the LMS purchasing department processes; materials purchased for the DRUM Program outside of the LMS purchasing department must also conform with these requirements. U.S. General Services Administration vehicle management is integrated with the vehicle and fuel use requirements. UTV fuel use is also subject to reporting requirements for the EMS Vehicle and Fuel Use Team. To support other goals of the EMS sustainability teams, DRUM Program personnel will practice water conservation, waste minimization, pollution prevention, and recycling whenever possible during work.

8.2.1 Use of Motorized Vehicles at Mines

Motorized vehicle use for the purpose of accessing mines is restricted to travel routes designated by the appropriate land management agency. Use of UTVs is usually permissible on waste rock piles, mine access roads, and previously disturbed portions of mines. UTV use is not permitted in designated critical habitat where activities have the potential to affect that habitat. UTV use is not permitted in areas where activities have the potential to affect threatened or endangered species. Environmental Compliance will make a determination as to whether or not activities could result in potentially harmful effects as individual FOPs are being developed.

The team ecologist will determine if special-status species, migratory birds, or their habitat are present in areas considered for UTV use, and their presence will be identified in individual FOPs. The ecologist, in consultation with the field team lead, will develop a strategy to complete the work in a manner which does not adversely impact these resources. Potential strategies include avoidance of resources by UTVs and completion of the work without UTVs. In all
instances and locations, care will be taken to ensure that ecological resources will not be adversely affected by UTV use.

9.0 Quality Assurance

The LMS contractor aims for quality in all endeavors. The delivery of defect-free products and services on time and within approved budgets is integral to this goal. At the same time, these activities must be accomplished in a safe and environmentally protective fashion.

All personnel performing V&V activities are knowledgeable and capable of performing the work and making appropriate field determinations. The QAPP identifies the training and qualification requirements for staff to ensure the highest degree of quality workmanship during V&V activities.

To achieve quality in activities and products, the LMS contractor has established and implemented a formal QA program. This program is a management tool to ensure that the LMS contractor achieves quality standards throughout all technical, administrative, and operational functions.

Elements of the QA program apply to all LMS activities and locations serving LM. The achievement of quality is the responsibility of the people who manage and, most importantly, those who perform the work. Personnel are expected to perform their roles in accordance with procedures and other requirements. In the performance of the LMS contractor’s mission supporting LM, all personnel are expected to display quality to themselves, their customers, and their suppliers.

Many of the inventory and ecological sampling field protocols require inputs of observational information and acquired data. This information is generally logged into a handheld GPS unit. Field checklists are employed as a QA check to ensure that the appropriate data are collected during each mine visit. The necessary QA controls are described as part of the relevant tasks outlined in this V&V Work Plan. An additional QA check will be performed immediately following completion of a field mobilization. This additional check will be an in-office evaluation of the data collected in the field to ensure that the quantity and quality of the data collected is appropriate. This check will include an evaluation of such sample parameters as:

- Type and status of mine entries.
- Number and condition of structures.
- Sufficiency of gamma radiation survey information.
- Number of soil samples obtained.
- Number of sediment shed samples obtained.
- General field note adequacy.

The Process Form is used to document performance of QA/QC checks for V&V Work Plan processes. The Process Form demonstrates a defined method to capture, document, and provide
accountability and assurance that appropriate QA/QC checks have been implemented and completed as required in the QAPP and the V&V Work Plan.

Ensuring quality of data via analysis of information occurs at multiple steps in the acquisition and reporting procedures. Necessary QA controls are implemented during the process of acquiring data. These steps generally reflect that all pertinent points of data and information are collected and stored in the field. Analytic data are evaluated following the return of information from the laboratory. Data validation is conducted by the Environmental Monitoring Operations group. The reporting team will also evaluate the data to screen for inconsistencies and potential errors.

The Quality Assurance Manual (LMS/POL/S04320) (QAM) describes and establishes the LMS QA program. The QAM describes a QA management system that incorporates the requirements of DOE Order 226.1B, Implementation of Department of Energy Oversight Policy, and DOE Order 414.1D, Quality Assurance, using International Organization for Standardization 9001:2015 as the chosen national standard. The provisions of the QAM apply to all programs and projects managed by the LMS contractor that require the application of a QA program.

For the DRUM Program, the QAPP was developed and designed to be consistent with the requirements in EPA Requirements for Quality Assurance Project Plans (EPA QAR-5) (EPA 2001). EPA’s (2002) Guidance for Quality Assurance Project Plans (EPA QA/G-5) was used as a guide in preparing the QAPP. DQOs are discussed in the QAPP and presented in Appendix A.

10.0 References

LMS contract implementing documents, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

- *DRUM Report Writing Desktop Procedures*, LMS/DRM/S24089
- *Environmental Instructions Manual*, LMS/POL/S04338
- *External Dosimetry Procedure*, LMS/POL/S16263
- *Integrated Safety Management System Description*, LMS/POL/S14463
- *Quality Assurance Manual*, LMS/POL/S04320
- *Radioactive Source Use and Control*, LMS/PRO/S20089
- *Safety and Health Procedures Manual*, LMS/PRO/S04337
- *Worker Safety and Health Program (10 CFR 851)*, LMS/POL/S14697

Appendix A

Data Quality Objectives
The EPA seven-step process to achieve DQOs (EPA 2006) was applied as a strategic planning approach to aid in the generation of an adequate quantity and quality of data to support screening assessments of human health risks for the DRUM Program. This process is applied to the collection of environmental and analytical data used for the program. This process, however, is not considered applicable to the observational data collected for ecological and physical hazard evaluation. The analytical data collected by the field personnel for risk screening purposes include radiological data, soil samples, and sediment shed samples. Sections A1.0 through A7.0 present the steps in the planning for data collection.

A1.0 State the Problem

Radionuclides and metals may be present at elevated levels at some DRUM Program mines and could pose a risk to human health via an exposure scenario of recreational camping at these mines. The concentrations and spatial distributions of these potential contaminants need to be assessed to determine if there is a potential risk to human health.

A2.0 Identify the Decision

In order to successfully evaluate potential recreationalist exposure risks, the LMS contractor will collect samples of soil and sediment, measure gamma radiation activity at each mine, and compare the results to benchmarks established for the DRUM Program. These benchmarks are BLM human health recreational screening levels (RSLs) and removal management levels (RMLs) (BLM 2017; BLM 2019) for metals, DRUM-specific radiological benchmarks (Brown 2018), and background concentrations that function as general reference values.

Surface water samples will be collected when water is present during the environmental sampling mine visit except in the case of ephemeral water bodies formed due to recent precipitation that are likely to persist for less than approximately 2 weeks. The analytical results will not be considered in evaluating site risks as they are considered a single snapshot in time and thus insufficient to establish reliable screening values. The presence of water, where observed, will be incorporated into the risk scoring assessment, and the water quality data will be provided in the V&V reports.

A3.0 Identify Inputs to the Decision

The RSLs (BLM 2017) and RMLs (BLM 2019) conservatively assume an exposure duration of 14 days per year for 26 years. However, RSLs assume an equivalent hazard quotient of 1 for noncarcinogens and a threshold of 10^{-6} for carcinogens. RMLs, which were calculated using EPA’s RML calculator (EPA 2019), assume an equivalent hazard quotient of 3 for noncarcinogens and a threshold of 10^{-4} for carcinogens. The radium-226 results from waste rock samples are compared to benchmarks described in Brown (2017). The lower two benchmarks assume the same recreational-use scenario for a 2-week per year exposure, while the highest benchmark assumes a 1-week per year exposure. In addition, for gamma radiation exposures, Brown (2018) determined benchmarks based on the standards of 100 mrem/yr and 25 mrem/yr
(established by the U.S. Nuclear Regulatory Commission and DOE, respectively) for members of the public. Because the majority of mines are on federally managed public land, the most likely exposure would be through recreational use. The DRUM Program implements a screening level evaluation using very conservative exposure assumptions and the benchmarks delineated by BLM (2017; 2019) and Brown (2018). When a benchmark is exceeded, an additional, more qualitative evaluation is completed to determine the probability that risks to a recreational user could occur based on factors such as ease of access and suitability for camping.

A4.0 Inputs to Measurement Data

The following measurements and samples will be used to address potential impacts on human health at DRUM Program mines:

- Gamma radiation measurements with field instruments
- Soil sampling for laboratory analysis of EPA Target Analyte List metals, uranium, and radionuclides from waste rock piles or other significant features
- Dose measurements with field instruments

Sample collection and analytical protocols are identified in the LMS Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351) as well as in Section 5.0 and Appendixes C, D, and H of this V&V Work Plan. Instrument calibration practices are described in individual procedures included as attachments to this document. Sample and analytical QC practices are identified in the DRUM QAPP.

A5.0 Define the Study Boundaries

In this document, the word “mine” refers to a mine in the DRUM Program from which AEC recorded purchases of uranium ore for defense-related purposes. Production history is generally limited to the period of 1947 to 1970, when uranium ore was sold to AEC (DOE 2014a). LM defines a mine as a feature or complex that is generally associated with a patented or unpatented mining claim (established under the General Mining Law of 1872, as amended) or a lease of federal, state, or tribal lands (DOE 2014b). A mine may be a feature such as a surface or underground excavation, or it may comprise an area containing a complex of multiple, interrelated excavations. Associated mining-related features typically include adits and portals, surface pits and trenches, highwalls, overburden piles, mine waste rock piles, structures, shafts for ventilation or other purposes, stockpile pads, mine-water retention basins or treatment ponds, close-spaced development drill holes, historical trash, and debris piles.

The study boundary of each mine will include the area disturbed by mining operations on the ground’s surface and areas outside the disturbed area where gamma radiation readings greater than 64 μR/hr (sediment shed areas) are measured. Background samples will be taken beyond these boundaries in areas with similar geological, geophysical, and ecological features.
A6.0 Develop a Decision Rule

A decision rule involves developing prioritization methods using two basic measures: (1) assessing the concentrations of the contaminants present at each mine (radionuclides and metals) and (2) assessing the potential and extent to which these contaminants would impact human health. Table 1 in the V&V Work Plan presents a list of the constituents of interest, associated screening levels, and laboratory detection limits. Concentrations or dose measurements in excess of these standards will be used in a multiple lines of evidence approach to assess potential human health risks.

A7.0 Data Collection Design, Planning, and Acceptance Criteria

A data collection design specifies the type, number, location, and physical quantity of samples and data, as well as the QA and QC activities that will ensure that sampling design and measurement errors are managed sufficiently to meet the performance criteria specified in the DQOs.

The DRUM Program DQO process achieves a sound and defensible data collection design using the following elements:

- Implementing the attached sampling procedures and radiological scanning protocols
- Adhering to the processes and procedures in this V&V Work Plan and the QAPP

The DRUM Program will generate the quality of data necessary to meet the performance criteria required for the risk scoring assessment by using an adequate quantity of sampling points. Table C1 of Appendix C describes how the DRUM Program has defined the quantity of samples necessary in particular cases. Appendix C is further organized around the other sampling objectives in order to guide the quantity and location of sampling efforts. Various levels of QA and QC are included in the DRUM Program (e.g., LMS internal procedures and the DRUM-specific QAPP are additional controls which address data uncertainty and variability and the application of periodic assessments and reviews). Lastly, additional QA and QC steps are noted in the V&V Work Plan as applicable.
Appendix B

U.S. Bureau of Land Management and Office of Legacy Management Technical Memoranda
Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites

September 2017 Update: Table 1 has been updated to reflect EPA’s latest Regional Screening Level summary table values and toxicity updates (June 2017). The only metal whose screening levels changed from the previous version of this memorandum is uranium, which decreased an order of magnitude due to a new oral toxicity value recommended by EPA.

Introduction: The screening of chemicals present at a site constitutes the first phase of the assessment of human health and environmental risk. This paper discusses strategies and considerations for conducting a screening assessment, and describes a “multiple lines of evidence” approach to support site decision making.

At most BLM HazMat/AML sites, inorganics (metals and metalloids) are the primary concern, but many of the approaches in this document also applies to organic compounds. A screening level assessment typically consists of a comparison of site data with a risk-based concentration to evaluate whether a release has occurred and to get an initial understanding of the potential risks. Screening levels (SLs) are concentrations of chemicals in soil intended to be protective of human health and/or the environment under a defined exposure setting. SLs can be developed for all media, but are most commonly used at sites with soil contamination (or tailings). By their nature SLs are conservative (i.e., health protective) since they are acting in lieu of information gathered during a more detailed site investigation. Considerations for the development of SLs should include land use and habitat at the site, the presence and activities of human and ecological receptors, possible contaminant migration, and naturally occurring background concentrations. As a general rule, SLs are generic and do not take into account site-specific issues.

SLs are often used in the early phases of an environmental investigation program when only minimal data is available – for example, during the Preliminary Assessment and Site Inspection (PA/SI) phase. Data collected during more comprehensive site assessments, such as an Environmental Evaluation and Cost Analysis (EE/CA) or Remedial Investigation and Feasibility Study (RI/FS), may also be compared with SLs as part of a site-specific risk assessment. The data considered in a PA/SI screening assessment should include samples collected from site locations considered to be the most contaminated. The maximum detected chemical concentrations (max detects) may then be compared with SLs to get an initial understanding of the degree of potential risk present at the site. The approach of comparing max detects with conservative SLs tends to provide a worst-case portrait of potential risk. This worst-case evaluation tends to overestimate true risks and should be interpreted cautiously and in conjunction with the other site factors discussed in this memo.
Screening Basics: There are a number of assumptions inherent in SLs that need to be considered before conducting a site screening. In brief, the specific populations and receptors of interest, the primary pathways, and chemical toxicity all affect the appropriateness of an SL. For example, human health SLs can be developed for residents, workers, or recreational visitors, and may consider either cancer or noncancer endpoints. Alternatively, ecological SLs may be developed for soil dwelling organisms (e.g., invertebrates, small mammals), vegetation, birds, or herbivores. In general, SLs tend to be most appropriate for long-term, chronic exposure scenarios. In many cases at BLM sites, human exposures tend to be more occasional and short-term (e.g., a recreational hiker). Casual use of SLs should not replace an understanding of site setting and the development of a conceptual site model (CSM) that links chemical sources to potentially exposed receptors.

The results of a risk-based screening are typically presented as the ratio of the site concentration of a specific chemical to its respective health-protective screening value. This may be referred to as a numerical or quantitative screen. When the ratio (the “hazard quotient”, or HQ, in risk assessment terms) exceeds one (1), that chemical is considered to pose a potential risk and should be evaluated further. If the max detect for a chemical is below its SL, it is often concluded that this chemical does not pose a risk and may be dropped from future consideration. Examples of widely used screening levels for chemicals in soil are presented in Table 1.

Screening can be made on a chemical-by-chemical as well as a media-specific basis. Most commonly, the max detect of a specific chemical is compared against a screening value for that same chemical. If the max detect is less than the SL, often it is concluded the chemical doesn’t pose a risk and is not considered further. If the max detect for all chemicals are below their respective SLs, it is often concluded that the site soil doesn’t pose a significant risk. Chemicals that exceed their respective SLs are termed “chemicals of potential concern” (COPCs) and it is generally considered that further action (i.e., more comprehensive investigation) is needed. If exceedances are substantial and the CSM suggests the exposures are ongoing, an emergency or time-critical removal action may be appropriate. More typically, however, additional data is collected to further evaluate how extensive the contamination and potential risk is before any remedial action is taken. It should be kept in mind that mine tailings and waste rock are not soil, although they are commonly evaluated as such in screening level assessments. Their physical and chemical attributes are different than actual soil, which may affect some risk assessment assumptions (e.g., bioavailability, which represents the amount of chemical actually absorbed into the bloodstream). The ecological habitat provided by tailings and waste rock may be of minimal value, since tailings are mostly devoid of nutrients and organic matter. As a general rule, it is not recommended that ecological SLs developed for soil be applied to tailings and waste.

Although screening level assessments are commonly mentioned in regulatory documents, there is not much available in the way of formal guidance. EPA’s PA/SI, EE/CA, and RI/FS and Risk Assessment Guidance for Superfund (RAGS) should be reviewed if additional information is needed. In addition, some states have SLs available as guidance or written into regulation.
Background Concentrations: Screening against naturally occurring background concentrations is an important step at most AML sites. Background concentrations can vary significantly between locations, particularly in mineralized zones where mining is typically done. A background screen provides a different perspective from a risk-based screen; depending on the site setting and the chemical, the background concentration can be higher or lower than a risk-based screening value. Typically both a risk-based and a background screening comparison are conducted to determine which chemicals pose a potential risk above and beyond naturally occurring concentrations. A site may exceed risk-based SLs yet be below background levels; this should be taken into consideration when evaluating a screening assessment.

Table 2 presents a summary of representative background concentrations of naturally occurring metals in soil throughout the western US. These concentrations may not describe mineralized zones, however, and should only be used if site-specific values are not available. The data in Table 2 are provided as a general reference but are not meant to replace site-specific values. Background values are best used in combination with SLs to evaluate whether a release of hazardous substances has occurred at the site.

Using Screening Results: Screening level evaluations should be interpreted cautiously when making site management decisions. Screening assessments are usually based on limited site data; making informed decisions often requires that additional data be collected to better define the problem. It can be tempting to conduct a “quick and dirty” comparison of some data and conclude that the site does or doesn’t pose an unacceptable risk. It should be noted that a screening level evaluation is only as useful as the site data (e.g., has a sample [or samples] been collected from the area of expected highest concentration?) and the appropriateness of the SL (e.g., a human health SL doesn’t inform as to ecological risk). Screening levels are NOT default cleanup levels, and site decisions should not be based solely on exceedances of these levels.

The proper way to interpret a screening level assessment is by combining an understanding of possible human health risk, ecological habitat and exposure potential, site characteristics, contaminant migration potential, and background levels. An important initial step is developing a CSM, usually represented as a diagram that links contaminant source areas to human and ecological receptors via exposure and transport pathways (Figure 1).

Human Health Screening

The most widely used human health screening values are the Regional Screening Level (RSLs) developed by the US EPA for residential and industrial populations (http://www.epa.gov/region9/superfund/prg/). These values are very conservative (e.g., overly protective) for most BLM sites, since they assume more frequent and routine site exposure than typically occurs on BLM land. For example, the residential RSLs assume exposure to site soil for 350 days/year for 26 years and the industrial RSLs assume worker exposure for 225 days/year for 25 years. Although highly conservative for most BLM sites, EPA’s RSLs can be useful in gaining an initial understanding of the magnitude of potential risk and at sites where off-site residents live in immediate proximity of the contamination. In addition to soil, EPA has developed RSLs for air, tapwater, and protection of groundwater. Some state health agencies
have also developed screening levels, but like EPA they only address residents and workers. EPA SLs for residential and industrial exposure are shown in Table 1.

Recreational visitors are the most common group of human receptors on BLM land. This is a broad category that can cover a range of possible activities, including camping, hiking, hunting, biking, ATV riding, horseback riding, etc., all with somewhat different exposure profiles. An example CSM for recreational visitor land use is shown in Figure 1. Most BLM land has no formal use or access restrictions, so conservative, yet realistic, assumptions must be made regarding the frequency of recreational use. BLM has developed a set of recreational SLs for metals most commonly found at AML sites. BLM’s recreational SLs (Table 1) take into account the limited exposures associated with most recreational activities. The yearly recreational exposure frequency is assumed to be 14 days/year, based on the assumption that individuals are unlikely to spend more time at an individual site on an annual basis. The exposure duration assumed for recreational visitors, 26 years, is the default exposure duration recommended by EPA for residents. It has been assumed that two years of the exposure occur as a child and 24 years as an adult; appropriate exposure parameters have been included in the calculations to account for these integrated age groups. The recreational RSLs were calculated using EPA’s online screening level calculator. BLM will update the values in Table 1 periodically based on EPA’s updates of toxicity values and exposure assumptions.

Ecological Screening

Terrestrial Receptors: A numerical ecological screening evaluation is not typically done in the initial phase of an environmental investigation. It is important to first identify habitat types present, possible receptors, and whether threatened or endangered (T&E) species may be present. This can be done through an investigation of site history and a literature search, and should be incorporated into the CSM. At most BLM mine sites, the ecological screening step will be more dependent on various qualitative endpoints, such as habitat, availability of food and shelter, and general ecological “attractiveness” of the site (such as proximity to waterways). Many BLM AML sites consist of tailings or waste rock piles, and provide little or no functional habitat to ecological receptors.

Ecological SLs for chemicals in soil for different receptors are available from EPA, US Fish and Wildlife, and other groups. These levels have many assumptions built into them, and should be considered only when the initial qualitative screening step indicates that that may be potentially significant exposures to sensitive receptors at the site. EPA ecological risk guidance notes a difference between potential impacts to individual organisms and population groups. An ecological screen at BLM mine sites needs to consider how widespread the site effects may be; impacts to receptors (real or calculated) assumed to be directly exposed to the site need to be considered in light of impacts to the local or regional population. In broad terms, common receptors are protected at the population level, while T&E species are protected at the individual organism level.

Conducting a quantitative ecological risk assessment (e.g., a “baseline” risk assessment) remains an option, should the screening step raise concerns over possible ecological risk. The ecological protective levels mentioned previously would be considered as part of a site-specific...
risk assessment. This level of detail is only needed at a relatively small proportion of BLM HazMat/AML sites.

Aquatic Receptors: Some BLM mine sites directly impact aquatic habitat by draining into nearby wetlands, streams, or rivers. Tailings may have been dumped directly into waterways, may be slowing migrating over time, or acid mine drainage may be coming from an adit. Both contaminated surface water and sediments can adversely affect aquatic receptors, which are sensitive to the toxic effects of some metals. Sites that impact wetlands and waterways are generally of greater concern, due to potential widespread impact and the high toxicity of many metals to aquatic life.

Not all waterways run year round; many of the smaller streams near mine sites on BLM lands in the Western US are ephemeral in nature and are dry part of the year. This obviously limits the types of receptors that may be present. The CSM should determine whether aquatic or wetlands species need to be considered. Depending on the flow volume and regularity, ambient water quality criteria (AWQC) may be identified as “applicable or relevant and appropriate requirements”, or ARARs.

Developing a “Multiple Lines of Evidence” Discussion for a Screening Assessment

A screening assessment should not be considered as a single step, rather it should assemble multiple lines of evidence that provide a more complete picture of contamination and risk at a site. Although every site has its unique characteristics, typically a screening analysis should consider the following factors as part of a multiple lines of evidence evaluation.

- Site characteristics: Location, proximity and access issues, historical activities
- Attractive nuisances: holes and adits, old equipment
- Contamination: distribution, concentration, types of chemicals, speciation
- Human health: signs of use, types of likely or possible use, numerical screening results
- Ecological: habitat types, presence of water, size of site, receptors, T&E species
- Groundwater and surface water: hydraulic connections, transport, leachability
- Background concentrations: mineralized zone vs. standard locations
- Offsite migration potential:

Figure 2 shows a schematic representation of how multiple lines of evidence may be combined to support decision making. It is not a fixed process with mandatory inputs; rather it is a flexible approach that combines a variety of relevant site information into an overall matrix that can provide the basis for informed decision making. The weighting of each line of evidence will vary depending on the quality and importance of the data. As the lines of evidence are developed, there are opportunities to collect additional information as project uncertainties are identified.

Taken collectively, the overall weight of evidence should allow the project manager to conclude whether the site is not likely to pose any risk or whether potential risk is present and the site should be evaluated further. The lines of evidence and their findings should be presented in the PA/SI (or other document) and used to support the overall conclusions of the investigation and help chart the path forward.
After the Screening Assessment

Screening assessments are most commonly used to evaluate sites and determine if they clearly pose minimal or no risk, may pose a potential risk, and those that clearly exceed acceptable risk levels. Future site activities may be developed based on the findings of the screening assessments. Sites with minimal risk may be candidates for a “no further action” determination; sites with potential risk may require a modest amount of additional information be collected to support decision making; and sites with high risk may be candidates for an EE/CA, an RI/FS, or more extensive intervention.

Initial site COPCs are typically identified in the screening assessment and may require further consideration. The lines of evidence discussion will help identify areas of uncertainty and data gaps that need to be addressed. Finally, screening levels may be useful as preliminary remediation goals, but should not automatically be considered as default cleanup values.

For additional information on screening assessments and risk assessments, please contact Doug Cox at the National Operations Center at dcox@blm.gov or 303-236-9451.
Table 1
Human Health Screening Levels (SLs) for Chemicals in Soil At BLM HazMat/AML Sites (mg/kg)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>BLM Recreational SL</th>
<th>EPA Residential SL</th>
<th>EPA Industrial SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (Al)</td>
<td>>1,000,000</td>
<td>77,000</td>
<td>>1,000,000</td>
</tr>
<tr>
<td>Antimony (Sb)</td>
<td>782</td>
<td>31</td>
<td>470</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>30.6</td>
<td>0.68</td>
<td>3</td>
</tr>
<tr>
<td>Barium (Ba)</td>
<td>390,000</td>
<td>15,000</td>
<td>220,000</td>
</tr>
<tr>
<td>Beryllium (Be)</td>
<td>3,910</td>
<td>160</td>
<td>2,300</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>1,780</td>
<td>71</td>
<td>980</td>
</tr>
<tr>
<td>Chromium (III) (Cr)</td>
<td>>1,000,000</td>
<td>120,000</td>
<td>>1,000,000</td>
</tr>
<tr>
<td>Cobalt (Co)</td>
<td>586</td>
<td>23</td>
<td>350</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>78,200</td>
<td>3,100</td>
<td>47,000</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>>1,000,000</td>
<td>55,000</td>
<td>820,000</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>800<sup>a</sup></td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>46,700</td>
<td>1,800</td>
<td>26,000</td>
</tr>
<tr>
<td>Mercury (elemental) (Hg)<sup>b</sup></td>
<td>271</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>9,780</td>
<td>390</td>
<td>5,800</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>39,000</td>
<td>1,500</td>
<td>22,000</td>
</tr>
<tr>
<td>Selenium (Se)</td>
<td>9,780</td>
<td>390</td>
<td>5,800</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>9,780</td>
<td>390</td>
<td>5,800</td>
</tr>
<tr>
<td>Thallium (Tl)</td>
<td>19.6</td>
<td>0.78</td>
<td>12</td>
</tr>
<tr>
<td>Uranium (U)<sup>c</sup></td>
<td>391</td>
<td>16</td>
<td>230</td>
</tr>
<tr>
<td>Vanadium (V)</td>
<td>9,850</td>
<td>390</td>
<td>5,800</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>587,000</td>
<td>23,000</td>
<td>350,000</td>
</tr>
</tbody>
</table>

Primary Exposure Assumptions
- 14 days/year, 26 years, adult/child
- 350 days/year, 26 years, adult/child
- 225 days/year, 25 years, adult

^aThe recreational SL for lead is based on EPA’s industrial SL, which assumes regular and chronic exposure to soil, although not as frequently or extensively as the residential SL.

^bMercury is the only metal on the list whose SL is based on the inhalation pathway. EPA made some minor changes in their volatilization modeling in 2015 and the SL increased slightly. SLs for all populations may exceed the soil saturation concentration (Csat), an estimate of the concentration at which the soil pore water, pore air, and surface sorption sites are saturated. Above this theoretical threshold concentration, mercury may be present in free-phase within the soil matrix.

^cUranium screening values updated per changes in EPA’s oral toxicity value.
Table 2
Representative Background Concentrations of Metals in Soils of the Western US (mg/kg)\(^a\)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Typical (Average)</th>
<th>High End (Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (Al)</td>
<td>5,800</td>
<td>100,000</td>
</tr>
<tr>
<td>Antimony (Sb)</td>
<td>0.62</td>
<td>2.6</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>7</td>
<td>97</td>
</tr>
<tr>
<td>Barium (Ba)</td>
<td>670</td>
<td>5,000</td>
</tr>
<tr>
<td>Beryllium (Be)</td>
<td>0.97</td>
<td>15</td>
</tr>
<tr>
<td>Cadmium (Ca)</td>
<td>< 1.0</td>
<td>11</td>
</tr>
<tr>
<td>Chromium (III) (Cr)</td>
<td>56</td>
<td>2000</td>
</tr>
<tr>
<td>Cobalt (Co)</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>27</td>
<td>300</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>26,000</td>
<td>> 100,000</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>20</td>
<td>700</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>480</td>
<td>5,000</td>
</tr>
<tr>
<td>Mercury (Hg) (elemental)</td>
<td>0.065</td>
<td>4.6</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>1.1</td>
<td>7</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>19</td>
<td>700</td>
</tr>
<tr>
<td>Selenium (Se)</td>
<td>0.34</td>
<td>4.3</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Thallium (Tl)</td>
<td>9.8</td>
<td>31</td>
</tr>
<tr>
<td>Uranium (U)</td>
<td>2.7</td>
<td>7.9</td>
</tr>
<tr>
<td>Vanadium (V)</td>
<td>88</td>
<td>500</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>65</td>
<td>2,100</td>
</tr>
</tbody>
</table>

\(^a\) Values are indicative of the range of naturally occurring soil concentrations in the western United States. Variations can occur from site to site. Concentrations in local mineralized zones may not be included.

Figure 1
Example of a Human Health Conceptual Site Model (CSM)
Figure 2
Using Multiple Lines of Evidence to Support a Screening Assessment

- Offsite Migration Potential
- Site Characteristics
- Attractive Nuisances
- Contamination Profile
- Human Health
- Ecological Impacts
- Background Concentrations
- Groundwater and Surface Water
Establishing Radiological Screening Levels
for Defense-Related Uranium Mines Sites on BLM Land
Using a Recreational Future Use Scenario

Prepared for Navarro Research and Engineering, Inc.
Grand Junction, CO
Final July 27, 2017

Prepared by
Steven H Brown, CHP
SHB Inc. Centennial, CO
Establishing Radiological Screening Levels for Defense-Related Uranium Mines on BLM Land Using a Recreational Future Use Scenario

Table of Contents

1.0 Background and Discussion 3
2.0 External Exposure 4
3.0 Casual Ingestion of Soil 5
4.0 Inhalation of Dusts 6
 4.1 Determining DCFs for Inhalation of Uranium Ore Dusts 6
 4.2 Calculation of CEDE for incidental Inhalation 8
5.0 Inhalation of Dusts During Use of Off-Highway Vehicles 8
6.0 Inhalation of ^{222}Rn and Progeny 9
 6.1 Background Discussion on the Emission and Dosimetric Implications of Radon and Progeny 9
 6.2 Calculating ^{222}Rn Dose for the Recreational Exposure Scenario 12
7.0 Screening Levels 13
 7.1 Calculating the TEDE to the Recreational Visitor 13
 7.2 Establishing Screening Levels 13
8.0 References 14

Tables and Figures

Table 1: Ingestion Dose Conversion Factors 5
Table 2: Inhalation Dose Conversion Factors for Uranium Ore Dust 7
Figure 1: Radon Concentrations in Vicinity of Tailings 11

Attachment 1: Concept Paper – Suggested General Approach for Developing “Screening Levels” for DRUM Sites on BLM Land Based on External Exposure Rates 17
Establishing Radiological Screening Levels for Defense-Related Uranium Mines Sites on BLM Land Using a Recreational Future Use Scenario

1.0 Background and Discussion

In Brown 2016a, a suggested general approach and associated technical basis was described for establishing “screening levels” for Defense-Related Uranium Mines (DRUM) sites on U.S. Bureau of Land Management (BLM) land based on relatively easy-to-measure average external (gamma) radiation exposure rates. This is provided as Attachment 1. One general form to using screening levels, as presented in Attachment 1, is as follows:

- \(\leq \) Background (BKG) = No action
- Between BKG and \(X \) times BKG = Further evaluation (e.g., perform refined calculations, make some additional measurements, collect some samples for verification)
- \(\geq X \) times BKG = More comprehensive site assessment and survey may be necessary

The future use scenario that was defined and is considered in further detail here is recreational, in which a camper spends 2 weeks/year at the site. It is assumed that the majority of DRUM locations are rural, relatively arid sites in the Southwestern United States (e.g., states of Colorado, Utah, Arizona, Wyoming, and New Mexico), which limits to some degree the credible pathways of exposure that need to be considered. The characteristics of the recreational scenario proposed and references supporting its assumptions were originally provided in Table 1 of Attachment 1. Similarly, the choice of relevant exposure pathways for this scenario and associated supporting references and assumptions were provided in Table 2 of Attachment 1.

The basic approach to define the screening levels (external exposure rates) involves establishing an exposure rate for each pathway (including both external and internal exposure as applicable) based on a unit concentration of radionuclides in soil. Since the contaminant of concern at DRUM sites is naturally occurring radioactive material (NORM) as uranium ores (mixed with waste rock), it is reasonable to assume that the uranium is in equilibrium with all progeny in the \(^{238}\text{U} \) decay chain (including \(^{226}\text{Ra} \), for example). Accordingly, it is relatively straightforward to do this and the justification of the assumptions, and the results of this “calculation” are the subject of this paper.

A concentration of \(^{238}\text{U} \) and all other radionuclides in the uranium decay series in soil is established as 1 pCi/g. The exposures over 2 weeks for each of the relevant exposure pathways are then calculated based on this soil concentration. The applicable pathways are:

1. External exposure from the soil (i.e., ground shine, which often will be the dominant pathway for natural uranium sites if there is not a “residential” indoor radon/progeny pathway)
2. Casual ingestion of soil
3. Inhalation of dusts
4. Special case of dust inhalation for an off-highway vehicle (OHV) rider
5. Inhalation of radon gas and particulate progeny

The total effective dose equivalent (TEDE) is the sum of the dose equivalents from each pathway:

\[T = E_x + S_{ing} + l_d + l_{ohv} + l_{Rn} \]

Where:

\(T \) = TEDE for a 14-day recreational exposure scenario per pCi/g of each of the \(^{238}\text{U}\) plus \(^{235}\text{U}\) series radionuclides in soil

\(E_x \) = Dose equivalent (DE) from external exposure from the soil

\(S_{ing} \) = Committed effective dose equivalent (CEDE) from casual ingestion of soil

\(l_d \) = CEDE from inhalation of dusts

\(l_{ohv} \) = CEDE from inhalation of dusts during use of OHVs

\(l_{Rn} \) = CEDE from inhalation of \(^{222}\text{Rn}\) and progeny

The use of the 2 weeks/year recreational camper scenario with the associated pathways listed above is consistent with what was assumed in USDOE 2014 (with exception of the OHV rider). For reasons presented in Table 1 of Attachment 1 (Brown 2016a), we assume that other common recreational activities often considered in these analyses (i.e., fishing for food, hunting for food, eating forage vegetation, water ingestion) are not relevant for these semiarid, relatively remote DRUM sites.

It is recognized that hunting for food (both small and large game animals) is a common activity in some areas of the Uravan mineral belt of the Southwest. However, although the recreational user may hunt and/or fish and eat the “catch”, lack of sufficient forage vegetation at these semi-arid sites, particularly on or in the immediate vicinity of waste (ore) rock and spoils areas, would suggest the animals are migratory and would not have spent their lives subsisting in the “contaminated zone”.

Once the “2-week dose” for each of the relevant exposure pathways per unit concentration in soil is calculated, they are summed to determine the TEDE. Using an appropriate and acceptable annual public dose exposure limit (choice to be determined by the U.S. Department of Energy (DOE), see Section 7.2) we can then establish the associated external exposure rate as well as the associated equilibrium soil concentration that assures the exposure for 2 weeks/year will be less than the selected “exposure limit.”
2.0 External Exposure (E_x)

Table 5.1 of NCRP Report No. 94 (NCRP 1987) indicates that the absorbed dose rate in air from 1 pCi/g in soil of “U-238 + daughters” is 139 µGy/year (microgray/year). Using the methodology described therein for converting between absorbed dose rates and exposure rates in air results in an exposure rate of 1.8 µR/hr. Accordingly, the total external exposure associated with 1 pCi/g for each of the uranium series radionuclides in soil during the 2-week period is simply:

$$E_x = (14 \text{ days}) \times (24 \text{ hr/day}) \times (1.8 \mu R/hr) = 605 \mu R = 0.60 \text{ mrem per pCi/g}.$$

3.0 Casual Ingestion of Soil (S_{inj})

From USDOE 2014 Table 4, 100 mg/day is used as the soil ingestion rate for a recreational visitor. The footnote associated with this value states:

Value recommended by EPA (1989) for adults in residential settings. The recommended value for adults in occupational setting is 50 mg/day (EPA 1991). However, assuming reclamation activities would result in more contact with soils, the ingestion rate that was assumed for residents was used for reclamation workers as well. For recreational visitors, using the same ingestion rate provides a more conservative estimate of the potential risk.

Accordingly, using the more conservative value, 100 mg/day × 14 days = 1.4 g soil ingestion over a 2-week period\(^{(1)}\).

A dose conversion factor (DCF) (e.g., DCF = Sv per Bq ingested) for the aggregate of radionuclides contained in uranium ore at equilibrium could not be found as such in the literature. Accordingly, an “aggregate DCF” is calculated in Table 1 using the most important (“highest”) specific DCFs for radionuclides in the decay chains for natural uranium. Where multiple solubility class/absorption type DCFs are provided for a nuclide, the value for the least soluble species is used (longest residence time/larger DCF). The radionuclides from the actinide (^{235}U) decay series have been ignored since the ratio of ^{235}U activity to ^{238}U activity in uranium ore dust is the natural abundance ratio of 0.046 to 1 and contributions to the aggregate ingestion DCF would be quite small. Some radionuclides in the ^{238}U decay series have been ignored since their DCFs are < 10^{-9} Sv/Bq and would have no material impact on the result.

TABLE 1: Ingestion Dose Conversion Factors (DCFs in Sv/Bq intake)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>DCF from USEPA 1988</th>
<th>DCF from ICRP No. 68 (1994a) and/or ICRP No. 78 (1997)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U</td>
<td>6.9×10^{-8}</td>
<td>4.4×10^{-8}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>7.2×10^{-9}</td>
<td>4.6×10^{-8}</td>
</tr>
<tr>
<td>^{234}U</td>
<td>7.6×10^{-8}</td>
<td>4.9×10^{-8}</td>
</tr>
<tr>
<td>^{234}Th</td>
<td>3.7×10^{-9}</td>
<td>3.4×10^{-9}</td>
</tr>
<tr>
<td>^{230}Th</td>
<td>1.5×10^{-7}</td>
<td>2.1×10^{-7}</td>
</tr>
<tr>
<td>Radionuclide</td>
<td>DCF (10^-6)</td>
<td>CEDE (10^-6)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>226Ra</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>210Po</td>
<td>5.1</td>
<td>2.4</td>
</tr>
<tr>
<td>210Pb</td>
<td>1.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Aggregate DCF</td>
<td>2.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

1 USEPA 2000 and 2007 use the value of 120 mg/day as a “general population tendency.” Specifically regarding soil ingestion by children, USEPA 2011a recommends using a value of 50 mg/day for ages 1–21 with an “upper percentile value” for children of 200 mg/day. It is also noted that a behavior referred to as “pica” is mentioned in the literature in which a young child ingests several grams of soil in a single event. However, this is an “extreme” circumstance and not considered sustainable over multiple days without possible medical implications and is therefore ignored here.

The values from ICRP Publication 68 and 78 are based on much more recent metabolic data and models than the values in USEPA 1988 (by about 25 years), although it is noted that the FGR No. 11 (USEPA 1988) aggregate DCF is about 60% higher. Nonetheless, the aggregate DCF calculated from individual radionuclide values in USEPA 1988 are used here in the interest of conservatism and given that the contribution of the soil ingestion pathway to the TEDE of the sum of all relevant pathways is small (see Section 7.1).

Accordingly, the CEDE for incidental soil ingestion over a 14-day period is calculated:

$$I_{ing} = (2.6 \times 10^{-6} \text{ Sv/Bq}) \times (10^5 \text{ mrem/Sv}) \times (1/28 \text{ Bq/pCi}) \times (1.4 \text{ g}) \times (1 \text{ pCi/g}) = 0.012 \text{ mrem per pCi/g}$$

4.0 Inhalation of Dusts (I_d)

The dose per unit concentration (e.g., per pCi/g 238U in the soil) is calculated as follows:

$$I_d = DCF_{Uore}(1/PEF)C BR T$$

Where:

- I_d = CEDE from inhalation of uranium ore in dusts per unit concentration in soil (in mrem)
- DCF_{Uore} = CEDE from inhalation for all nuclides in 238U and 235U decay series per unit intake (mrem/pCi of each nuclide in equilibrium) via inhalation of dust containing uranium ore
- PEF = Particulate emission factor from USEPA 2007, Section 3.3.3 = $1.32 \times 10^9 \text{ m}^3/\text{kg}$
- C = Concentration of 238U and each progeny in dust = 1 pCi/g
- BR = Breathing (inhalation) rate from USEPA 2007, Section 3.3.3 = 20 m3/day
- T = Time of exposure = 14 days

4.1 Determining DCF_{Uore} for Inhalation of Uranium Ore Dusts

Assumptions:

- Dust that is inhaled is from uranium-bearing ore only and contribution from the natural thorium...
(233Th) series is negligible and consistent with general background of 232-Th.

- The ore dust inhaled is in full radioactive equilibrium.
- The ratio of 235U activity to 238U activity in uranium ore dust is the natural abundance ratio (0.046).
- The particle size distribution of the dust inhaled is represented by the standard default activity mean aerodynamic diameter (AMAD) of 5 μm.
- The chemical form of each radionuclide in the dust inhaled is that corresponding to the slowest lung absorption type specified in ICRP Publications 68 and 78 (i.e., Clearance Type M or S [Moderate or Slow]); this maximizes residence time in the lung and, therefore, the dose).

Table A-1 of IAEA 2004 presents the quantities (activities) of radionuclides inhaled and the corresponding committed effective doses in mSv for the inhalation of ore dust containing 1 Bq of 238U. This is reproduced here as Table 2. The doses are calculated using the dose coefficients listed in IAEA 1996. Using the values of total alpha activity and total committed effective dose calculated in Table 2, the committed effective dose per unit intake of alpha activity\(^{(2)}\) = 0.0035 mSv/Bq.

TABLE 2: Inhalation Dose Conversion Factors for Uranium Ore Dust (Per Bq/g of 238U at Equilibrium)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Type</th>
<th>Type of Emitter</th>
<th>Specific Activity (Bq/g)</th>
<th>Effective dose (5 uM AMAD) (Sv/Bq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>URANIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium-238</td>
<td>S</td>
<td>α</td>
<td>5.7E-06</td>
<td>0.005</td>
</tr>
<tr>
<td>Thorium-234</td>
<td>S</td>
<td>α</td>
<td>5.0E-09</td>
<td>0.005</td>
</tr>
<tr>
<td>Protactinium-234</td>
<td>β</td>
<td></td>
<td>0.0E+00</td>
<td>0.005</td>
</tr>
<tr>
<td>Uranium-234m</td>
<td>S</td>
<td>α</td>
<td>6.8E-08</td>
<td>0.005</td>
</tr>
<tr>
<td>Thorium-230</td>
<td>S</td>
<td>α</td>
<td>7.2E-06</td>
<td>0.005</td>
</tr>
<tr>
<td>Radium-226</td>
<td>M</td>
<td>α</td>
<td>2.2E-00</td>
<td>0.005</td>
</tr>
<tr>
<td>Radium-222</td>
<td>α</td>
<td></td>
<td>0.0E+00</td>
<td>0.005</td>
</tr>
<tr>
<td>Polonium-219</td>
<td>α</td>
<td></td>
<td>0.0E+00</td>
<td>0.005</td>
</tr>
<tr>
<td>Lead-214</td>
<td>F</td>
<td>β</td>
<td>4.8E-09</td>
<td>0.005</td>
</tr>
<tr>
<td>Bismuth-214</td>
<td>M</td>
<td>β</td>
<td>2.1E-08</td>
<td>0.005</td>
</tr>
<tr>
<td>Polonium-210</td>
<td>M</td>
<td>α</td>
<td>2.2E-06</td>
<td>0.005</td>
</tr>
<tr>
<td>ACTINIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium-235</td>
<td>S</td>
<td>α</td>
<td>0.1E-05</td>
<td>0.048</td>
</tr>
<tr>
<td>Thorium-231</td>
<td>S</td>
<td>β</td>
<td>4.0E-10</td>
<td>0.048</td>
</tr>
<tr>
<td>Protactinium-231</td>
<td>S</td>
<td>α</td>
<td>1.7E-05</td>
<td>0.048</td>
</tr>
<tr>
<td>Actinium-227</td>
<td>S</td>
<td>β</td>
<td>4.7E-05</td>
<td>0.048</td>
</tr>
<tr>
<td>Thorium-227</td>
<td>S</td>
<td>α</td>
<td>7.0E-00</td>
<td>0.048</td>
</tr>
<tr>
<td>Radium-223</td>
<td>M</td>
<td>α</td>
<td>5.7E-05</td>
<td>0.048</td>
</tr>
<tr>
<td>Radon-219</td>
<td>α</td>
<td></td>
<td>0.0E+00</td>
<td>0.048</td>
</tr>
<tr>
<td>Polonium-215</td>
<td>α</td>
<td></td>
<td>0.0E+00</td>
<td>0.048</td>
</tr>
<tr>
<td>Lead-211</td>
<td>F</td>
<td>β</td>
<td>5.0E-09</td>
<td>0.048</td>
</tr>
<tr>
<td>Bismuth-211</td>
<td>α</td>
<td></td>
<td>0.0E+00</td>
<td>0.048</td>
</tr>
<tr>
<td>Thallium-207</td>
<td>β</td>
<td></td>
<td>0.0E+00</td>
<td>0.048</td>
</tr>
<tr>
<td>Gross alpha activity concentration (aBq/g)</td>
<td>8.322</td>
<td>2.9E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted dose conversion coefficient (alpha only) (mSv/Bq)</td>
<td>0.00350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted dose conversion coefficient (alpha only) (Sv/Bq)</td>
<td>3.500E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(2)}\) Contribution from beta activity is very small. See Table 2.
4.2 Calculation of CEDE for Incidental Inhalation of Dusts

Accordingly, the CEDE for incidental inhalation of uranium ore in dusts over a 14-day period is:

\[I_d = DCF_{Uore} \frac{1}{PEF} \frac{CBRT}{T} \]

\[I_d = (0.0035 \text{ mSv/Bq}) \times (1/28 \text{ Bq/pCi}) \times (100 \text{ mrem/mSv}) \times (1/1.32 \times 10^9 \text{ m}^3/kg) \times (10^3 \text{ g/kg}) \times \]

\[(1 \text{ pCi/g}) \times (20 \text{ m}^3/day) \times (14 \text{ days}) \]

\[I_d = 2.6 \times 10^{-6} \text{ mrem per pCi/g} \]

5.0 Inhalation of Dusts During Use of OHVs (\(I_{ohv}\))

Several references provide perspectives on dust generation and exposure associated with the use of OHVs and all-terrain vehicles during recreational activities.

EPA derived site-specific PEFs for OHV riding at two mine sites in Colorado. The baseline human-health risk assessments for the Standard Mine Site and the Nelson Tunnel/Commodore Waste Rock Pile used the results from activity-based air sampling to calculate PEFs for OHV riding (USEPA 2008, 2009, 2011b). A PEF of \(8.47 \times 10^5 \text{ m}^3/kg\) (equivalent to \(1.18 \times 10^{-6} \text{ kg/m}^3\)) was calculated from the Standard Mine Site data and an “average PEF” of \(1.65 \times 10^4 \text{ m}^3/kg\) (\(6.08 \times 10^{-5} \text{ kg/m}^3\)) was calculated from the combined PEFs for three metal-specific studies at the Nelson Tunnel site.

In USDOI 2014, it is indicated that the baseline human-health risk assessment performed for the Topock Compressor Station Remediation Project site (California) referenced the derived PEF for OHV riding based on airborne dust measurements collected during sampling at the Standard Mine Site (USEPA 2008, 2009). Because it was based on actual measurements collected during OHV riding, the Standard Mine Site PEF (\(8.47 \times 10^5 \text{ m}^3/kg\)) was considered to be the most accurate value for estimating airborne respirable dust levels from OHV riding at the Topock site. It was further indicated in this memorandum that this recommended PEF for OHV riding is very similar to the default value recommended in DTSC 2011 for construction workers of \(1.0 \times 10^6 \text{ m}^3/kg\).

In USEPA 2007, Section 3.3.4, it was assumed that a rider of an OHV recreational vehicle at legacy uranium sites would be involved in recreational activities and that the vehicles travel at an average speed of 40 mph. The airborne concentration of respirable dust, 5 mg/m\(^3\) (equivalent to \(5 \times 10^{-6} \text{ kg/m}^3\) or a PEF = \(2 \times 10^5 \text{ m}^3/kg\)), was based on the average of three measured dust concentrations taken at the side of a road composed of dirt and crushed slag, during the passage of medium-duty vehicles (3–4 tons). The dust had a mass-median diameter of 10–11 μm and, thus, corresponds to the approximate range of respirable particles. It was further indicated that this concentration is also equal to the Occupational Safety and Health Administration (OSHA) protective exposure limit (PEL) for nuisance dust set forth in 29 Code of Federal Regulations (CFR) 1910.1000 and, thus, constitutes a reasonable upper bound to the average dust loadings that could be comfortably tolerated by the rider.
The above references provide suggested values for PEFs associated with OHV use during recreational activities in the range of 1.65×10^4 (USEPA, 2008; 2009) to 1×10^6 m3/kg (DTSC 2011). The value suggested in USEPA 2007 of 2×10^5 m3/kg is used here because:

- It is based on measurements performed at an actual legacy uranium site,
- It included measurement of mass-median diameter demonstrating particle size to be within the respirable range,
- It is approximately midway between the range of suggested values referenced above, and
- The suggested PEF would result in a concentration equal to the OSHA PEL for nuisance dust set forth in 29 CFR 1910.1000, and thus constitutes a reasonable upper bound to the average dust loadings that could be comfortably tolerated by the rider.

Accordingly, assuming the OHV rider spends 4 days 3 of 8 hours each during the 14-day recreational exposure riding the OHV, the CEDE from inhalation of dusts during use of OHVs (l_{ohv}) is calculated:

$$l_{ohv} = DCF_{Uore} \frac{1}{PEF} C_{BR} T$$

Where parameters are defined as in Section 4 above except for the PEF, which for OHV use is taken to be 2×10^5 m3/kg and the breathing rate (BR) taken to be 1.2 m3/hr during OHV use (USEPA 2007)

$$l_{ohv} = (0.0035 \text{ mSv/Bq}) \times \left(\frac{1}{28} \text{ Bq/pCi} \right) \times (100 \text{ mrem/mSv}) \times \left(\frac{1}{2} \times 10^6 \text{ m}^3/\text{kg} \right) \times (10^3 \text{ g/kg}) \times (1 \text{ pCi/g}) \times (1.2 \text{ m}^3/\text{hr}) \times (32 \text{ hr}) = 2.4 \times 10^{-3} \text{ mrem}$$

3 Admittedly, this value is somewhat arbitrary as there is no clear technical basis for choice of 4 days.

6.0 Inhalation of Radon-222 and Progeny (l_{Rn})

6.1 Background Discussion on the Emission and Dosimetric Implications of Radon and Progeny

The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides information on sources of radon and the processes that affect the release of radon from soils (UN 2000). A key parameter that controls radon transport in soils is the radon diffusion coefficient. A number of models for estimating the radon flux from the surface of porous media such as soil, uranium ore, or waste rock are reported in the literature (e.g., USNRC 1980, USEPA 1983). For dry soils, using the methods and values reported in USNRC 1980, the estimated unit area radon flux per unit 226Ra activity concentration (in becquerels per gram) is about 1 Bq/m2-sec (or in picocuries per gram, about 1 pCi/m2-sec). The use of this value has been the basis for historical calculations of radon emission from soils and land surfaces and is considered conservative since diffusion occurs through the unsaturated pore space of the soil and therefore the diffusion of radon in soil, where the soil is compacted or the pore space is filled with water (saturated), will be much slower than in noncompacted or unsaturated soils. However, for our application here, involving semiarid environments and generally unconsolidated waste rock or spoils piles, etc., 1 pCi/m2-sec 222Rn per pCi/g 226Ra in soil is considered reasonable.
IAEA 2011b presents findings of an investigation to determine the doses expected to be received by members of the public exposed to large NORM residue deposits (including uranium series radionuclides), with consideration being given to all potentially significant exposure pathways. The investigation was carried out under contract to the IAEA by SENES Consultants Limited (SENES 2010) using an evidence-based approach involving the review of available information from examples of actual uranium residue deposits, as well as a calculation approach involving the modeling of radionuclide migration from a “representative” large uranium residue deposit at a unit concentration of uranium series radionuclides assumed to be in natural secular equilibrium (i.e., 1 Bq/g of each radionuclide in the naturally occurring decay chains).

Specifically regarding the radon inhalation pathway, 222Rn emissions from a representative uranium residue deposit were calculated using a simple air dispersion model. The outdoor radon concentration was found to be about 10–20 Bq/m3 in the immediate vicinity of the deposit (0.4–0.7 pCi/L, about the same as typical “background,” see below and NCRP 2009). This range of radon concentrations is comparable with the range of natural variability of outdoor radon concentrations (UN 2000). Given this intrinsic variability in natural radon levels and the fact that the “fresh radon” released from the soil disperses quickly with the wind, the authors stated that it would be very difficult to identify any clear increase in radon levels outdoors in the vicinity of a uranium residue deposit.

It is also noted that although additional sources of radon could include “point sources” such as vents and portals, they are typically unsafe and unstable areas, and it is reasonable to assume that people would not spend appreciable time there.

Figure 4-1 from USEPA 1982 presents results of calculations of radon concentrations in air at various distances from uranium tailings piles of several sizes (5–80 hectares) with an initial 222Rn emission rate (flux) of 20 pCi/m2-sec demonstrating how quickly the radon is dispersed and the concentrations in air decrease with distance from the edge of the piles. For example, for the 5-hectare pile, the air concentration is predicted to be only about 10% at a location measured 120 meters from the center of the pile. This figure is reproduced here as Figure 1.

The “dose” from radon comes primarily from its short-lived particulate progeny, which attach to lung surfaces depositing alpha energy, not from the inert gas itself, most of which is quickly exhaled. The importance of this dosimetric relationship between radon gas and its progeny was well documented early in the history of uranium mining (Altshuler et al., 1964; Coleman et al., 1956; Holaday et al., 1957; Jacobi, 1964). That is, without time for ingrowth of the radon progeny, inhalation of 222Rn by itself results in little dose.
At the point radon diffuses out of the soil and rocks, the concentration of associated progeny is zero because the progeny have been captured in the earth. As soon as radon is airborne, progeny ingrowth continues until equilibrium between the activity of radon and that of its progeny is approached (pCi/m\(^3\) \(^{222}\)Rn = same for all short-lived particulate progeny). The “equilibrium fraction” is the fraction of potential alpha energy from progeny relative to the maximum at equilibrium. The unit of progeny concentration is the working level (WL)\(^4\). Since the radon and progeny are transported by the wind, the equilibrium fraction increases with increasing distance (and time) from the sources (waste rock/spoils piles, etc.), although the concentration in air is decreasing rapidly with increasing distance. Accordingly, there is typically very little progeny ingrowth and therefore very little dose associated with fresh radon in the immediate vicinity of the “waste rock pile.” Although in enclosed environments (such as “stale air” in mines and/or adits) the equilibrium fraction can approach 100%, in the outdoors there are practical limits. For example, the equilibrium fraction for outdoor exposures recommended by the National Council on Radiation Protection and Measurements (NCRP 2009) is a nominal value of 0.6 for “aged global air” with typical values to be in the range of 0.5–0.7 (for perspective, NCRP 2009 considered the average background radon concentration outdoors to be 0.4 pCi/L).

\(^4\) Any combination of radon and radon progeny in 1 liter of air that will result in the emission of \(1.3 \times 10^5\) MEV of alpha particle energy; equivalent to 100 pCi/L \(^{222}\)Rn in equilibrium with its alpha-emitting progeny. The associated unit of exposure is the working-level month, which is a concentration of one working level incurred over 170 hours (or any combination of WL and time that results in 170 WL hours).

6.2 Calculating \(^{222}\)Rn Dose for the Recreational Exposure Scenario \((I_{Rn})\)

As discussed above, the contribution to dose is expected to be relatively small from this pathway since in the recreational exposure scenario defined here, the visitor is not spending appreciable time...
immediately on top of ("living on") ore/waste rock piles within enclosed spaces. The magnitude of
dose is primarily associated with the degree of ingrowth of 222Rn progeny (the "equilibrium factor"),
which is a function of time and therefore distance from the sources ("waste rock pile"). Table 9.11 of
USNRC 1980 presents estimates of radon progeny concentrations in air in WL units in structures
above and near uranium tailings piles. At an initial radon emission rate (flux) of 1 pCi/m2-sec
(corresponding to our unit concentration of 1 pCi/g 226Ra in the soil) (USNRC 1980, USEPA 1983), a
progeny concentration of 5.7×10^{-5} WL is estimated near the edge of the disposal pile
("approximately 100 meters downwind").

The relationship between working-level months (WLM) of exposure from radon progeny and effective
dose is established in national and international radiation protection standards. In USNRC regulations
(e.g., 10 CFR 20) the annual occupational exposure limit of 5 rem/yr is assumed equivalent to the
annual exposure limit of 4 WLM/yr exposure to radon and progeny, which results in a dose
conversion factor of 1.25 rem/WLM. However, note that in ICRP Publication 65, the International
Commission on Radiological Protection recommends a conversion factor of 5 mSv (500 mrem) per
WLM (ICRP 1994b), although in recently issued ICRP 126 (ICRP 2014), a dose conversion factor of
12 mSv (1200 mrem) per WLM is recommended.

The value used by the USNRC in 10 CFR 20 is used here since it represents a U.S. occupational
radiation protection compliance standard, although ICRP’s recommended values represent
international consensus and are based on much more recent epidemiological studies of underground
uranium miners and similarly exposed populations.

It is assumed that the recreational visitor spends 50% of their time during the 14-day visit onsite in the
general vicinity of waste rock/spoils piles or other significant radiological sources. Although it is
assumed that at most DRUM sites, the percent of total site acreage associated with these features is
quite small, the recreational visitor could "set up camp" near these “easy to find," visible surface
features. Accordingly, the dose to the recreational visitor as a result of exposure to 222Rn and its
progeny per pCi/g 226Ra in the soil is calculated:

$$I_{Rn} = CT \cdot DCF_{wl},$$

where

I_{Rn} = dose in mrem from inhalation of radon and progeny

C = concentration in air in working levels

T = time of exposure in hours

DCF_{wl} = dose conversion factor; 1250 mrem per WLM of 170 hr

$$I_{Rn} = (5.7 \times 10^{-5} \text{WL}) \times (14 \text{ days}) \times (24 \text{ hr/day}) \times (0.5) \times (1/170 \text{ hr/WLM}) \times (1250 \text{ mrem/WLM})$$

Therefore,

$I_{Rn} = 0.07 \text{ mrem}$
7.0 Screening Levels

7.1 Calculating the TEDE to the Recreational Visitor

Again, the TEDE in mrem is the sum of the dose equivalents from each pathway.

\[T = E_x + S_{\text{ing}} + I_d + I_{\text{ohv}} + I_{\text{Rn}} \]

Using the values previously derived, the TEDE is calculated:

\[T = 0.60 + 0.01 + 10^{-6} + 10^{-3} + 0.07 = 0.68 \text{ mrem per pCi/g} \]

Where:

- \(T \) = TEDE for a 14-day recreational exposure scenario per pCi/g of each of the \(^{238}\text{U} \) plus \(^{235}\text{U} \) series radionuclides in soil
- \(E_x \) = DE from external exposure from the soil
- \(S_{\text{ing}} \) = CEDE from incidental ingestion of soil
- \(I_d \) = CEDE from inhalation of dusts
- \(I_{\text{ohv}} \) = CEDE from inhalation of dusts during use of OHVs
- \(I_{\text{Rn}} \) = CEDE from inhalation of \(^{222}\text{Rn} \) and progeny

7.2 Establishing Screening Levels

The analysis above indicates the contribution to the TEDE from external gamma exposure is 0.60/0.68 = 88%. Accordingly, this relationship can be used directly to establish an average gamma radiation exposure rate above background, below which would ensure compliance to the selected annual public exposure limit as well as establish the associated concentration of each uranium series radionuclide in soil (equilibrium assumed). It is recommended for this demonstration that 1 mSv (100 mrem)/year above background be used for this purpose\(^{(5)}\). This limit can be justified because it has long been the fundamental public exposure criteria associated with nuclear facilities and activities under the U.S. Atomic Energy Act (AEA) as codified in the AEA implementing regulations of both USNRC (10 CFR 20.1301) and USDOE (10 CFR 835.208). Furthermore, 1 mSv/year is the basic international consensus standard for public exposure above background from all sources (e.g., ICRP 2007).

\(^{(5)}\) Other options could include USEPA's criteria of 25 mrem/yr dose equivalent to any organ from the nuclear fuel cycle from 40 CFR 190, although this would require complex calculations of organ-specific doses per methodologies of >50 years ago from ICRP 1959; 15 mrem/yr per EPA’s CERCLA \(3 \times 10^{-4} \) slope/risk factor for 30 years; USNRC’s 25 mrem TEDE for decommissioning and license termination from USNRC 2006, etc. However, it is also noted that 100 mrem/year (1 mSv/year) is well within the variability of natural background in the United States, and in particular, in consideration of the elevated natural backgrounds associated with the locations of many DRUM sites, much lower values are potentially "lost in the noise" and the uncertainties of measurement at these low levels. It also represents the international consensus standard for public exposure above background.
Obviously, application of this method relies heavily on a defensible definition of radiological background for the region within which each DRUM site is located. This implies that different sites, with slightly differing radiological backgrounds, would in fact have slightly different screening levels. This is appropriate and scientifically justified, however may be impractical on a site-by-site basis. Accordingly, it is assumed that background reference areas will be properly established for the geological and mineralogical region within which the site (or a group of sites) is located. A technical basis document has been prepared to aid in the establishment of background reference areas (Brown 2016b).

Using 100 mrem/year above background as the public exposure limit that defines the exposure magnitude during each annual 14-day recreational use visit to a DRUM site and given that the contribution from the external exposure pathway is 88% of the TEDE from all relevant pathways for the recreational use scenario as defined herein

\[(100 \text{ mrem}) \times (0.88) \times (1/14 \text{ days}) \times (1/24 \text{ hr/day}) = 0.262 \text{ mrem/hr} = 262 \mu\text{R/hr above background.}\]

And the associated concentration in soil would simply be \(100 \text{ mrem}/0.68 \text{ mrem per pCi/g} = 147 \text{ pCi/g each of } ^{238}\text{U}, ^{226}\text{Ra}, \text{and all other progeny in equilibrium.}\)

Accordingly, a “set” of screening levels to consider could be as follows:

Level A: < 60 \mu\text{R/hr above background} (\leq 25 \text{ mrem TEDE/year during 2-week recreational period}) = no action required.

Level B: > 60 \mu\text{R/hr but <250 \mu\text{R/hr above background}} = conduct additional gamma surveys, soil sampling, and other assessments necessary to verify actual exposure rates and/or soil concentrations are less than those that could result in exceeding the 100 mrem/year limitation and evaluate credibility of access to the site (e.g., remote location) and “accessibility” of possible pathways of exposure (e.g., waste rock on a hillside).

Level C: > 250 \mu\text{R/hr} = consider and evaluate reclamation and/or remedial action options to reduce exposures to future recreational users to < 100 mrem/year TEDE.

8.0 REFERENCES

Association Quarterly 17, p. 405.

SENES 2010. SENES Consultants, Human Exposure to Radioactivity from Mining and Industrial Residues, report prepared for the International Atomic Energy Agency.

TO: John Elmer, Navarro Engineering and Research, Inc.

RE: Concept Paper – Suggested General Approach for Developing “Screening Levels” for DRUM Sites on BLM Land Based on External Exposure Rates

John:

Consider this a “concept paper” for your concurrence prior to initiating calculating numbers. My general approach for developing screening levels for DRUM sites on BLM land based on external exposure rates (e.g., µR/hr) is described here. Following your concurrence of this general approach and concepts, I will send you a listing of other important assumptions, suggested input parameters, and the associated references and technical basis for them, also for discussion and your concurrence. This list is almost completed. Following these discussions, the calculations themselves should not take very long at all.

The concept of screening levels does not have to be complicated. Something of the following general form is what I envision:

- \(\leq \text{background (BKG)} = \text{No Action} \)
- Between BKG and \(X \) times BKG = Do this (e.g., perform refined calculations, make some measurements, collect some samples for verification)
- \(\geq X \) times BKG = More comprehensive site assessment and survey may be necessary

I did find an example of precedence for the concept of a graded approach to risk assessment for legacy sites somewhat similar to our concept of screening levels in BLM 2004. From page 11, “How to Interpret Risk Management Criteria”:

- Less than criteria: low risk
- 1–10 times the criteria: moderate risk
- 10–100 times the criteria: high risk
- >100 times the criteria: extremely high risk

Recommended Future Use Scenario and Associated Pathways of Exposure

The basic future use scenario is recreational, in which a camper spends 2 weeks/year at the site. It is assumed that all locations are rural, relatively arid sites in the Southwestern U.S. (e.g., states of Colorado, Utah, Arizona, New Mexico), which limits to some degree the credible pathways of exposure that need to be considered. In researching other examples of recent federal agency work plans/assessments for legacy sites, they are generally site specific. Many are in locations which allow for water-related recreational activities, including fishing, as well as adequate forage cover to support
grazing animals (and most do not involve radiological contaminants of concern). It is assumed for our purpose that these are not applicable site conditions for us. The characteristics of the recreational scenario I propose we use and references supporting its assumptions are provided in Table 1. Similarly, the choice of relevant exposure pathways for this scenario and associated supporting references and assumptions is provided in Table 2.

Table 1: Precedence for an Exclusive Recreational Exposure Scenario for DRUM Sites on BLM Land

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reference</th>
<th>Basis from Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camper spends 2 weeks/year at site engaged in recreational activities</td>
<td>CH2Mhill 2015</td>
<td>Footnote for Table 2-1: Screening Levels for Assessing Potential Human Health Risks: Screening levels in soil are developed using a recreational scenario assuming an individual is potentially exposed for 14 days/year over 30 years</td>
</tr>
<tr>
<td></td>
<td>USEPA 2007</td>
<td>NOTE: This appears to be a “generic” work plan to conduct field assessments for a number of Freeport legacy sites on BLM land at which uranium and vanadium exploration and/or mining was conducted.</td>
</tr>
</tbody>
</table>

Since most uranium locations are on federal lands, the primary exposure scenarios to TENORM wastes at uranium mines would involve recreational use of the site in which the abandoned mine is visited.
Occasionally by hikers, campers, or driven through by all-terrain vehicles (ATVs). …

Users would likely visit unreclaimed uranium mines for short periods of time, such as two weeks, which is the common maximum time for which the National Park Service issues backcountry permits.

Section 3.4: Other Recreational Use Scenarios

Other recreational use scenarios were considered as part of the present analysis. These include swimming, boating, fishing, and hunting, along with the consumption of on-site fish and game. These scenarios are either unlikely to occur, or would be an insignificant component of the risk, as reviewed in an EPA study (1983).

Table 2: Pathways of Exposure Relevant to Recreational Scenario Defined in Table 1

<table>
<thead>
<tr>
<th>Pathways of Exposure:</th>
<th>Reference</th>
<th>Relevancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) External exposure from ground (expected to dominate since no “indoor” radon/progeny inhalation or water ingestion pathways).</td>
<td>USDOI 2014</td>
<td>Page 5, Table 2 and Figure 2 define exposure scenarios and parameters including only surface soil (direct contact and incidental ingestion) and airborne dust inhalation including OHV use.</td>
</tr>
<tr>
<td>(2) Radon inhalation from ground flux.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Incidental ingestion of soil.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Recreational use of OHV including incidental inhalation of dust (soil)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Note: No traditional ingestion pathways are considered since the camper is not going to consume locally grown vegetables. Although camper may hunt or fish and eat the catch during the 2 weeks, due to general lack of forage vegetation, animals would be transitory/migratory through the area and not “exposed” to the contamination their entire lives. | USEPA 2007 | Section 3.3: Recreational Scenario Risk Calculations

Pathways considered include only external exposure from ground, incidental soil ingestion, and inhalation of fugitive dust. Although an ATV/OHV driver was also used, it was considered “not the same individual exposed to all the other pathways”

Section 3.4: Other Recreational Use Scenarios

The majority of mine sites found in the uranium location database are typically in an arid environment that does not readily support plant life unless irrigated. In such arid environments, the overburden or protore piles are not expected to be able to provide much forage for animals, especially if they are covered with a desert varnish. In addition, the size of the abandoned mine sites would typically be relatively small and thus provide little forage for game animals.

Consequently, any game taken on a mine site would be expected to have obtained most of its forage elsewhere. The meat from such game is thus not expected to be significantly contaminated with TENORM from a mine site. |
<table>
<thead>
<tr>
<th>Marston et al., 2011</th>
<th>For assessment of the Browns Hole legacy uranium site in Utah, three exposure pathways were considered: external gamma, inhalation, and incidental ingestion of soil over an exposure duration of 14 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weston 2008</td>
<td>At the Workman Creek uranium mine site in Arizona, a human health risk assessment to recreational visitors (camper, hiker, OHV user) was evaluated via a streamlined risk assessment process. The primary pathway of exposure is external gamma radiation.</td>
</tr>
<tr>
<td>Tetra Tech 2011</td>
<td>This risk assessment was performed to support the development of an Engineering Evaluation/Cost Assessment for the Ross-Adams legacy uranium mining site on the Alaskan coast. Pathways of exposure evaluated included radon inhalation, particulate (soil) inhalation, external exposure, and incidental soil ingestion.</td>
</tr>
<tr>
<td>IAEA 2011</td>
<td>Although not specific to a particular public use scenario, this International Atomic Energy Agency Technical Document (TECDOC) evaluates public exposures from a nominal NORM deposit volume of 2 million m3 covering 10 ha with the presence of radionuclides in the U-238 and/or Th-232 decay series, each at a concentration of 1 Bq/g. Pathways of exposure evaluated included external exposure from</td>
</tr>
</tbody>
</table>
ground, incidental soil ingestion, inhalation of radon and particulates, and locally grown food and groundwater ingestion.

Methodology

The basic approach to define the screening levels (exposure rates) involves establishing an exposure rate (including from both external and internal exposure sources as applicable) for each pathway based on a unit concentration of radionuclides in soil. Since it is reasonably assumed that the uranium is in equilibrium with all progeny in the U-238 decay chain (including Ra-226, for example), it is relatively straightforward to do this \(^1\). We establish a concentration of U-238 in soil of 1 pCi/g. Therefore, all other radionuclides in the chain will be present at 1 pCi/g. We then calculate the exposure over 2 weeks for each of the relevant exposure pathways based on this soil concentration. Again, the pathways I am recommending we use are:

1. External exposure from the soil (i.e., ground shine, which I expect will dominate; for natural uranium sites it almost always does if there is not a “residential” indoor radon/progeny pathway)
2. Casual ingestion of soil
3. Inhalation of dusts
4. Special case of dust inhalation for an OHV rider
5. Inhalation of radon and progeny

The use of the 2 weeks/year recreational camper scenario with the associated pathways listed above is consistent with what was assumed in USDOE 2014 (with exception of the OHV rider). For reasons presented in Table 1 above, I am suggesting that other common recreational activities often considered in these analyses, such as swimming, fishing for food, hunting for food, eating forage vegetation, and water ingestion, are not relevant for our semiarid, relatively remote DRUM sites.

Once we have calculated the “2-week dose” for each of the relevant exposure pathways per unit concentration in soil, we just sum them. This gives us the TEDE from all pathways for the 2-week period of interest per unit concentration in soil. Using an appropriate and acceptable annual public dose exposure limit (e.g., 15 mrem/yr per EPA’s CERCLA 3×10^{-4} slope/risk factor for 30 years; NRC 100 mrem/year per 10 CFR 20; USNRC’s 25 mrem TEDE for decommissioning and license termination from USNRC 2006; EPA’s 25 mrem/yr dose equivalent to any organ from the nuclear fuel cycle in 40 CFR 190), we can then establish the external exposure rate as well as the associated equilibrium soil concentration that assures the exposure for 2 weeks/year will be less than the chosen “limit.”

Looking forward to your thoughts. Will continue to finalize recommended draft input/parameter values for your review.

\(^1\) The radionuclides from the actinide (235U) decay series may be initially ignored since the ratio of 235U activity to 238U activity in uranium ore is the natural abundance ratio of 0.046 to 1; this will be evaluated further.
REFERENCES:

TO: John Elmer - Navarro Research and Engineering
CC: Steve Renner, Michael McDonald - Navarro Research and Engineering
DATE: March 14, 2018

RE: Addendum - Establishing Radiological Screening Levels for DRUM sites on BLM Land Using a Recreational Future Use Scenario by SH Brown CHP. May 23 2016

On page 14 of the subject document, the primary radiological screening level is calculated as follows:

Using 100 mrem/year above background as the public exposure limit that defines the exposure magnitude during each annual 14-day recreational use visit to a DRUM site and given that the contribution from the external exposure pathway is 88% of the TEDE from all relevant pathways for the recreational use scenario as defined herein, the “screening level” is simply:

\[
(100 \text{ mrem}) \times (0.88) \times (1/14 \text{ days}) \times (1/24 \text{ hr/day}) = 0.262 \text{ mrem/hr} = 262 \mu\text{R/hr above background}
\]

However, it is understood that there may have been some confusion subsequent to the issuance of this document as a result of an example that was presented further on this same page, for the purpose of demonstrating how this screening level might be used:

Accordingly, a “set” of screening levels to consider are as follows:

Level A: < 60 uR / hr. above background (≤ 25 mrem TEDE / year during 2-week recreational period) = No action required

Level B: > 60 uR / hr. but < 250 uR/hr. above background = conduct additional gamma surveys, soil sampling and other assessments necessary to verify actual exposure rates and / or soil concentrations are less than those that could result in exceeding the 100 mrem / year limitation and evaluate credibility of access to the site (e.g., remote location) and “accessibility” of possible pathways of exposure (e.g., waste rock on a hillside).
Level C: > 250 uR / hr. = consider and evaluate reclamation and/or remedial action options to reduce exposures to future recreational users to < 100 mrem / year TEDE.

The use of the "rounded" value of 250 uR / hour was presented only to demonstrate one suggested approach (and of course there are others) of delineating a small set of radiological conditions (several ranges of exposure rates) that could be input to the overall “multiple lines of evidence” screening process being used by BLM for prioritization of the DRUM sites on Federal land. At the time of preparation of this document, it was still to be determined how these radiological criteria might be used with the wide area gamma surveys being conducted at the DRUM sites as part of DOE LM’s Verification and Validation (V&V) Program.

Additionally, an earlier version of this document (20 April, 2016) used 256 uR/ hr. above background as the primary screening criteria derived from the 100 mrem/year above background public exposure limit. This difference (256 vs. 262 uR/hr.) was due to a small update made in the dose conversion factor associated with the soil ingestion pathway. This resulted in making a reduction in the already small contribution from the soil ingestion pathway thereby increasing the contribution from the direct gamma (ground shine) pathway from 86 % to 88% of the total dose. However, it must be recognized that even for a well designed and executed wide area field gamma survey under typical scanning conditions (surveyor with instrument is moving), the uncertainty of any single measurement would be expected to be upwards of 5% or more. Accordingly, it is unlikely there would be a statistically meaningful difference between these two values.

Furthermore, it is recognized that the annual limit being used of 100 mrem / year is in fact an effective dose rate in tissue (in Rem) while the primary screening criteria was expressed as an exposure rate in air (in Roentgens). Due to the difference in the mass absorption coefficients (density) of air vs. human tissue and several other factors of physics, a 1 Rem dose in tissue is equivalent to an exposure of approximately 1.14 Roentgens in air for most X and gamma rays (1 Roentgen = 100 ergs per gram in air vs. 1 Rem of x or gamma rays = 87 ergs / gram in tissue).

Since it was unknown at the time of the preparation of these two documents whether tissue equivalent dose rate or air exposure rate radiological survey instruments were to be used for conduct of the DRUM site radiological surveys, this distinction was ignored and the screening criteria were expressed in Roentgen units. Historically, instruments providing exposure rates in air have been the more common practice for wide area gamma surveys at uranium sites. Given this uncertainty at that time, this approach was considered conservative as the actual tissue equivalent dose rate associated with an exposure rate in air of 262 uR / hr. would be approximately 262 uR / 1.14 uR per uRem = 230 uRem per hour, equivalent to an annual exposure of about 77.2 mrem.
Nonetheless, regardless of which type of instrument(s) are used in the future, equivalency can be approximated with the use of the simple conversion factor of 1 uRem = 1.14 uR.

Although the primary radiological screening criteria developed in the revised report of 23 May 2016 is 262 uRem / hour above background for a 2 week / year recreational use scenario at a DRUM site, a radiation survey result of 256 uRem / hr is currently being used as the DRUM project’s upper-tier radiological screening level value. Using this slightly lower screening level value (256 uRem / hr) adds a level of conservatism to the measurement process. Areas where 256 uRem / hr or greater are measured are now being identified as the “higher risk” areas at a DRUM site. Additionally, 256 uRem / hr and 262 uRem / hr can be considered statistically equivalent as the project’s upper-tier radiological screening level value (based on measurement uncertainties associate with the instrumentation being used for radiological surveys being performed at DRUM sites). Consequently, the assumptions and calculations presented in the subject document and as further clarified herein, ensure an annual dose to future recreational users of DRUM sites of ≤ 100 mrem Total Effective Dose Equivalent (TEDE).
Appendix C

DRUM Soil and Sediment Sampling Procedure
C1.0 Introduction

C1.1 Scope

Soil samples are taken for the purposes of defining the chemical constituents of background soil sample locations, mine waste materials (waste rock), and sediment shed areas. For simplicity the term “soil” is a collective term for the various representative earthen samples (e.g., sediment, waste rock) and “sampling” is a collective term for the procedures used to collect, document, and ship these types of soil samples.

The sampling strategy used to collect a representative sample from an area of interest, whether at a waste rock pile, sediment shed area, or a background location, involves collecting multiple subsamples that are homogenized to form a composite sample. USGS developed this statistically based strategy for sampling the surficial material of mine waste rock piles, drainages, and background areas for use in screening and prioritizing historical abandoned mine lands (Smith et al. 2000). This approach focuses on the erodible surface of the area of interest (e.g., within the upper 6 inches of the “soil profile”). Additionally, general sampling protocols specified in the LMS Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351) are used to help guide the sampling effort.

Generally, samples will be collected from three different areas: background sample locations, waste rock piles, and sediment shed areas. Waste rock is material associated with an orebody of interest but which, because it had little economic value at the time of extraction, was disposed of onsite. Waste rock may contain COIs and may exhibit elevated gamma radiation; thus, it will be sampled as described below and utilized in the DRUM Program risk scoring process. Sediment shed areas are the result of the offsite migration of mine-related soils by erosional forces and will also be sampled as described below. Background sample collection procedures will also be conducted in a manner consistent with that described below.

Because sampling locations cannot be precisely described before all mines are visited, opportunistic sampling may occur (see Section C3.2.4). Such flexibility in field sampling locations may occur so a more complete site evaluation can be achieved. Unique circumstances that lead to opportunistic sampling will be noted and described in the final reporting for each affected mine; however, opportunistic samples are not used in the risk scoring.

COIs are assumed to be collocated; therefore, the area(s) of potential sample collection are mapped via field observation in conjunction with a gamma radiation survey (see Section D1.3). Sampling strategies and grids are established based on these observations and measurements. Sampling procedures for background locations, waste rock piles, and sediment shed areas are identical except that sediment shed sample grids will be constructed in the field using the gamma radiation survey data to define the area of interest, while sample grids for background locations and waste rock piles may be constructed either in the office or in the field.
C2.0 Roles and Responsibilities

The field team lead is responsible for implementing field activities and ensuring that all data are collected, recorded, and checked as described in the V&V Work Plan. To help ensure that all data components are accurately collected and recorded and to facilitate data transfer to the reporting team, the field team lead will compose a narrative describing mine conditions and relevant observations such as sampling events, mine accessibility, safeguard status, and observed site use. The field team members are responsible for field activities, such as radiological and GPS data gathering or soil sampling. All staff are trained to abide by the procedures of the DRUM Program.

C3.0 Instructions for DRUM Soil Sampling

C3.1 Field Equipment and Supplies

The following is a list of equipment and materials needed by the field sampling team to conduct the soil sampling procedure:

- Field GPS unit and computer preloaded with project-specific information and electronic forms to (1) assist teams with navigation to the mine, (2) record position coordinates of the soil sampling areas, (3) collect field data and attributes, and (4) establish sample grids
- Paper or electronic copies of specific documents, such as the V&V Work Plan, appropriate FOP, and maps to facilitate visual orientation within mine groups
- Stainless steel sampling trowel or shovel for soil sampling to depths of 6 inches
- 10-mesh (2-millimeter) sieve for sieving samples into appropriately sized containers
- Two appropriately sized sample collection containers: one for sampling background areas and one for sampling waste rock piles, drainages, or sediment shed areas with elevated gamma radiation
- Weatherproof field logbook (bound and paginated)
- Rite in the Rain pens
- Permanent markers
- Sufficient number of 500 milliliter (mL) plastic sample containers with screw-tight lids for the number of samples anticipated to be collected
- Nitrile gloves for handling samples
- Decontamination supplies:
 - Scrub brush
 - Masslinn dust/decontamination cloths
 - One container of deionized (DI) water
 - Alconox detergent
— Two spray containers
 - One for decontamination solution (DI water + Alconox)
 - One for DI water (rinse)
- Communication devices (radios and cell phones; a satellite phone and inReach technology) will be provided for every field outing

C3.2 Sample Procedures

The following steps describe the sample collection procedures for sample areas. The general soil sampling approach consists of establishing a sampling grid of the sampling area, which is determined visually by the geologist, supported by the gamma radiation survey (see Section D1.3), and bounded by the gamma radiation value of 20 µR/hr. Generally, waste rock sampling areas will include the relatively flat upper portions and the side-slopes of a waste rock pile to the extent that the slopes can be safely accessed. Sediment shed from the waste rock pile that has migrated off the disturbed area will also be sampled if it exceeds the established gamma radiation threshold of 64 µR/hr and can be safely accessed. The gamma radiation survey will delineate the sediment shed area greater than the area registering gamma radiation of 64 µR/hr by extending the survey to 20 µR/hr or 60 ft whichever comes first, provided the area is accessible. This will occur at the discretion of the field team lead if complicating site conditions exist. The survey will be conducted downgradient and perpendicular to the flow of the sediment shed area if this portion of the mine is accessible. This will achieve the 20 µR/hr delineation goal as described in the Appendix D procedures for terminating transects (parallel gamma radiation survey lines).

For consistency among the sampling teams, Table C1 describes how multiple composite samples and their nodes will be collected depending on the size of a sample area. The area to be sampled is divided into the appropriate number of sample points (nodes) (Table C1) with field personnel sequentially collecting material from within the upper 6 inches of soil at each node, as described in the USGS mine waste dump sampling strategy procedure (Smith et al. 2000). Approximately equivalent volumes of soil will be collected at each node to achieve the required 600 grams (g) of soil required by the lab for analysis. Workers will progress from one node to the next until all nodes have been collected. Workers will place each sieved subsample into the sample mixing container, homogenize samples to form a composite sample, transfer the composite sample to a sample container, label the side and lid of the sample container, and decontaminate the sampling equipment. Details for this sampling procedure follow.

C3.2.1 Locations to Sample

Soil samples are collected for the purpose of defining the chemical COIs at specific locations. Samples will be taken at each background location, at waste rock piles, at sediment shed areas which exhibit gamma radiation greater than 64 µR/hr, and at other mine areas that exhibit unique or special circumstances. These areas may include potential ore stockpiles, isolated areas with gamma radiation exceeding 256 µR/hr, and areas where sediment migration to private property is visually identified (even though the migrating sediment is below 64 µR/hr). Other distinct locations that exhibit anomalous conditions as compared to the rest of the mine may be sampled at the discretion of the field team lead. These unique areas can be sampled using the opportunistic
sampling techniques described in Section C3.2.4, but the results of the opportunistic sample analysis are not utilized in the risk scoring.

To ensure an adequate representation of undisturbed conditions, background sample locations should be 8000 to 10,000 ft² in area where practicable, so that the sampling schema described in Table C1 may be employed. The area of the background sample plot will be recorded to ensure that the appropriate number of soil sample nodes are utilized. See Section C3.2.3 for more information regarding background sampling.

Generally, waste rock piles will be sampled individually using the sample node compositing techniques described in Section C3.2.2.1. In particular, waste rock piles which exhibit evidence of recreational use (e.g., a campfire ring) are considered to be a single decision unit and will be sampled separately from other waste rock piles. Very small waste rock piles (those with an accessible area of 100 ft² or less) will not be sampled unless they warrant an opportunistic sample. Some mines contain multiple small waste rock piles in proximity to one another. These waste rock piles may be combined into the same composite sample if:

- They are within the same disturbed area.
- Each has more than 100 ft² of accessible area.
- The materials in each waste rock pile exhibit similar lithology (originate from the same formation and mine).
- Each waste rock pile exhibits a gamma radiation signature below 256 µR/hr. The field team lead will decide if there is an isolated area of gamma radiation greater than 256 µR/hr that warrants a separate opportunistic sample.

If a single waste rock pile has definitive signs of camping, it will be sampled individually.

When two or more waste rock piles meeting these criteria are combined into a single composite sample, the piles will be individually located using the handheld GPS unit, and the team geologist will document in field notes how the sampled waste rock piles meet the above criteria. The combined accessible area of the individual waste rock piles will be used to calculate the number of required sample nodes according to Table C1.

Waste rock piles with elevated gamma radiation (256 µR/hr and higher) as well as waste rock piles which contribute offsite sediment will be sampled individually following the Table C1 sampling node criteria. Opportunistic samples may be collected at waste rock piles of less than 100 ft² of accessible area with a gamma radiation signature of 256 µR/hr or greater.

Sediment shed samples will be collected when material is visibly migrating away from the disturbed area and gamma radiation readings are greater than 64 µR/hr. The area with gamma radiation greater than 64 µR/hr will be delineated, and the sampling procedures outlined in Section C3.2.2.1 will be applied. Once the sediment shed area is delineated, where accessible, the team will continue the gamma radiation survey to a distance of 60 ft beyond the sediment shed area or to the 20 µR/hr limit, whichever comes first. If waste material is visibly migrating from public land to private property and is below 64 µR/hr, sediment shed protocols will be instituted, but the sample will be classified as an opportunistic sample.
In some circumstances soil samples may not be obtained because the sample area is not accessible due to safety considerations, such as steep slopes. In these cases, sampling should occur only to the extent that it is feasible given the relevant safety considerations. Such sampling could occur at the waste rock pile crest, toe, or both. The number of sample nodes, however, may deviate from that recommended in the sampling procedures outlined in Table C1 but should be spatially arranged to best represent the area. Nonetheless, the results of the analysis of these samples will be utilized, and a note regarding the sampling restrictions will be included in the V&V report. Detailed field notes and accompanying photographs will be provided to describe why a gridded soil sample was not collected. Notes should include a description of the material observed on the waste rock pile, including observations of mineralization, observations of seepage, or other pertinent information describing the nature of the material.

As an in-field QC step, the field team lead, in conjunction with the team geologist, will confirm that the sampling strategy has been implemented as described. If a variance from the strategy is required due to site-specific conditions, the field team lead and team geologist will ensure that the rationale for the variation is well documented in field notes.

C3.2.2 Preparation for Soil Sampling: Establishing the Sampling Grid

There are two acceptable methods of establishing soil sampling grids: (1) an office-based computer-assisted method which may be employed when sufficient inventory information is available before embarking on an environmental sampling field trip and (2) an in-field grid establishment method which relies on GPS or paced establishment of sample nodes.

C3.2.2.1 Preparation for Sample Grid

Sample grids may be prepared in the office following receipt of inventory information or created in the field as circumstances dictate. Layout of the sample grid pattern is described below.

Field establishment of sampling grids will occur when conditions dictate that this is a more efficient way to complete soil sampling. Field establishment of sampling grids will occur (1) at background sample areas, (2) when inventory and environmental sampling occur during the same mine visit, and (3) when samples are collected from sediment shed areas.

Alternatively, sample grids may be prepared in the office using data provided by the inventory team or satellite imagery regarding the crest and toe of the waste rock pile(s). The inventory-generated GPS data are loaded into ArcMap and projected into two dimensions so the sample area can be established. These sampling grids may be built in ArcMap, QGIS, or TerraSync before sampling fieldwork begins and will be preloaded onto field computers.

Regardless of whether the sample grid is prepared in the office or in the field, the following method will be used to establish the number of sample grids required for specific areas:

[1] The sample area is compared to Table C1 to determine how many subsamples will be collected by the field team for each composite sample

[a] If the sample area is less than 100 ft², no composite sample will be taken.

[b] If the sample area is 100–5000 ft², samples will be collected from a minimum of five nodes. Equal volumes of soil will be collected from each node so that at least
600 g of combined sieved sample material is collected. The node samples will be homogenized, and a minimum of 600 g of composited sample material will be sent to the lab for analysis.

[c] If the sample area is 5000–29,000 ft², the sample area will be gridded into approximately 30 by 30 ft (900 ft²) sample nodes. Samples will be collected from each node. These samples will be homogenized, and a minimum of 600 g of material will be sent to the lab as a composited sample for analysis.

[d] If the sample area is greater than 46,500 ft², the area will be compared to the chart below to determine the minimum number of composite samples required. When more than one composite sample is required, the area of interest will be divided into two or more roughly equal sections. At the discretion of the field team lead, the area of each section will be determined by assessing the results of the gamma radiation survey and by the potential for sample heterogeneity as determined by the mine’s layout and geologic setting. The field team lead will record the decision, and sampling will then occur as described in Section C3.2.2.1(1)(c) and Table C1, so that the appropriate number of nodes per composite sample are collected. Each composite sample will be homogenized individually, and a minimum of 600 g of material from each composite sample will be sent to the lab for analysis. If the recommended number of nodes cannot be collected because a given sample area is inaccessible, the field team lead will record such limitations, so they can be described in the V&V report.

Table C1. Sampling Schema

<table>
<thead>
<tr>
<th>Sample Area (ft²)</th>
<th>Sample Area (Acres)</th>
<th># of Nodes</th>
<th>Composite Samples</th>
<th>Average Distance Between Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>100</td>
<td>5.00</td>
<td>0.10</td>
<td>5</td>
<td>9 ft</td>
</tr>
<tr>
<td>5,000</td>
<td>29.00</td>
<td>0.11</td>
<td>0.67</td>
<td>24 ft</td>
</tr>
<tr>
<td>29,000</td>
<td>46.50</td>
<td>0.67</td>
<td>1.07</td>
<td>33 ft</td>
</tr>
<tr>
<td>46,500</td>
<td>117.60</td>
<td>1.07</td>
<td>2.70</td>
<td>37 ft</td>
</tr>
<tr>
<td>117,600</td>
<td>297.30</td>
<td>2.70</td>
<td>6.83</td>
<td>48 ft</td>
</tr>
<tr>
<td>297,300</td>
<td>751.40</td>
<td>6.83</td>
<td>17.25</td>
<td>66 ft</td>
</tr>
<tr>
<td>751,400</td>
<td>1,899.10</td>
<td>17.25</td>
<td>43.60</td>
<td>94 ft</td>
</tr>
<tr>
<td>1,899,100</td>
<td>4,798.80</td>
<td>43.60</td>
<td>110.17</td>
<td>136 ft</td>
</tr>
</tbody>
</table>

Abbreviation:
NA = not applicable

[2] When the sample grid is prepared in the office, the following method will be used to establish sample node location on the ground:

[a] The sample grid is built in ArcMap, QGIS, or TerraSync to reflect the shape and appropriate number of nodes for each sample area.

[b] Sample node locations are loaded into the GPS unit or field computer so the field team can navigate to the individual nodes in the field.
[c] Field teams will use the handheld GPS unit or GPS-capable field computer to navigate to the preloaded sample node locations.

[d] As a QC check, grid spacing will be evaluated in the field using the GPS unit or GPS-capable field computer. Spacing will be adjusted if needed to ensure appropriate node distribution across the sample area.

[e] If poor GPS reception prevents use of a field computer or GPS unit to locate sampling nodes, the nodes will be manually established. Manual establishment of sample nodes requires the use of an engineering tape or pacing to establish the grid pattern. Individual sample nodes will be identified on the ground using pin flags. The sample area will be sketched and the sample node locations noted on the sketch, so an accurate portrayal of the sampling grid is created and saved for future reference.

[3] During field preparation of the sample grid, the node location pattern will be created using the handheld GPS unit or field computer to establish the node locations in the field in the following manner:

[a] The field team lead in conjunction with the team geologist and radiological monitoring personnel will determine the extent of the area to be sampled. Adjacent material that is not part of the area being sampled can be included in the grid if the field team lead determines the material will provide a more representative sample and estimate of the COIs. A determination of the total sample area (ft²) is made.

[b] A visual check of the sample area will be performed to confirm there are no obvious indications of underground utilities (refer to the DSP for details on underground utilities).

[c] The number of nodes required for each sample is calculated using Table C1.

[d] Sample nodes will be established and logged as sampling progresses using the handheld GPS unit or field computer to establish these locations at the average distances from one another as described in Table C1. Nodes should be spatially distributed to best represent the area sampled.

[e] Grid spacing will be continually evaluated and adjusted as sampling progresses to ensure appropriate sample distribution.

[f] A continuous QC check is performed during node establishment using the handheld GPS unit or field computer to evaluate sample node distribution and spacing to ensure that the appropriate number of sample nodes are within the planned sample area.

[g] If poor GPS reception prevents use of a field computer or GPS unit to locate sampling nodes, the nodes will be manually established using an engineering tape or pacing to establish the grid pattern. Individual sample nodes will be identified on the ground using pin flags. The sample area will be sketched and the sample node locations noted on the sketch, so an accurate portrayal of the sampling grid is created and saved for future reference.
C3.2.3 Collecting Soil Samples

[1] Wearing a clean pair of nitrile gloves and using a decontaminated sample trowel or shovel, field personnel will clear any large surface debris (e.g., organic material and large rocks), collect a sample from within the uppermost 6 inches of soil, and transfer the contents to a 10-mesh sieve. Sample excavations will be large enough to ensure that an approximately equal volume of sample material is collected at each node. Additional material will be collected if the sample particle size distribution at a node is extremely heterogeneous or relatively few nodes are prescribed for a small waste rock pile. In such cases, equal volumes of soil material will be collected from each node to achieve the required 600 g required by the lab for analysis. Material will be sieved into an appropriately sized decontaminated container. Background samples will be collected in specifically designated appropriately sized containers to ensure waste rock material does not contaminate the background sample.

If the planned sample location has large debris and material (such as cobbles, a boulder, or a log) that prevent sample collection, field personnel will collect the required amount of material by excavating surficial soil within a 5 ft radius of the original sample node point.

[2] Each sample node location will be logged using the handheld GPS unit or field computer before field personnel move to the subsequent sampling point.

[3] A final visual QC check using the handheld GPS unit or field computer (verifying that an appropriate sample node location and distribution was established) will be done to confirm that all nodes have been collected, logged, and saved.

Items to track as the process is repeated at each node location include:

- Whether each sample location has been logged using the handheld GPS unit or field computer.
- Whether an approximately equivalent volume of soil per unit area has been obtained from the sample excavation.
- Whether the same volume of soil has been retrieved for each sample node, and each node is equivalently represented so that 600 g of sieved soil is collected for the lab sample.

[4] Field personnel will use a sampling trowel or shovel to homogenize the sieved multinode samples in the sample collection container.

[5] Workers will transfer the composite soil sample to the 500 mL plastic sample containers and place any remaining material in the sample collection container on the ground in the same area from which the sample was collected.

[6] Personnel will decontaminate all sampling equipment (see Section C3.4) following each sample event.
C3.2.4 Collecting Opportunistic Samples

If unique material is encountered in the field that differs from that typically encountered at the mine, the field geologist will determine the need for an opportunistic sample. Opportunistic samples may be obtained for the purpose of identifying mine-feature-specific COIs. Examples of candidates for opportunistic sampling may include the base of a loadout, an ore stockpile location, a sufficiently accessible waste rock pile that either exhibits gamma radiation near 256 µR/hr or has the potential to impact offsite private property, or isolated areas within a waste rock pile with gamma radiation at or above 256 µR/hr. Analytical results of opportunistic samples will be reported for each mine at which they are collected; however, the results will not be applied toward the risk evaluation.

Opportunistic sample locations, or individual sample nodes in the case of multinode opportunistic samples, will be identified using the handheld GPS unit or GPS-capable field computer. Detailed field notes and accompanying photographs will be provided to describe why the sample was collected. Notes should include a description of the material being sampled, observations of mineralization, observations of seepage, and other pertinent information which describes the nature of the material sampled.

An opportunistic sample will consist of an individual sample, or when applicable, a multinode sample (node spacing as described by Table C1), of the atypical material (minimum of 600 g) that is screened through a 10-mesh sieve, thoroughly blended, and packaged in a 500 mL plastic sample container. Decontamination and documentation procedures outlined in this appendix will be followed.

C3.2.5 Assessing Background

COIs are metals and radionuclides associated with exploration and mining activities. The natural background concentrations of the COIs are measured as a reference (referred to as “background”) to determine whether the mine itself is a source of elevated concentrations or radiation activity. Generally, a single background measurement will be applied to multiple mines where possible. However, specific characteristics of each mine will dictate the background sample location. Based on the recommendation of the field geologist using best professional judgement, a mine-specific background sample will be collected if the geology of the mine differs from that of similar mines in the area or if the area has no background information. The following parameters will be used to choose a suitable background location:

- A target 8000 to 10,000 ft² background sample area, where practicable, will be identified.
- It will be in an undisturbed area with soils and geology similar to those at the mine or of the mining district for a regional background sampling approach.
- It will be as close as is practical to the mine or group of mines being investigated but in an area unaffected by mining. When considering whether a background location is unaffected by mining the following should be taken into account:
 - Background location should be hydrologically upstream, sidegradient, or otherwise unaffected by the mine
 - Background location should be upwind of the prevailing wind direction from the mine
After selecting a background location, the field team will perform a gamma radiation survey using the gamma radiation survey instrument described in Section 5.6.2 of the V&V Work Plan to verify that the background sample location is not in a zone of highly mineralized material that is significantly different from that of the mine or district being investigated.

For background soil sampling, a grid will be established according to Table C1, and a soil sample will be collected as described in Section C3.2.2.1.

C3.3 Field Documentation of Soil Samples

C3.3.1 Sample Identification in the Field

1. Workers will firmly tighten the lid of the sample container. Workers will write the mine name (LM ID number followed by mine name), sample number and type, sampler, date, and time in permanent marker on the top and side of each container and wipe the container surface using a masslinn cloth.

2. Workers will place samples in a secured case in a vehicle for transport to the LM Field Support Center (LMFSC) at Grand Junction, Colorado. In cases where it is impractical to transport samples back to the LMFSC, field teams will ship from remote locations.

Note

Field teams will collect one duplicate soil sample for every 20 soil samples collected. The field team will note on the sample container that the contents are a duplicate sample. The duplicate soil sample will not have an LM ID number, and the data generated by the lab for that sample will be stored in the Environmental Quality Information System (EQuIS) under the duplicate section.

C3.4 Equipment Decontamination

1. Workers will don the appropriate personal protective equipment for equipment decontamination, as required by the job safety analysis. Sampling equipment will be decontaminated consistently to prevent potential cross contamination and to ensure the quality and integrity of the samples collected. Sampling equipment includes a stainless steel sampling trowel or shovel, a 10-mesh sieve, and sample collection containers. These and other potentially contaminated materials are surveyed (frisked) in the field to evaluate elevated radioactive contamination. For purposes of evaluating potential contamination, elevated radioactivity is defined as twice the measured background in counts per minute (CPM). If the gamma radiation frisk does not detect elevated radioactive contamination, the materials will be reused. If the gamma radiation frisk detects elevated radioactive contamination, the materials will be cleaned and resurveyed. Equipment which continues to exhibit elevated radioactive contamination will be secured, stored, and disposed of at an appropriately licensed disposal facility. All other one-time-use or disposable sampling equipment and related accessories will be disposed of in permitted municipal landfills. Workers will perform the decontamination process before composite sample collection; decontamination between subsample increments (i.e., between the sample nodes) is not necessary. Equipment will be decontaminated in a location where materials cannot be released into a surface water body, potential wetland, or other environmentally sensitive location.
[2] Equipment decontamination procedures are as follows:

[a] As much gross contamination as possible (e.g., residual soil) will be removed from equipment at the sampling area.

[b] Sampling equipment should be washed thoroughly and vigorously with DI water containing nonphosphate, laboratory-grade detergent, such as Alconox or its equivalent. A bristle brush or similar utensil should be used to remove remaining residual contamination. Limited quantities of decontamination liquid (wash and rinse) will be generated during the decontamination process and are allowed to passively infiltrate into the ground surface.

[c] Personnel will then thoroughly rinse decontaminated equipment with DI water.

[d] Personnel will air dry equipment where dust or other fugitive contaminants will not contact it, or they can use a clean, disposable paper towel to assist the drying process. All equipment must be dry before reuse.

[e] An alternative decontamination method requires the use of masslinn dust cloths. The sampling equipment will be thoroughly wiped down using the masslinn dust cloths. Masslinn dust cloths will be surveyed for residual radioactive contamination following use at a mine and will then be disposed of as municipal waste unless the survey readings exceed twice background as measured in CPM. If the contamination survey of the equipment shows that there are no elevated readings (i.e., twice background as measured in CPM) and that it is free of radioactive contaminants, after being wiped down, the equipment, except the discarded masslinn cloth, may be reused for sampling. If the contamination survey shows elevated readings after the equipment has been wiped down, then decontamination methods as described above in step [b] will be employed.

[f] Decontaminated equipment should be stored in plastic bags to protect it from fugitive contaminants during transport between mines or decontaminated before each use. Decontaminated equipment should be stored at a secure, unexposed location away from adverse weather and potential contaminant exposure. If equipment cannot be protected from fugitive dust during transportation, it must be decontaminated before use.

C3.5 Sample Shipment

[1] Workers will transfer samples from the transport vehicle to the designated radioactive materials area in the northeast corner of the soils room in Building 32 at the LMFSC. Samples must remain in the radioactive materials area until they have been surveyed, packaged, and approved for shipment to the lab.

[2] The sampling information recorded in the field on each container is transferred to a Microsoft Excel spreadsheet.

[3] A field team member completes sample labels and applies them to the sample containers.

[4] Workers provide the Microsoft Excel spreadsheet information to the LMS laboratory coordinator for production of the EQuIS database-generated COC forms.

[5] As a QC step, the field team member who completed the Microsoft Excel spreadsheet verifies the accuracy of the information on the COC form when returned from the LMS
laboratory coordinator, then signs and dates the COC form. The COC form accompanies the samples during shipment.

[a] COC forms remain with the soil samples while they are held in the radioactive materials area in Building 32 at the LMFSC.

[6] Before shipping the samples:

[a] All soil samples will be sealed and placed in a cooler. COC forms are placed in a plastic bag inside the cooler.

[b] A contamination and dose rate survey will be performed on the sample shipment cooler by a qualified radiological control technician. The survey will be documented in writing and placed in the cooler with the sample COC forms.

[c] The lid will be securely taped shut and a custody seal placed on the cooler.

[d] The cooler will be stored in the radioactive materials area until authorization for shipment is received from the LMS laboratory coordinator.

When the LMS laboratory coordinator gives authorization for sample shipment, a Shipping Request form (LMS 1051) will be filled out, and the sample cooler(s) will be taken to Building 2, Shipping and Receiving, for shipment.

Table C2. Sample Container, Preservative, and Holding Time Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Matrix</th>
<th>Method</th>
<th>Sample Container</th>
<th>Preservative</th>
<th>Holding Time</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected metals</td>
<td>Soil</td>
<td>SW-846 6020/7470A</td>
<td>250 mL container</td>
<td>None</td>
<td>6 months</td>
<td>None</td>
</tr>
<tr>
<td>Soil pH</td>
<td>Soil</td>
<td>SW-846 9045</td>
<td>250 mL container</td>
<td>None</td>
<td>As soon as possible</td>
<td>None</td>
</tr>
<tr>
<td>Radium-226</td>
<td>Soil</td>
<td>Gamma radiation spectrometry</td>
<td>250 mL container</td>
<td>None</td>
<td>NA</td>
<td>None</td>
</tr>
</tbody>
</table>

Notes:

[a] One container to be used for all analyses; larger containers may be used until the inventory is diminished.
[b] See V&V Work Plan Section 3.1, Table 1.

Abbreviation:

NA = not applicable

C4.0 Instructions for Shipping DRUM Soil Samples to a Laboratory

C4.1 General Information

If a soil sample is shipped to a laboratory for the sole purpose of testing to determine its characteristics or composition, and the package being shipped is not known to exceed surface contamination limits or package radiation dose rate limits outlined in 49 CFR 173, “Shippers – General Requirements for Shipment and Packagings,” the package or shipment shall not be identified as a Class 7 radioactive hazard and shall not be identified, labeled, or placarded as such.
C4.2 Purpose

The specific instructions below apply only to mine soil samples that have not purposefully been collected at the highest radioactivity concentration area at a mine. This instruction is written for soil samples collected that represent the “general area” or a composite of multiple samples intended to represent the average radioactivity of a specific area. Contact the LMS Radiological Control manager and a qualified LMS shipper if shipping something other than general area or composite soil samples from a mine.

C4.3 Specific Instructions

[1] Before placing the individual soil sample container in the shipping container, wipe the outside of the soil sample container (plastic container) to remove loose surface dirt or debris.

[2] Prepare the individual soil sample container so that required sample identification, the COC form, and security seal (as deemed necessary by the receiving laboratory or LMS sample custody protocol) are in place.

[3] Place the individual soil sample container into the shipping container (the shipping package, usually a project-supplied beverage-type cooler). Place and pack the soil sample containers so the containers are secure in the cooler and will not move freely about the cooler during transportation.

[4] Close the lid of the cooler but do not seal it permanently. The cooler lid will be reopened before shipment.

As these soil samples are being transported to a laboratory for testing, they are not subject to U.S. Department of Transportation surface contamination survey limits or the requirement to survey a surface area of 300 square centimeters (cm²). Use 100 cm² as the area to sample.

[7] Once the Radiological Survey Map is complete (excluding the reviewer signature), include a copy of the completed Radiological Survey Map inside the cooler.

[8] Close and seal the cooler lid in accordance with other shipping and transportation procedures.

[9] Provide the completed Radiological Survey Map to the LMS Radiological Control manager for review within 5 working days of survey completion.
Appendix D

DRUM Radiological Measurement and Data Collection Work Instructions
D1.0 Radiological Data Collection

The DRUM Program uses various instruments to collect exposure rate measurements and perform gamma radiation surveys to define the areal footprint of mining-related features and the extent of potential offsite migration of COIs generated from mines.

D1.1 Exposure Monitoring

Exposure monitoring of workers will be used to minimize personnel exposure to radiation while performing V&V fieldwork. Personnel are issued a thermoluminescent dosimeter (TLD) to record and track exposure. In instances where the TLD is not functional, the Thermo Scientific FH 40 G Multi-Purpose Digital Survey Meter or equivalent will be used to monitor worker exposure in the field. Refer to the DSP for details on exposure monitoring.

D1.2 Handheld Radiation Dose Rate Measurements

Handheld gamma radiation measurements are performed using the RadEye Personal Radiation Detector (high sensitivity gamma radiation detection and dose rate measurement tool) or its equivalent.

The instrument should be held approximately 3 ft above the ground surface, or from a feature being surveyed, for consistency. It is acceptable, however, to perform handheld gamma radiation surveys at distances less than 3 ft above the ground surface, or from the feature being surveyed, when the surveyor is attempting to identify or delineate discrete sources from dispersed sources of radioactivity.

D1.3 Gamma Radiation Survey

Gamma radiation surveys are performed using the Nuvia Dynamics Inc. model PGIS-2 or equivalent. Gamma radiation survey detectors will be positioned in a backpack fitted to the radiological monitoring lead during surveys.

The goal for survey coverage density is to collect data sufficient in degree of magnitude and spatial proximity to portray gamma radiation conditions encountered at the site. Data will be reviewed in the field to ensure that the gamma radiation survey adequately covers the extent of the area of interest and that the spatial variations in gamma radiation are mappable with confidence across the site to support the identification of potential onsite source areas above 256 µR/hr and offsite releases above 64 µR/hr. To that end, the field team lead in consultation with the radiological monitoring lead and team geologist will define the extent of the gamma radiation survey boundaries based on a field evaluation of the disturbed area boundary. Adjustments to the disturbed area boundary may be made during this presurvey evaluation.

The distance between adjacent transects (parallel gamma radiation survey lines) will be established in the field to ensure an adequate degree of coverage based on the approximate surface area of the mine and the procedures described below. Practical considerations such as safety, terrain, and natural obstructions will dictate distances between transects. A minimum of one transect will be surveyed across a waste rock pile or other areas that will be soil sampled. To ensure the extent of elevated gamma radiation is mapped, transects will extend until the
surrogate background gamma radiation value, as described below, is encountered (see Section D2.2).

D2.0 Collection of Gamma Radiation Data

D2.1 Background Gamma Radiation Data

The background gamma radiation collection and background soil sample collection processes are conducted at the same plot. See Appendix C for more information regarding location of soil and gamma radiation background sample plots. Background radiation data will be used to document specific baseline conditions to which individual mine COIs and gamma radiation data may be compared. A gamma radiation value of 20 µR/hr will be used to establish the exterior margins, or boundaries, of gamma radiation surveys, as described below.

Regional or mine-specific background gamma radiation measurements are obtained for each mine evaluated. These background gamma radiation values are reported on a mine-by-mine basis and are intended to provide a baseline assessment of characteristic conditions at similar areas undisturbed by mining activities.

Background gamma radiation may be variable over relatively limited distances. Factors that contribute to this variability include the degree of mineralization in multiple strata and the variability of the colluvial thickness which may exist at either the background measurement area or areas adjacent to mines. Furthermore, a degree of spatial variability may be introduced because regional gamma radiation background values are preferred to mine-specific gamma radiation background values.

Gamma radiation background values will be collected as described below:

- Select a common soil and gamma radiation background location. Section 5.3 and Appendix C of the V&V Work Plan describe the selection of both regional and mine-specific background sample locations.

- Gamma radiation data will be collected from the background soil sample plot by traversing the area using the gamma radiation survey instrument. A minimum of 60 gamma radiation measurements will be made and recorded during the traverse(s) of the background sample location.

D2.2 Collection of Gamma Radiation Data

The gamma radiation survey is performed to obtain radiological data that represent the magnitude and spatial distribution of gamma radiation across the mine from which potential onsite sources and areas of offsite transport can be identified. In order to do so, field teams will use the following procedure. If mine-specific conditions require deviation from this procedure, such conditions will be documented, and an explanation of any alternative procedures which were implemented will be provided so that there is no ambiguity as to the gamma radiation survey information. As described in Section 5.6.2 of the V&V Work Plan, a gamma radiation value of 20 µR/hr will be used to bound the gamma radiation surveys at mines.
The field team lead, in consultation with the radiological monitoring lead and team geologist, will define the extent of the gamma radiation survey boundaries based on a field evaluation of the extent of the disturbed area. In general, the areas to be surveyed will consist of the field-defined disturbed area and the end, or termination, points of individual transects, taking into account adjacent topography and safety considerations. Transects will terminate when the surrogate 20 μR/hr background gamma radiation value is encountered and recorded on the gamma radiation survey instrument. Therefore, the termination points of transects will typically be beyond the margins of the disturbed area. Safety considerations, geologic conditions, or topographic constraints may require early termination of a transect. In such instances, the radiological monitoring lead and the team geologist or field team lead must make detailed field observations, which are documented in notes describing the conditions encountered.

When practicable, adjacent, parallel transects will be walked to complete the gamma radiation survey. However, natural obstructions and other physical barriers may prohibit walking parallel paths. Under these circumstances, nonlinear paths and patterns, including paths parallel to the disturbed area boundaries, may be employed in order to capture gamma radiation data which best represent site conditions. In these instances, the radiological monitoring lead will use best professional judgement to obtain a representative gamma radiation survey of the mine. Such judgement must take into account the goal of obtaining gamma radiation data representing the accessible portions of the mine and the requirement to walk beyond the disturbed area until the 20 μR/hr value is measured. When site conditions require a deviation from the parallel transect measurement method, the radiological monitoring lead and field team lead must make observations, which are documented in detailed notes describing the conditions encountered.

For most mines, the distance between adjacent transects will be established at the discretion of the field team lead and radiological monitoring personnel and may vary between 20 and 50 ft, depending on site conditions. However, adjustments to this spacing may be made in the field to ensure an adequate degree of coverage based on the approximate surface area of the mine. If transect spacing greater than 30 ft is used, the field team lead will determine if areas of additional transects (fill-in) are required. The distance between parallel transects will not exceed 50 ft for most mines, unless prohibitive topographic conditions are encountered and documented, according to Section 5.7 of the V&V Work Plan. Practical considerations such as safety, terrain, and natural obstructions will dictate actual distances maintained between adjacent transects.

While 20 to 50 ft transect spacing reliably documents site conditions for most mines surveyed, for larger mines where the disturbed area exceeds 10 acres, it is appropriate to increase the transect spacing to as much as 100 ft. This increased spacing is useful to efficiently collect the screening level data needed to evaluate site conditions for large mines. When large mines are encountered during V&V activities, the field team lead, after consultation with the radiological control technician, will contact the V&V lead for approval to measure transects with a spacing up to 100 ft. When a request to alter the gamma radiation measurement method is approved by the V&V manager, the team will conduct a gamma radiation survey with transects at the approved spacing. The use and approval of the expanded transect spacing will be documented by the field team lead.
The following protocols will be employed when implementing an expanded transect spacing:

- If gamma radiation measurements near the margin of the disturbed area that meet or exceed 64 µR/hr are encountered, additional measurements will be made between the 100 ft transects to bracket or delineate the area of elevated gamma radiation.

- The team will complete perimeter gamma radiation survey measurements outside the disturbed area boundary to document the absence or presence of sediment shed with elevated gamma radiation (64 µR/hr). This could occur concurrently with the demarcation of the disturbed area.

- Existing sediment shed sampling protocols will be employed if elevated gamma radiation (64 µR/hr or greater) is encountered.

- Opportunistic sampling protocols will be employed when sediment migration (with a gamma radiation signature less than 64 µR/hr) onto adjacent private property is visually observed.

Gamma radiation transects will be measured beyond the margins of the disturbed area or sediment shed until the surrogate gamma radiation value of 20 µR/hr is encountered and recorded or until the survey is conducted for 60 ft from the margin of the disturbed area, whichever comes first. The radiological monitoring lead will use a distance of approximately 30 ft from the edge of the disturbed area or sediment shed as a waypoint to compare the gamma radiation survey value to the gamma radiation value of 20 µR/hr. At the 30 ft point, or sooner at the discretion of the radiological monitoring lead, the gamma radiation survey data will be compared to the surrogate gamma radiation value of 20 µR/hr. If the gamma radiation survey value is less than or equal to 20 µR/hr, that transect will be considered complete. If the gamma radiation survey value is greater than 20 µR/hr, the radiological monitoring lead will continue walking the current transect until the gamma radiation survey value is equal to or less than 20 µR/hr. If the gamma radiation value of 20 µR/hr is not encountered at 60 ft from the disturbed area boundary, the transect measurement will be terminated, and detailed field notes will be created by the radiological monitoring lead in consultation with the team geologist to document such a condition. If geologic conditions, obstacles, or safety hazards prevent completion of the gamma radiation survey as described, this information will be documented in the field notes.

The severity of slopes or other topographic obstacles which prohibit safe access to an area may prevent the completion of gamma radiation surveys. In some instances, only the accessible portions of the crest or toe of a waste rock pile will be surveyed due to topographic or other physical limitations. In these cases, detailed field notes and accompanying photographs will be provided to describe the circumstances and limitations which caused early termination of the gamma radiation survey, or which dictated that only discrete portions of an area were surveyed. Notes should include a description of the condition(s) that prohibited completion of the survey. In addition, observations of the area not surveyed should be provided to the extent possible, including a description of waste rock (e.g., estimated area, mineralization, or water seepage).

Following completion of the gamma radiation survey, data will be reviewed in the field to ensure that the survey adequately covers the extent of the area of interest. This QC check will be made by the field team lead and radiological monitoring lead in consultation with the team geologist. The survey will be considered complete if a determination is made that the data adequately represent the accessible areas of the site. Such a determination will include consideration of (1) the ability to complete the survey so that the gamma radiation value of 20 µR/hr was
encountered, (2) the adequacy of transect spacing for the area evaluated, (3) whether the data are sufficient to document the presence of onsite sources, and (4) whether sediment migration occurred. If a determination is made that the data are inadequate, those areas that require additional information will be identified, and additional gamma radiation survey data will be collected (or conditions that prohibit further data collection will be documented).

The field data QC check will be made by importing the real-time gamma radiation survey data and an aerial image of the mine onto a field computer. The gamma radiation data will be displayed over the aerial image so the sufficiency of the extent of the survey, adequacy of transect spacing, and adjacent gamma radiation conditions, including offsite migration potential, may be evaluated before the field team leaves a mine. Field workers will save the image, which depicts the combined gamma radiation survey data and the aerial image for use in data validation.

In the event that an aerial image for a mine is unavailable, the QC check will be completed without the benefit of the image. In these cases, the gamma radiation data will be evaluated before leaving the mine so that the sufficiency of the extent of the survey is confirmed (including an assessment of whether the gamma radiation value of 20 µR/hr was encountered and whether the data are sufficient to document whether offsite sediment migration occurred). In these circumstances, the radiological monitoring lead will exercise particular care in the field to collect the necessary amount of survey data at and adjacent to a mine.

D3.0 Field Operation of the Nuvia Dynamics Inc. PGIS-2 Gamma Radiation Scanning System

D3.1 Scope

This work instruction provides guidance for performing gamma radiation surveys using the Nuvia Dynamics Inc. model PGIS-2 scanning instrument or equivalent. The collected gamma radiation survey results will be compiled and presented in a graphical format so survey results can be used to ascertain the potential radiological risks at the mine.

D3.2 Roles and Responsibilities

D3.2.1 Radiological Control Personnel

Radiological Control personnel, or designees, shall:

- Perform a gamma radiation survey using the Nuvia Dynamics Inc. model PGIS-2 gamma radiation scanning system.
- Provide gamma radiation survey results for processing and inclusion in the V&V report.
- Be well versed and up to date in the operation of the gamma radiation scanning systems used to collect field data at mines.
- Ensure all required actions in this work instruction are performed before, during, and after data collection is completed.
• Periodically ensure that data are being collected on the paired mobile PC or data collection interface unit.

• Ensure that completed records are handled in accordance with Records and Information Management (LM-Policy-1-11-1.0).

D3.3 Operation of the Nuvia Dynamics Inc. PGIS-2 Gamma Radiation Scanning Detector System

See the PGIS-2 User’s Quick Reference Manual at the end of Appendix D.

D3.4 DRUM Standard Operating Procedure for After Calibration Response Check

D3.4.1 Introduction

D3.4.1.1 Purpose

This procedure provides instructions for determining radiation instrument response to a gamma radiation source. These checks are performed to ensure the stability of instrument operation between calibrations.

D3.4.1.2 Scope

This procedure applies to DRUM-specific equipment for gamma radiation surveys.

D3.4.1.3 Applicability

This procedure applies to portable radiation survey instrumentation used to detect ionizing radiation. It is not applicable to non-DRUM gamma radiation surveys.

D3.4.2 Precautions, Limitations, and Notes

• **Precautions**: Handle sources in accordance with Radioactive Source Use and Control (LMS/PRO/S20089). Use standard ALARA principles to minimize exposure.

• **Limitations**: Personnel using this procedure must be currently qualified as radiological control technicians or task qualified.

• **Notes**: Portable radiation survey instruments are required to be source-response checked daily to ensure the PGIS-2 is working correctly.

The after-calibration source response (ACSR) check should be performed promptly upon receipt of an instrument following calibration.
D3.4.3 Prerequisite Actions

[1] Inspect the PGIS-2 to ensure that the calibration is still current.
[2] Check the batteries to ensure that sufficient battery strength is available.
[3] Check the physical condition of the instrument to ensure that there is no obvious damage that might affect proper instrument response.

D3.4.4 Frequencies

[1] Perform an ACSR check:
 [a] Before use in the field following calibration.
 [b] If a new source is to be used to perform daily response checks.
 [c] As a necessity to ensure accurate data.
[2] Perform response checks before instrument use or at the discretion of the operator.

D3.4.5 Instrument Response Checks

D3.4.5.1 ACSR Check

[1] Select the correct source (in accordance with Table D1) for the type of instrument.
[2] Record the following information at the top of the After-Calibration Source Response Checks Data Sheet (LMS 1974):
 - Location (site) (e.g., LM Field Support Center at Grand Junction, Colorado)
 - Date
 - Instrument manufacturer, model number, and serial number
 - Probe manufacturer, model number, and serial number
 - Instrument and probe calibration due date
 - Radioactive check source identification number and isotope
[3] Line the source up with the sharpie markings on the PGIS-2 case (this should be directly over the crystal) with source box closed, wait 60 seconds, and record the data on the PEICore app.
[4] Record this information and the instrument response on the After-Calibration Source Response Checks Data Sheet.

Note PEI information is stored in the phone under the PEI>ARGS>DATA folder.

[5] Calculate the values 20% above and below the instrument response AND record these values in the appropriate locations on the After-Calibration Source Response Checks Data Sheet.
Table D1. Instruments and Applicable Check Sources

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Source Isotopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma radiation exposure or dose rate survey instruments</td>
<td>Cesium-137 or radium-226</td>
</tr>
</tbody>
</table>

D3.4.6 Daily Instrument Response Check

[1] Obtain the same source used to perform the ACSR check.

[2] Record the following information at the top of the Daily Instrument Response form (LMS 1974A):
 - Radioactive check source identification number and isotope
 - Instrument scale unit
 - Instrument model number and property number
 - Probe model number and property number
 - Month and year
 - Response (scale or decade)

[3] Measure the instrument using the same source-to-detector distance, geometry, and shielding as that listed on the After-Calibration Source Response Checks Data Sheet.

[5] \[IF\] the instrument response falls within ±20% of all the ACSR dose rate range, \[THEN\]:
 - [a] Initial the applicable block on the After-Calibration Source Response Checks Data Sheet.
 - [b] Release the instrument for use.

[6] \[IF\] the instrument response is outside any of the ±20% ranges, \[THEN\]:
 - [a] Export the daily response check to PEIview. Check to see if the 662 kiloelectronvolts (keV) from the cesium-137 source is registering at 662 keV on the PGIS-2-1.
 - [b] If the 662 keV is lining up, move to a different area and conduct another response check.
 - [c] If the instrument response remains outside any of the ±20% ranges, tag the instrument as defective, remove the instrument from service, and return the instrument for repair or recalibration.

D3.4.7 Records

- After-Calibration Source Response Checks Data Sheet
- Daily Instrument Response
- PGIS-2 digital data to V&V gamma radiation drive
Appendix E

Risk Scoring Assessment
E1.0 Defense-Related Uranium Mines Risk Scoring Assessment

The Defense-Related Uranium Mines (DRUM) Program risk scoring process is designed to optimize risk evaluation by providing flexibility to the risk evaluator. This scoring process uses a two-part approach for identifying mines with no known hazards (i.e., a “none” ranking) and for prioritizing mines with hazards into high-, medium-, and low-priority categories. The overall approach focuses first on ranking primary site hazards (both physical safety and potential human health risks) and secondarily on the scoring of modifying factors. One objective of the first step is to identify mines that are at opposite ends of the hazard spectrum: (1) those that have no physical hazards or human health risks and likely require no additional consideration and (2) those that pose clear physical hazards or potential human health risks and would benefit from safeguarding (i.e., those that are high-priority). The emphasis in this prioritization approach is to put mines that pose similar hazards into categories.

Initially, rankings are based on the following possible hazards: physical hazards that are structures (e.g., an ore chute), physical hazards that are mine features (e.g., an adit or subsidence feature), and potential long-term exposures causing human health risks (gamma radiation, chemical constituents, and radium-226). Physical hazards and potential human health risks for a mine are first designated as “none,” “low,” “medium,” or “high” based on their severity. These rankings indicate whether hazards or potential risks are present or not.

Scores for the modifying factors are provided in the V&V report risk scoring assessment and are applied to the risk screening process to arrive at a final mine ranking in the risk roll-up report. Modifying factors include (1) potential ecological and environmental impacts, (2) access and suitability criteria, and (3) the hazard complexity criterion. The scores and information for the physical hazards, potential long-term exposures causing risks to human health, and modifying factors are integrated into a DRUM risk roll-up report to assist partner agencies with management decisions. Application of the modifying factors may increase or decrease the initial mine scoring and ultimately its management priority. For instance, mines that have a score of 0 (or “none”) for both physical hazards and potential human health risks are considered to possess no known risks and require no additional consideration. However, agencies may want to consider the ecological scoring results for other reasons before making management decisions. For example, safeguarding may be considered for mines that present no physical hazards or potential human health risks but where a hazard to migratory birds may be easy and inexpensive to mitigate by safeguarding specific small hazardous features (Harris et al. 2019).

The evaluation criteria for each of the five scoring categories or factors are designed to separate out the mines that would benefit from safeguarding from those that clearly would not. The primary ranking categories are intended to provide a relative measure of the severity of the hazards or potential risks that exist at a given mine; the modifying factors provide an indication of the likelihood that risks posed by each hazard will be realized. The numerical scores for each modifying factor are less important than the relative high-to-low ranking for physical hazards or human health risks.

The overall objective and approach for the two primary evaluation categories and three modifying factors are discussed further below.
E2.0 Physical Hazard Evaluation

The overall score in this category is based on the feature at the mine site posing the greatest hazard (sites with multiple physical hazards are addressed using the complexity modifying factor). Only mines with a feature that could result in death or severe injury (e.g., an open vertical shaft) are ranked “high” and receive a score of 3. If a mine has no features that pose a physical hazard greater than that of the surrounding topography, the mine receives a score of 0.

A “medium” score is given to mines that have physical hazards that are attractive to visitors and could result in a moderate injury (e.g., open portals, unstable structures). Mines that are categorized as “low” risk have features that could result in moderate injury (e.g., short falls, sprains) but are not particularly attractive to visitors and could be easily avoided (e.g., a highwall visible from upslope, vertical drill pipes extending above the ground surface). Agencies may want to reclaim these mines to return a site to more natural conditions, but they do not constitute a significant risk.

E3.0 Human Health Risk Evaluation

The human health primary scores are based on gamma radiation surveys for the site and on the composite analytical sample(s). Mines receive separate gamma radiation, chemical, and radium-226 scores, as these represent different types of exposure and different potential areas of exposure (i.e., sitewide exposure versus exposure to gamma radiation via the waste rock pile with the highest risk ratio or highest radium-226 concentration).

DRUM Program–specific gamma radiation screening values of 64 µR/hr and 256 µR/hr above background were developed that equate to dose levels of 25 millirem (mrem) per year and 100 mrem per year for a hypothetical 2-week recreational (camping) scenario (Brown 2017). For purposes of scoring mines based on gamma radiation survey results, a lower threshold of 32 µR/hr above background (half the 64 µR/hr exposure level) was used, which equates to approximately a 12.5 mrem dose for a 2-week camping scenario. The 32 µR/hr level coincides approximately with EPA’s protective dose level recommendation of 12 mrem/year (EPA 2014). This additional benchmark of 32 µR/hr above background is intended to improve the certainty that a mine does not present a hazard from gamma radiation. If the average gamma radiation dose rate is below the 32 µR/hr screening level, the mine scores a 0. Mines with average gamma radiation dose rates between 32 µR/hr and 64 µR/hr, between 64 µR/hr and 256 µR/hr, and greater than 256 µR/hr receive scores of 1, 2, and 3, respectively.

For scoring purposes, all dose rates listed are above background.

Note: Analytical results from waste rock composite samples are compared with BLM human health recreational screening levels (BLM 2017) and removal management levels (BLM 2019) for chemical constituents. Removal management levels were developed by BLM (2019) to help determine when removal of mine-related wastes may be appropriate. The removal management levels are related to the recreational screening levels, but removal management levels use a threshold risk for carcinogens of 10⁻⁴ and an equivalent hazard quotient of 3 for noncarcinogens.
Recreational screening levels, on the other hand are conservative and assume a threshold risk of 10^{-6} for carcinogens and an equivalent hazard quotient of 1 for noncarcinogens.

Risk ratios are calculated by dividing the analytical results from the composite samples by the recreational screening levels and the removal management levels for each analyzed chemical COI. For each screening level, all individual risk ratios are summed to provide a cumulative risk ratio for each waste rock sample. A risk ratio greater than 1 (individual or cumulative) is an indication that a mine site could pose potential human health risks assuming the recreational (camping) scenario occurs.

Chemical risk scores are determined using the chemical risk criteria applied to the waste rock sample with the highest cumulative risk ratio. If the cumulative risk ratio for all constituents combined is less than 1 based on the BLM recreational screening levels, the chemical risk is assigned a score of 0. If the cumulative risk ratio is greater than 1 and less than or equal to 14, the chemical risk is assigned a score of 1. If the cumulative risk ratio is greater than 14 for the recreational screening levels but less than 1 for the removal management levels, the chemical risk is assigned a score of 2. If the cumulative risk ratio for the removal management levels is greater than 1, the chemical risk is assigned a score of 3.

A 2020 update of the human health risk evaluation process added the concentrations of radium-226 as another formal criterion of evaluation. Since the program began, radium-226 concentration (measured in picocuries per gram [pCi/g]) has been recorded as part of the waste rock sampling, and informal screening information has been included in the individual V&V reports. However, radium-226 was added as a separate evaluation category because elevated levels could result in a removal action by the partner agencies. Brown (2017) evaluated concentrations of radium-226 in soil that would correspond to the 25 mrem/year and 100 mrem/year benchmarks assuming the same recreational-use scenario, which are 37 pCi/g and 147 pCi/g, respectively. In addition to these two thresholds, a third one was added that is analogous to the removal management levels used to evaluate the chemical constituents in waste rock piles. This level, which is 294 pCi/g, assumes a 1-week camping scenario on the waste rock pile with the highest radium-226 concentration at a mine. If the highest radium concentration at a mine is less than the 37 pCi/g screening level, the mine receives a score of 0. Mines with radium-226 concentrations between 37 pCi/g and 147 pCi/g, between 147 pCi/g and 294 pCi/g, and greater than 294 pCi/g receive scores of 1, 2, and 3, respectively.

A nonzero score for the human health risk evaluation is an indication that elevated contaminant concentrations are present and could present risks if the mine site is used as a campsite for a 2-week period.

E4.0 Ecological and Environmental Hazard Evaluation

The ecological and environmental scoring approach ranks both physical hazards and the presence or absence of potential radiological and chemical risk pathways. The two types of hazards are given separate scores. If a given physical feature poses multiple hazards (e.g., to both special-status species and migratory birds), the feature is assigned only the highest score (i.e., a single feature is not scored twice).
A mine will receive a high score in the physical hazard category if evidence of a special-status species or designated critical habitat for a threatened or endangered species is present within 0.25 mile of the mine and there is a potential physical hazard to that species. Special-status species are federally listed or proposed for listing as threatened or endangered; state-listed as threatened, endangered, or sensitive; identified as sensitive by BLM, the U.S. Forest Service, or tribal authorities in the district in which the mine is located; or listed as U.S. Fish and Wildlife Service Birds of Conservation Concern for the region in which the mine is located. Special-status species are noted in the risk ranking tables but only receive a score when combined with a potential hazard.

The objective of the risk pathway portion of the ecological and environmental hazard evaluation is to provide an indication of whether a pathway may exist for the exposure of ecological receptors to mine-related contamination, primarily through surface water or the food chain. A gamma radiation measurement greater than 64 µR/hr is used as a qualitative indicator of mine-related contamination for both radioactive and nonradioactive contaminants that could indicate a complete pathway. A single elevated measurement may result in a nonzero score in this category because it is an indicator that a pathway could exist; it is not a determination that a pathway does exist. A mine receives a nonzero score if there is evidence of contamination migration from the disturbed area (a potential pathway could exist) or if contamination from the mine has reached surface water (a pathway is assumed to exist). A mine also receives a nonzero score if contamination is present on a waste rock pile with significant amounts of edible vegetation because this also indicates the potential for a pathway. A zero score indicates that no significant risk pathways are likely to exist at the mine. A nonzero score indicates that a closer evaluation of the chemical and radiological data may be needed before concluding that the mine does or does not present a potential ecological threat.

E5.0 Access and Suitability Evaluation

Scores in this category reflect mine visibility (i.e., attractiveness), accessibility, and suitability. Separate scores are given for access and suitability. Access is relevant to both physical hazards and human health risks with greater accessibility resulting in a higher probability that the hazard can lead to adverse impacts. The suitability score is most relevant in modifying the human health risk ranking; if a mine would likely not be used as a campsite because it is of inadequate size or it has unsuitable topography, then the assumed exposures are unlikely to occur.

Higher access scores are assigned to mines with greater ease of access (e.g., a mine that is accessible by a two-wheel-drive vehicle scores higher than one that requires a hike). A mine gets a single access score based on the easiest method of accessibility (i.e., it does not get a score for both accessibility by vehicle and accessibility on foot). If mine features are readily visible and considered to be an “attraction,” they are also scored higher (features increase the likelihood that people could visit the mine). A high score in the access category is only important when coupled with a physical hazard or human health risk; if no hazards are present, the access score is irrelevant. However, if physical safety hazards or potential human health risks are present, the access score is important in determining the likelihood that they will be encountered.

Suitability is an indication of whether a mine site can be used for the camping scenario. A mine needs to be of adequate size and appropriate topography for a camping scenario to be feasible.
Direct evidence that a site has been used for this purpose is considered to be a better indicator of this use than the distance to residences or other populated places. A mine receives the highest suitability score if there is direct evidence of camping (e.g., the presence of a fire ring). A lower score is assigned if a site has suitable conditions for a campsite but shows no evidence of human use. A score of 0 means that the mine site is too small for exposures to be feasible or that topography or size precludes this use (e.g., no flat or cleared areas to set up a tent).

E6.0 Complexity Evaluation

The complexity factor is a measure of the degree of additional physical hazards (in addition to the primary hazard) at a mine site. This factor is used to determine if an initial hazard ranking should be elevated due to the presence of multiple hazards. If numerous physical hazards are present, the chances are increased that a visitor could be injured, and the mine might be elevated in priority over a mine with fewer hazards.

E7.0 Overall Implementation Approach

DOE will perform the initial hazard scoring of mines based on the physical and human health characteristics of the mines and the attached scoring criteria. Partner agencies will be provided with the initial hazard ranking and the modifying factors scoring for each mine. In addition, DOE is providing risk roll-up reports for groups of mines that summarize the physical hazards and potential human health risks along with the modifying factors to provide recommendations on prioritization and safeguarding decisions. The individual V&V reports contain the data used to develop the risk roll-up reports (DOE 2020).
Primary Hazards

PHYSICAL HAZARD EVALUATION—PHYSICAL FEATURES

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Potential Impact</th>
<th>Priority Score</th>
<th>Comments and Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one physical feature that could cause serious injury or death to people (e.g., an open shaft, a subsidence that is open to the subsurface, or an unstable adit that can be easily entered)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one physical feature that could cause a moderate injury to people and may be attractive to visitors or not easily seen (e.g., a stable adit that can be easily entered, an unstable adit that is difficult to enter, or a needs maintenance adit that is not easily entered)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one physical feature that could cause a minor to moderate injury but is not attractive to visitors and could be easily avoided (e.g., a prospect, a 4 to 6 ft trench with steep sides but that can easily be seen from a distance, or a deep water-filled feature.)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No inherent hazards: no increased injury potential compared to the surrounding area

SUM Physical Hazard Evaluation Score

3 = High, 2 = Medium, 1 = Low, 0 = None

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Potential Impact</th>
<th>Priority Score</th>
<th>Comments and Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one structure that could cause serious injury or death to people (e.g., a large unstable structure such as an ore chute or ore bin that may collapse)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one structure that could cause a moderate injury to people (e.g., a building or large unstable structure of moderate height)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one feature that could cause a minor to moderate injury but is not attractive to people (e.g., a building or unstable structure that is <6 ft in height)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No structures or increased injury potential

SUM Physical Hazard Evaluation Score

3 = High, 2 = Medium, 1 = Low, 0 = None

PHYSICAL HAZARD EVALUATION—STRUCTURES

HUMAN HEALTH RISK EVALUATION

Gamma Radiation Risk Criteria

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Priority Score</th>
<th>Comments and Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean gamma radiation survey result for the disturbed area of the mine that is greater than 256 µR/hr above background</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mean gamma radiation survey result for the disturbed area of the mine that is greater than 64 and less than or equal to 256 µR/hr above background</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mean gamma radiation survey result for the disturbed area of the mine that is greater than 32 and less than or equal to 64 µR/hr above background</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mean gamma radiation survey result for the disturbed area of the mine that is less than or equal to 32 µR/hr above background</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SUM Gamma Radiation Human Health Risk Evaluation Score

3 = High, 2 = Medium, 1 = Low, 0 = None

Chemical Risk Criteria

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Priority Score</th>
<th>Comments and Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cumulative risk ratio is greater than 1 for the BLM removal management levels</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The cumulative risk ratio is greater than 14 for the BLM recreational screening levels but less than or equal to 1 for the BLM removal management levels</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>The cumulative risk ratio is greater than 1 and less than or equal to 14 for the BLM recreational screening levels</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>The cumulative risk ratio is less than or equal to 1 for the BLM recreational screening levels</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SUM Chemical Human Health Risk Evaluation Score

3 = High, 2 = Medium, 1 = Low, 0 = None

Radium-226 Risk Criteria

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Priority Score</th>
<th>Comments and Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The concentration of radium-226 is greater than 294 pCi/g</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The concentration of radium-226 is greater than 147 and less than or equal to 294 pCi/g</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>The concentration of radium-226 is greater than 37 and less than or equal to 147 pCi/g</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>The concentration of radium-226 is less than or equal to 37 pCi/g</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SUM Radium-226 Human Health Risk Evaluation Score

3 = High, 2 = Medium, 1 = Low, 0 = None

Note:

- Open or needs maintenance adits and shafts do not apply.

Abbreviation: pCi/g = picocuries per gram
Physical Hazard Criteria

<table>
<thead>
<tr>
<th>Potential Impacts</th>
<th>Priority Score</th>
<th>Comments and Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A special-status species or designated critical habitat for threatened or endangered species is present on or within 1/4 mile of the mine (yes or no; list if yes)</td>
<td>Y or N<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>One or more mine features (e.g., vertical openings, vents) are present that could cause serious injury or death to a special-status species</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>One or more mine features (e.g., vertical openings, vents) are present that could cause serious injury or death to a migratory bird</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>One or more mine features (e.g., vertical openings, vents) are present that could cause serious injury or death to a species that does not have special status</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No inherent physical hazards to wildlife compared to surrounding area</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SUM Ecological and Environmental Physical Hazard Score
6 or greater = High, 3 to 4 = Medium, 1 = Low, 0 = None

Pathway Hazard Criteria

<table>
<thead>
<tr>
<th>Potential Impacts</th>
<th>Priority Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine-related contamination<sup>b</sup> has reached surface water</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mine-related contamination<sup>b</sup> has been transported (by wind or water) outside the disturbed area but has not reached surface water (i.e., a sediment shed is present)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vegetation attractive to wildlife is present in quantities greater than 10% cover on a waste rock pile that has the potential for contamination<sup>b</sup></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No potential pathways for contaminant migration evidenced by sediment shed or vegetation</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SUM Ecological and Environmental Pathway Hazard Score
3 or greater = High, 2 = Medium, 1 = Low, 0 = None

Notes:

^a If “No,” mine cannot receive a score of 5 (i.e., “high”).
^b A gamma radiation measurement greater than 64 μR/hr (not adjusted for background values) is used as an indicator of mine-related contamination for both radioactive and nonradioactive contaminants.
ACCESS AND SUITABILITY EVALUATION

Access Criteria

<table>
<thead>
<tr>
<th>Potential Impacts</th>
<th>Priority Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine is readily accessible from a maintained road using a standard two-wheel-drive passenger vehicle</td>
<td>3</td>
</tr>
<tr>
<td>Mine is not accessible by standard two-wheel-drive passenger vehicle; mine is accessible by four-wheel-drive vehicle or a utility task vehicle</td>
<td>2</td>
</tr>
<tr>
<td>Mine is inaccessible by four-wheel-drive vehicle or utility task vehicle</td>
<td>0</td>
</tr>
<tr>
<td>Mine access requires an easy to moderate hike of <1 mile across relatively flat terrain</td>
<td>2</td>
</tr>
<tr>
<td>Mine access requires a hard hike (e.g., bushwhacking, grade greater than 10% slope, no defined trail, or >1 mile)</td>
<td>0</td>
</tr>
<tr>
<td>Mine feature is visible from a maintained road that is passable by a vehicle, particularly if an attractive nuisance feature is present</td>
<td>3</td>
</tr>
<tr>
<td>Mine is partially visible from a maintained road</td>
<td>2</td>
</tr>
<tr>
<td>Mine is not visible from a maintained road</td>
<td>0</td>
</tr>
</tbody>
</table>

SUM Access Score

5 or greater = High, 3 to 4 = Medium, 2 = Low, 0 = None

Suitability Criteria

<table>
<thead>
<tr>
<th>Potential Impacts</th>
<th>Priority Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign of human use associated with camping onsite (e.g., fire ring, abandoned tent stakes, or other related equipment) is present from the period after the mine was abandoned</td>
<td>6</td>
</tr>
<tr>
<td>Sign of human visitation (e.g., trash, vandalism, tire tracks) is present from the period after the mine was abandoned</td>
<td>3</td>
</tr>
<tr>
<td>No sign of human use or visitation is present from the period after the mine was abandoned</td>
<td>0</td>
</tr>
<tr>
<td>The total disturbed area is greater than 2 acres and includes an area that would be suitable for camping. Note the estimated size of the total disturbed area and its mean gamma radiation value in the comments and observations.</td>
<td>3</td>
</tr>
<tr>
<td>The total disturbed area is 1/4 to 2 acres and includes an area that is suitable for camping</td>
<td>2</td>
</tr>
<tr>
<td>The total disturbed area is less than 1/4 acre or contains no areas that are suitable for camping</td>
<td>0</td>
</tr>
</tbody>
</table>

SUM Suitability Score

6 or greater = High, 3 to 5 = Medium, 2 = Low, 0 = None

COMPLEXITY EVALUATION

Complexity Criteria

<table>
<thead>
<tr>
<th>Potential Impacts</th>
<th>Priority Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine is extensive with more than one open entry, has vertical walls or steep slopes that could cause injury, or has unstable structures.</td>
<td>3</td>
</tr>
<tr>
<td>Mine has one open entry and some other features that could cause injury (e.g., steep slopes, unstable structures). Note the number of hazardous mine features and structures in the comments and observations.</td>
<td>2</td>
</tr>
<tr>
<td>No reason to increase the score based on mine complexity (e.g., no subsurface access and only minor disturbances that are not likely to cause injury)</td>
<td>0</td>
</tr>
</tbody>
</table>

SUM Complexity Score

3 = High, 2 = Medium, 0 = Not applicable
Appendix F

Mine-Related Features
F1.0 Introduction

Mines may contain facilities, structures, improvements, and land disturbances which may pose a risk to human health and environment. Such risks may include (1) physical hazards from mine features or structures such as vertical shafts, adits, open pits, highwalls, subsidence features, prospects, headframes, other structures, and storage facilities; (2) hazards from landform modifications such as access roads and drainage diversions; and (3) risks from elevated concentrations of elements in piles of ore, waste rock, and soil stockpiles.

An inventory of mining-related features will be accomplished to the extent that these may be safely accessed. Some of the mine-related feature types catalogued in the mine inventory are shown in Figure F1 and are described in this appendix. All safely accessible features will be located using a handheld GPS unit and photographed for future reference. The current condition of all features and their safety hazard potential will be recorded. The integrity of any previous reclamation or remediation efforts and safeguards will also be observed and recorded.

This appendix describes the procedures to be used when collecting field data. Terminology used, methods of collecting and reporting DRUM Program-specific information, and precautions to be exercised when collecting these data are described in this appendix.
F2.0 Symbol Use

Different mining-related features are denoted by specific symbols. This is done for ease of understanding and for clarity in graphic presentations of data. Figure F2 depicts the GIS style for typical features identified at DRUM Program mines.

![Symbol Use Diagram]

Figure F2. GIS Style for Typical DRUM Program Mine Features

F3.0 Inventory and Environmental Sampling Checklists and Data Transfer Requirements

F3.1 Inventory Features

Inventory of mine features may be completed by partner agencies or LM. Regardless of the entity collecting the data, the information contained in the following checklist will be obtained during the inventory.
The list of information to be collected is comprehensive, and most of the items are essential to the subsequent environmental sampling task and risk scoring assessment. However, a few items, such as the location of fences, wells, tanks, and utility drops, are noted for future use by land management agencies. To be useful for the purposes of the DRUM Program, latitude and longitude must be collected with a differential GPS unit that has sub-meter accuracy using North American Datum of 1983 (NAD 83) as a datum in the appropriate Universal Transverse Mercator (UTM) zone’s projected coordinate system.

Checklist of information to be collected by the inventory team:

- Artifacts
- Debris
- Drill holes
- Erosion line features
- Fences
- Gates
- Highwalls
- Horizontal openings (adits)
- Hydrology
- Mine access information
- Mine site location
- Mine visitation
- Ore
- Other pertinent mine-specific data
- Perimeter of waste rock pile(s), including toe, crest, and sample area
- Pits and trenches (declines noted)
- Ponds
- Prospects
- Rim cuts
- Roads
- Sediment shed areas
- Shallow excavations
- Signs
- Site use
- Structures
- Subsides
- Suitable camping area(s)
- Survey monuments
- Tanks
- Total disturbed area perimeter
- Trash
- Utility
- Vents
- Vertical openings (shafts)
- Wells

F3.2 Data Transfer Requirements

In many instances, state and federal partners will collect and provide inventory data to LM. In order to accommodate large quantities of data, a standard file structure has been established so that the information received is most useful to all parties. Partner agencies are encouraged to utilize the following formats when transferring data to their respective file transfer sites at: https://eft.lm.doe.gov.
F3.2.1 GPS data

GPS data posted to the EFT site should use a standard file structure and include a brief metadata description.

The data creator should:

[1] Create folder structure on the creator’s own network and include:
 [a] Agency name and data collection date.
 [b] .SSF folder (necessary).
 [c] .COR folder (optional).
 [d] Metadata spreadsheet.

[2] Present metadata on a simple spreadsheet summarizing the information provided including:
 [a] Data collection dates.
 [b] Organization providing data.
 [c] Name of mine.
 [d] Description of data collected.
 [e] List of data files collected.

[3] Save data:
 [a] Save .SSF and .COR files to the corresponding folder created above

[4] Save metadata.xlsx file (multiple mines can be included in one metadata spreadsheet).

[5] Transfer data:
 [a] Zip the folders into a compressed file
 [i] One zipped folder should contain all the data being transferred on that date
 (i.e., multiple mines in one zip not a separate zip for each mine)
 [b] Name zipped file: Agency _YYYYMMDD_ description
 [c] Upload the compressed (zipped) folder to the appropriate agency-specific EFT site
 [d] Notify DOE that the data have been transferred

F3.2.2 Digital Images

Digital photos should consist of JPEG images. Photos should be organized in folders that incorporate the mine name. Documentation should include the following as metadata embedded in the image or as a descriptor submitted with a corresponding image:

- Mine name or LM ID number
- Date and time of photo (embedded in photo if using geotagging)
- Photo location (latitude and longitude; embedded in photo if using geotagging)
• Zip the images into a compressed file; may need to have one zip file per mine or multiple mines together depending on size and number of photos and time to upload

• Preferred naming convention is: YYYYMMDD__description_aspect

• Notify DOE that the data have been transferred

Example GPS Metadata Sheet

<table>
<thead>
<tr>
<th>Metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPSDataTransfer YYYYMMDD__description_aspect</td>
</tr>
<tr>
<td>Data Collection Start Date:</td>
</tr>
<tr>
<td>Data Collection End Date:</td>
</tr>
<tr>
<td>Originator: Name of the person, company, or agency (or more than one of these) that collected the data</td>
</tr>
<tr>
<td>Description: General information and description of data collection activities</td>
</tr>
<tr>
<td>Mining District: Mining district or area name</td>
</tr>
<tr>
<td>Mines: List of mines included in the data collection activities</td>
</tr>
<tr>
<td>List of Data Files (.SSF) Data File Description</td>
</tr>
<tr>
<td>Include the names of all mines in the data file</td>
</tr>
</tbody>
</table>

Example Photo Metadata Sheet

<table>
<thead>
<tr>
<th>Metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photos YYYYMMDD__description_aspect</td>
</tr>
<tr>
<td>Data Collection Start Date:</td>
</tr>
<tr>
<td>Data Collection End Date:</td>
</tr>
<tr>
<td>Originator: Name of the person, company, or agency (or more than one of these) that collected the data</td>
</tr>
<tr>
<td>Description: General information and description of data collection activities</td>
</tr>
<tr>
<td>Mining District:</td>
</tr>
<tr>
<td>Mines: List of mines for all photos included</td>
</tr>
</tbody>
</table>

F3.3 Environmental Sampling Features

Environmental sampling activities will be completed by LM following receipt of data collected by the inventory team. The list of information to be collected is comprehensive; however, not all information will necessarily be collected at each mine visited as not all of these resources exist at every mine. When possible, existing information regarding paleontological resources, cultural resources, ecological units, special-status species, and other environmental resources will be obtained from the local land management agency and verified on a mine-specific basis. To be useful for the purposes of the DRUM Program, latitude and longitude must be collected with a
differential GPS unit that has sub-meter accuracy using NAD 83 as a datum in the appropriate UTM zone’s projected coordinate system.

Checklist of information to be collected by the environmental sampling team:

☐ Cultural resources ☐ Potential wetlands
☐ Ecological units ☐ Radiation data
☐ Evidence of wildlife ☐ Reclaimed features
☐ Features that could entrap wildlife ☐ Soil sampling
☐ Hydrologic features ☐ Special-status species or habitat
☐ Other pertinent mine-specific data ☐ Surface water
☐ Paleontological resources (fossils) ☐ Vegetation on waste rock piles

To assist in ensuring that all necessary information is collected and recorded at each mine sampled, QA/QC documents geared toward accounting for collection of the specific data points described above will be loaded onto field computers. An example of the DRUM Verification and Validation Work Plan Process (QA/QC) (Process Form) is attached to this appendix and described in Section 5.1 of the V&V Work Plan. The Process Form acts as a QC point as it will prompt validation that data collection was completed as described in the V&V Work Plan.

The Process Form and other data prompts will be reviewed before initiating sampling to ensure that the scope of work to be completed is identified before initiating work. The Process Form will require positive responses and signatures in the field to ensure all data appropriate to the mine sampled have been collected and recorded before demobilization from the site.

F3.4 Typical Features and GPS Data Collection Method

This section describes some of the features which may be collected at a mine. This section also contains a brief description of each feature, including whether the feature is to be collected as a point, area, and so on.

F3.4.1 Artifact

“Artifact” is a category for historical, cultural, or archeological features. An artifact is defined as an object made by a human being, typically an item of cultural or historical interest. Artifacts may be protected under NHPA.

F3.4.1.1 Artifact Collection

If an artifact is found, the location should be collected using the handheld GPS unit, photographs should be obtained, and the item should be described.
F3.4.2 Cultural Resource

A cultural resource may be defined as the physical evidence or place of past human activity (e.g., site, object, landscape, structure) or a site, structure, landscape, object, or natural feature of significance to a group of people traditionally associated with it.

Elements associated with previous mining activities may have historical or cultural value. These should be described and noted in the field but should not be handled or moved. Such elements may include trash piles, mining equipment, sweat lodges, grave sites, miner or Native American camps, arrowheads, tools, and vehicles. The individual element or collective grouping of these materials may be protected under NHPA, and it is illegal to remove, pick up, or relocate any items with historical or cultural value.

F3.4.2.1 Cultural Resource Collection

When cultural resources are encountered in the field, the perimeter of the area will be collected as a polygon feature, and single resources will be collected as points.

F3.4.3 Debris

Most mines associated with AEC production may have material associated with past mining activities which often remains onsite. Material can vary from steel cans to abandoned mining equipment. Some debris may be protected under NHPA.

F3.4.3.1 Debris Collection

Debris will be collected as a point feature with the type of debris and a description associated with the material. Significant materials and concentrated areas of small debris will be cataloged. Personnel shall exercise caution when inspecting debris; typical hazards include rusty nails, sharp edges, and animal habitation.

F3.4.4 Disturbed Area

The disturbed area is the portion of the ground surface that is impacted by mechanical mining-related activities.

F3.4.4.1 Disturbed Area Collection

The disturbed area will be located using the handheld GPS unit as a polygon to include all of the mine-related features (e.g., pad, portal, waste rock pile). Measuring the disturbed area requires traversing the entire mine, which introduces the potential to encounter all the hazards related to other features. Slips, trips, falling materials, hazardous mine entries, structures, and debris all present safety hazards that should be identified and mitigated during the course of work.

F3.4.5 Drill Holes

During the exploration phase of mine development, surface drilling may have been undertaken to define the extent of subsurface mineralization. Drill holes will cluster in areas around good
mineralization and may be used in the field to define the potential extent of a mined area. A drill hole typically consists of a 3-inch diameter steel pipe (standpipe) or a concrete or asbestos collar.

F3.4.5.1 Drill Hole Collection

A single drill hole location is recorded with a handheld GPS unit using a point feature. The point is used to define whether there are multiple drill holes present. Each individual drill hole is not mapped. Caution should be exercised around drill holes. Runoff may have eroded around the collar and affected the stability of adjacent ground. Runoff may also erode the material around the drill hole, creating cavities just beneath the surface leading to unstable conditions.

F3.4.6 Ecological Units

An ecological unit is a distinct vegetation community (e.g., rabbitbrush-dominated shrubland) within a larger vegetation type (e.g., salt desert scrub). Ecological units will be defined, mapped, and characterized during V&V fieldwork. Prefield data will assist in the collection of field data.

F3.4.6.1 Ecological Unit Collection

During the V&V fieldwork, a representative point within each ecological unit will be collected as a point feature, and a brief description of the unit will be entered as text. The successional status of the unit will be noted. Within each unit, a list of dominant species and secondary species will be recorded using the botanical name or its Natural Resources Conservation Service standardized code.

One of six cover classes will be entered for each dominant or secondary species found. Trace species will be recorded as time allows. Trace species will be noted if there is a unique feature about them (e.g., noxious weed, only present on the waste rock pile, not typical of the area). When mapping representative points of ecological units and performing extended species evaluations, personnel will exercise caution to avoid mine hazards and prevent slips, trips, and falls.

F3.4.7 Erosion Line Feature

Drainages, rills, gullies, or general linear erosion features related to a mine are collected under an erosion line feature.

F3.4.7.1 Erosion Collection

Drainages and similar features will be located using the handheld GPS unit as line features. All pertinent attributes will also be collected. When walking in or around drainages, field personnel should evaluate surficial stability and the potential for slip, trips, and falls and consider engulfment hazards.
F3.4.8 Erosion Point Feature

An erosion point is a localized erosion feature (e.g., sheet wash, soil piping, wind erosion, or slope instability) that does not warrant a line or area feature. It can also be used to map linear features (e.g., rills, gullies) that are not safely accessible or are better represented as points.

F3.4.8.1 Erosion Collection

If an erosion point is identified, the feature will be located using the handheld GPS unit, described, and photographed. When approaching erosion features, surficial stability and the potential for slip, trips, and falls will be analyzed.

F3.4.9 Evidence of Wildlife

Evidence of wildlife (e.g., bones, scat, burrowing, nesting, roosting) will be recorded, particularly evidence of game animals, migratory birds, and other birds of prey, which are protected by law. Birds of prey such as hawks, owls, vultures, and eagles have sharp talons and strongly curved beaks. Birds of prey typically nest high in cliffs, trees, and utility poles or structures. Evidence of wildlife inhabiting waste rock piles will be recorded.

F3.4.9.1 Evidence of Wildlife Collection

Personnel will collect evidence of wildlife using primarily point features. If raptors or their nests are encountered in the field, a point feature will be collected below the perch or nest. Offsets will be established and noted when appropriate.

F3.4.10 Fence

When a fence is in a mining area or near a mine (e.g., private ownership boundary), the feature will be located using the handheld GPS unit as a line feature for future reference.

F3.4.10.1 Fence Collection

If a fence is encountered, field personnel will use a GPS unit to locate the fence line to a reasonable extent, as defined by the field team lead.

F3.4.11 Gate

Gates are typically used to control access across property boundaries and are important for future work at a mine.

F3.4.11.1 Gate Collection

If a gate is present, the location will be collected using the handheld GPS unit. The condition will be documented and the gate feature photographed.
F3.4.12 Highwall

A highwall is an excavated, nearly vertical slope constructed to facilitate mining operations. It is not a natural feature. During mining operations, overburden material may be excavated to create a pad area or expose mineralized material. The remnant, nearly vertical slope created by this excavation is called a highwall.

F3.4.12.1 Highwall Collection

If a highwall is encountered, the crest or toe will be located using the handheld GPS unit as a line feature to the extent they are safely accessible. Highwalls present numerous hazards, including falls from steep slopes, falling overhead debris, tripping hazards, and surficial instability. When collecting a highwall feature, field personnel will use an offset to avoid walking near the edge and toe. If surface cracking is present, personnel will immediately move to stable ground before continuing the survey.

F3.4.13 Horizontal Openings (Adits and Portals)

An adit is a mine opening greater than 10 ft deep driven horizontally for the purpose of providing access to a mineral deposit. A portal is a surface entrance to an adit.

An adit that is inaccessible because a safeguard has been installed or a collapse has occurred will be represented with specific symbols, as described above. Safeguards are engineered structures, such as grates, closures with backfill, or bulkheads designed and constructed to prohibit human ingress into a mine. Collapses are natural failures of the mine back or adjacent slope that cause the adit to be obstructed by debris.

F3.4.14 Hydrology

Hydrology features include springs and seeps, streams, and water-filled shafts and adits. Some of these features may have been used by the mining operation or may be influenced by mining activities. Personnel will note surface water and groundwater resources (e.g., ponds, drainages, seeps, water-filled shafts or adits). Evidence of draining adits, shafts, or engineered mine safeguards will be noted as well.

F3.4.14.1 Hydrology Collection

The type of hydrology feature will be collected using the GPS unit along with the estimated flow and a description of the nature of the feature. Hydrology hazards are gauged according to the potential to be immersed in a feature such as a pond, stream, or water-filled shaft or adit. Drowning hazards must be identified and mitigated before working around hydrology features.

F3.4.15 Ore Collection

Features that meet the definition of material which appears to be ore will be located using the handheld GPS unit and recorded as field note feature polygons. Slips, trips, and falls are a hazard while surveying any mine. Field personnel should observe the area being surveyed and navigate
around any such hazards. Field crews will be cognizant of gamma radiation exposure and dose rates while working on or near suspected ore stockpiles.

F3.5 Other Information

To assist with potential risk assessment activities, the team will note nearby residences and other potentially habitable structures, towns, recreational facilities (e.g., campgrounds, trailheads), streams, and lakes within 2 miles of the mine.

F3.5.1 Paleontological Resources (Fossils)

Paleontological resources are any fossilized remains, imprints, or traces of organisms preserved in sedimentary rock. Paleontological resources are important for understanding past environments, environmental change, and the evolution of life. These resources will not be disturbed.

F3.5.1.1 Paleontological Resources (Fossils) Collection

If paleontological resources are encountered in the field, the perimeter of the area will be collected as a polygon feature. Individual features will be collected as point features. When possible, existing information from the land management agency will be assessed to determine the degree to which these resources are known by the public, as these may be an attraction to recreationists.

F3.5.2 Pits and Trenches

Pits and trenches were used frequently in historical mining where the ore was shallow and easily accessible or where overburden could be easily removed.

F3.5.2.1 Pit and Trench Collection

Personnel will collect the extent of the pits and trenches as area features. If the trench is associated with an adit, the trench will be collected separately. Decline trenches (sloping, three-sided [two sides and a floor] excavations trending from ground surface elevation to subgrade mine entrances) is a subset of trenches. Personnel shall exercise caution when approaching these features; the side-slopes are usually steep and unstable, presenting an engulfment hazard. Wildlife might use these areas as refuge.

Pits containing highwalls will be mapped as more than one separate feature. In each case, the crest of the pit (circumference) will be considered the pit feature boundary. Highwalls considered to be associated with the pit should be fully contained within the pit area. Dimensions for each feature will be recorded in GIS and in the team lead narrative. Photos will be collected and named for each feature. For pits containing highwalls, the hazard ranking will be based on the highwall. For pits not containing highwalls, the hazard ranking will be based on the pit itself.
F3.5.3 **Pond**

A pond is any feature constructed to collect water for agricultural or livestock uses or to contain stormwater runoff.

F3.5.3.1 Pond Collection

When a pond is encountered in the field, the perimeter will be located using the handheld GPS unit as a polygon feature. Before a pond feature can be surveyed, field personnel will assess the potential for drowning, slipping, tripping, and falling and for slope instability around the body of water.

F3.5.4 **Potential Wetland**

The U.S. Army Corps of Engineers defines wetlands as “areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions” (USACE 1987). Riparian areas are also associated with higher amounts of available water than surrounding areas and frequently occur along the margins of streams and water bodies. Potential wetlands include both wetlands and riparian areas which differ substantially from the surrounding ecology. When possible, existing information from the land management agency or USFWS will be assessed and verified on a site-specific basis.

F3.5.4.1 Potential Wetland Collection

The perimeter of a potential wetland will normally be collected as a polygon, but a line may be used for large features that continue outside the area of interest. When mapping the boundary of potential wetlands, personnel will use caution to avoid injuries from slope instability and from slips, trips, or falls. If surface water is present, the potential for drowning or encountering animal habitation must be recognized and addressed.

F3.5.5 **Prospect**

A prospect is an excavation related to mineral exploration activities with a depth between 4 and 10 ft from the surface vertically or horizontally into the underground. Similar in nature to an adit or shaft, a prospect is developed during exploration activities and subsequently abandoned before a mine is substantially developed. Prospects are considered a low hazard.

F3.5.5.1 Prospect Collection

The team will collect prospects as a point feature with all applicable attributes. Dimensions will be collected at the prospect, and the condition will be documented. The team will look for, and record if present, any unique identification number (e.g., tag or brass cap number utilized by the partner or state agency). Such markers are usually near the prospect. If a safeguard has been put in place that prevents human ingress to the subsurface, the feature is considered closed and will be recorded as such. Field crews will perform a cursory assessment of the integrity of mine safeguards and record their observations regarding the functionality of the safeguard. Hazards associated with prospects are similar to those presented by portals, shafts, and open excavations.
Personnel shall exercise caution when approaching a prospect, as it can present several hazards, including an unstable brow and slopes, unstable surrounding ground, snakes, rusty nails, and tripping hazards.

F3.5.6 Reclaimed Feature

In non-CERCLA actions, reclaimed features include waste rock or other portions of the mine, such as roads or ponds, that may have been recontoured or graded to a stable condition. The primary purpose of these actions is to minimize the potential for future erosion and make features blend with the original site topography. This may include covering the site with enough topsoil to enhance revegetation.

F3.5.6.1 Reclaimed Collection

Personnel will collect all features that appear to have been reclaimed. Hazards associated with reclaimed features are typically subsidence and slips, trips, and falls.

F3.5.7 Remediated Feature

Remediated features are mine features that, in CERCLA actions, have been the subject of response actions taken or Action Memoranda signed to mitigate the release or potential release of a CERCLA hazardous substance. The primary purpose of these actions is to mitigate potential risks to human health and the environment. Such features include consolidation areas or repositories.

F3.5.7.1 Remediated Collection

Personnel will collect all features that appear to have been remediated. Hazards associated with remediated features are typically subsidence and slips, trips, and falls.

F3.5.8 Rim Cut

Rim cuts are broad, relatively shallow excavations into an outcrop. Rim cuts are classified as underground openings, although they are generally wider than they are deep.

F3.5.8.1 Rim Cut Collection

The team will collect rim cuts as point features with all applicable attributes. Dimension measurements will be collected at the exterior of the rim cut, and the condition will be documented. The team will look for, and record if present, any unique identification number, (e.g., tag or brass cap number utilized by a partner or state agency). Such markers are usually near the feature. If an engineered safeguard such as a closure with backfill has been put in place that prevents human ingress, the feature is considered closed and will be recorded as such. Field crews will perform a cursory assessment of the integrity of the safeguard and record their observations regarding its functionality. Personnel shall exercise caution when approaching a rim cut, as it can present several hazards, including an unstable brow and slopes, snakes, bats, rusty nails, and tripping hazards. Personnel shall not enter under a rim cut overhang, work around unsupported ground, or step close to steep or unstable slopes.
F3.5.9 Roads

Roads may vary from improved dirt access to two-wheel tracks. These should be recorded to evaluate the ease of access to a mine. Road access from the mine to the closest maintained road will be evaluated once the most efficient way to exit has been established.

F3.5.9.1 Road Collection

The condition of the road and the ease of access should be noted. The condition of the road will be assessed to help evaluate mine accessibility attributes.

F3.5.10 Sensitive Species

Sensitive species include federally listed threatened or endangered species and special-status species designated by an agency such as BLM, USFS, states, or tribes. When possible, existing information from the relevant land management agency will be assessed and verified on a site-specific basis. Ecologists will collect evidence of the presence of sensitive species (e.g., tracks, burrows, scat, or observations of the species itself). Ecologists will also collect evidence of potential habitat for sensitive species (e.g., slopes with the proper aspect and soil type, structures that could provide bat habitat, seeps or springs). Plant samples may be collected in the field. However, suspected threatened or endangered species will not be collected, and suspected sensitive species will be collected nondestructively (i.e., remove as little of the plant as possible and do not disturb the root system). Any evidence of the presence of special-status plant or animal species will be photographed if possible.

F3.5.10.1 Sensitive Species Collection

Evidence of sensitive species or habitat will be collected as a point, line, or polygon.

F3.5.11 Shallow Excavation

A shallow excavation is a horizontal or vertical excavation less than 4 ft deep which is associated with mining activities. The field team will note the location, size, and depth of shallow excavations.

F3.5.12 Sign

A sign is a feature near or at a mine that has posted information pertaining to the mine (e.g., ownership, warning) or features near the mine.

F3.5.12.1 Sign Collection

Any signs present will be located by handheld GPS unit, described, and photographed.

F3.5.13 Site Use

When evidence of public recreation is discovered in or near a mine, a description of the type of use will be necessary for future reference. Evidence of site use includes fire rings, tent stakes,
and vehicle tracks. The feature “Site Use Other” is captured as a point feature and is utilized to identify evidence of recent use of a mine by the public when such evidence does not fall into the predefined categories of fire rings, tent stakes, and vehicle tracks. Examples may include spent bullet casings or shotgun shells, recent footprints, water bottles, or miscellaneous equipment or tools observed onsite.

F3.5.13 Site Use Collection

When a site use feature is identified, the point will be located using the handheld GPS unit, described, and photographed. When approaching a recreation-related feature, field personnel will note any physical hazards present (misfired ammunition, unburied feces, or evidence of illegal activities). If evidence of illegal activities is found, the team will immediately leave the area and contact local law enforcement.

F3.5.14 Structures

Structures, from outhouses to headframes, may be present at a mine to support the mining operation. In an area where an inhabited structure existed, cisterns are common. Structures will be evaluated for general integrity with instability noted. If underground workings are present regardless of intended use (e.g., a powder magazine), they shall be mapped as horizontal openings (see Section F3.4.13 above).

F3.5.14.1 Structure Collection

The team will survey any structure found at a mine as a point feature. Photographs and horizontal dimensions will be collected and vertical dimensions estimated. The materials used for construction (e.g., wood, tar paper, stone) will be noted in the data dictionary. Personnel shall exercise caution when inspecting structures. Typical hazards include rusty nails in boards, instability of the structure (both the overhead and floor), exposure to hantavirus, and wildlife. Personnel shall not enter or climb on structures for any reason.

F3.5.15 Subsidence

Shallow underground mines and mines with weak overburden have a high potential of collapsing from within the mine to the ground surface. This phenomenon results in circular or stove-pipe like features at the ground surface. These collapses sometimes provide access to the mined interval.

F3.5.15.1 Subsidence Collection

A subsidence feature will be located by handheld GPS unit as a point feature with the dimensions and other attributes included in the point. If the subsidence is large, a generic area feature will be used to define the lateral extent of the subsidence.

Due to the subsurface mechanisms of subsidence, most subsidences will not be visible outside of their immediate area. The extent and direction of a subsidence feature is difficult to ascertain from the ground surface. Because these features represent surficial instability, personnel shall exercise extreme caution when approaching them. All measurements and observations should be
made at a safe distance from these features. Extreme caution will be exercised above all underground mines and around all observed subsidences to prevent falls into these features.

F3.5.16 Tanks

Tanks once used to store water, air, fuel, or sewage may be present. Tanks may be found on the surface, on stilts, or buried underground.

F3.5.16.1 Tank Collection

Information collected will include an estimate of dimensions. Hazards specific to tanks include a hazardous internal atmosphere and contents that might be harmful to the environment. Personnel shall not enter tanks for any reason.

F3.5.17 Utility

Many larger mines contain older utilities (e.g., power and water drops, power poles, electrical panels) and may host modern utilities (e.g., gas lines, power lines) which may or may not be related to mining activities, but which should be recorded.

F3.5.17.1 Utility Collection

Personnel will use the point feature in the data dictionary to capture the type and description of utilities at a mine. Hazards associated with electrical power include downed and live lines that are under load or energized through induction created by wind. Downed power lines will always be treated as live and will not be approached. If a downed line is observed, the appropriate land management agency will be notified.

F3.5.18 Vents

Many underground mines will have one or more associated ventilation shafts. Typically, the larger the mine, the more vent shafts it will have, and the larger the vents will be. Vents are typically remote from the production opening (portal or shaft).

F3.5.18.1 Vent Collection

To locate and identify vents, the team will note the general bearing of the underground workings and investigate the terrain in that direction. If power lines are near the mine, the team will visually trace them and identify termination poles, which may have powered the ventilation equipment, if possible. When a vent is located, personnel will measure dimensions, take photographs, and attempt to estimate the total depth. If the vent is cased, the team will note the casing material (e.g., stovepipe, oil barrels, continuously cased). The team will note whether there is equipment access to the vent or if a road has to be improved to facilitate safety closure construction. If an engineered safeguard has been put in place at the vent that prevents human ingress to the subsurface workings of a mine, the feature is considered closed and will be recorded as such. Field crews will perform a cursory assessment of the integrity of the mine safeguard and record their observations regarding its functionality.
The team will exercise caution when approaching vents; runoff may have eroded around the collar of the vent shaft and affected the stability of adjacent ground. It is common for vent shafts to erode out from beneath casing and grout, creating an unstable condition. Mine vents and portals may exhale subsurface atmosphere. This atmosphere may contain radon progeny in excess of recommended working conditions. Generally, the radon-rich atmosphere dissipates quickly once exhaled to the outside environment. The field team will make dimensional measurements of exhaling mine features at a distance from the vents, shafts, and adits to allow atmospheric mixing and dilution to occur.

F3.5.19 Vertical Openings (Shafts)

Shafts are vertical openings that lead to an underground mine. They may be associated with support structures (headframes, ore bins, and hoists).

A shaft that is inaccessible because a safeguard has been installed or because of a collapse will be described with specific symbols, as described in Figure F2. Safety closures are permanent engineered structures and include grates, closures with backfill, or panels designed and constructed to prohibit human ingress into a mine. Collapses are natural failures of the side walls that cause the shaft to be obstructed by debris.

F3.5.19.1 Shaft Collection

Shafts will be assessed visually to estimate the size of the opening and determine if the surrounding ground, referred to as the collar, is stable. If the collar is not considered stable, the team will not get close enough to make a measurement. The location will be surveyed, and an offset established to account for the correct feature location when the point is differentially collected. If the area is considered stable (e.g., competent rock), dimensions will be measured. The condition of the shaft (e.g., closed, caved, open, partially open, subsided) will be noted within the prompts of the data dictionary. If an engineered safeguard has been constructed to prevent human ingress to the subsurface, the feature is considered closed and will be recorded as such. Field crews will perform a cursory assessment of the integrity of the mine safeguard and record their observations regarding its functionality.

Shafts present severe ground collapse and fall hazards. Shafts may be undermined or in the process of collapsing. Therefore, the surrounding ground surface will be carefully evaluated and treated with caution. The condition of the surrounding ground must be carefully assessed to ascertain its stability before approaching a shaft. The team will not approach a shaft if there is any question regarding adjacent ground stability. Personnel will never stand on a shaft closure.

F3.5.20 Waste Rock Piles

Waste rock may contain COIs and may exhibit elevated gamma radiation and thus should be sampled. Waste rock piles comprise subeconomic materials closely associated with a uranium or vanadium orebody which were discarded due to their lack of value. Some mining operations removed materials from several openings and dumped all the material in the same area, creating massive, combined waste rock piles. Some waste rock piles are near or truncated by natural drainages and steep slopes, and material may have eroded from the piles and been deposited downstream.
F3.5.20.1 Waste Rock Pile Collection

The footprint of waste rock piles will be mapped by taking GPS measurements around the outside perimeter and along the crest where accessible. If the waste rock pile is tiered or steep, GPS measurements on each tier or grade break will be collected along with the crest and toe of each waste rock pile to later estimate the volume of material. In all cases, the portion of a waste rock pile that will be sampled will be mapped using the handheld GPS unit. Representative photographs of the area around the waste rock pile will be taken to depict the overall waste rock pile, sample area, slope grade, and existing vegetation. Personnel should exercise extreme caution when traversing waste rock piles as the piles may be constructed of inherently unstable materials, presenting slip and trip hazards. Waste rock piles may have steep grades, may be inhabited by wildlife (e.g., snakes and burrowing animals), and may contain trash and other debris that pose slipping, tripping, or puncture hazards.

If one area of a waste rock pile contains significantly elevated radioactivity (e.g., two to three times higher than adjacent areas) and has anomalous visual indicators (e.g., coloration differences), it is possible that it is an ore storage area. Such observations will be noted and the area mapped and photographed, as described above.

F3.5.21 Well

Although most of the water consumed by mining activities in the southwestern United States was transported to the mine from sources in other areas, wells might be present at the mine.

F3.5.21.1 Well Collection

If wells are present, they will be located by handheld GPS unit. The location and their condition will be photographed and documented.

F3.5.22 Wildlife Entrapment Features

Features that may entrap wildlife include those that are also hazardous to humans, such as subsidence features or unstable structures. Wildlife entrapment hazards may include large features, such as subsidences and hazardous structures, as well as features that could entrap birds or small animals (e.g., dense coils of wire, open drill holes or vents [2–18 inches in diameter], or small structures from which an animal could not escape).

F3.5.22.1 Wildlife Entrapment Features Collection

A wildlife entrapment hazard may be collected as a point, line, or polygon as appropriate for the specific hazard.
Appendix G

DRUM Program GPS Procedures
This appendix presents the procedures for using the handheld GPS units employed by DRUM Program field teams. Procedures include creating a data dictionary, loading data onto the GPS unit (Trimble loading), Trimble field reference, Trimble data processing, and versioning in ArcGIS.

G1.0 Creating a Data Dictionary

After defining the features and attributes that need to be documented in the geodatabase, a data dictionary will need to be created for use in the field to guide data collection and rover file structure. Data dictionaries are used to control data collection and manipulation, establish convention, avoid inconsistency, and improve quality.

G1.1 Start a Data Dictionary file (.ddf)

[2] In the Name field, enter the project name. This is the title of the data dictionary that will appear in the TerraSync software.
[3] In the Comment field, enter the date. After every revision, the field needs to be updated.
[4] Ensure the version is set to TerraSync V5.0 and later.
G1.2 Create a point Feature (_p)

[3] In the Feature Name field, enter the first point feature name. This is the name that appears on the TerraSync software when this data dictionary is used in the field. Point features should have “_p” in the suffix to alert the GPS operator that the feature is a point feature.

[4] In the Classification options, the Point option is the default. A point feature is at a single location on the earth’s surface.

[5] The Data Dictionary Editor window displays the point feature name in the list of features. A symbol will appear to the left of the feature name in the Features dialog box. This symbol can be customized under the Symbol tab.

[6] Click OK.

G1.3 Create Attributes

Once a point feature is created, attributes can be added to quantify the feature. All attributes can be used in point (_p), line (_L), and polygon (_a) features.

[2] The New Menu Attribute dialog box appears:
G1.3.1 Menu Attribute

Menu attributes are useful when the information being stored is a defined set of options. This standardizes the entry of information and makes it quicker to enter values in the field.

[1] Select **Menu**.
[2] In the **New Menu Attribute** dialog box **Name** field, enter the first attribute name.
[3] Click **New**. The **New Attribute Value–Menu Item** dialog box appears.
[4] In the **Attribute Value** field, enter the first menu choice.

![New Menu Attribute dialog box](image1)

[5] Click **Add**.
[6] In the **Attribute Value** field, enter the second menu choice and click **Add**.
[7] Click **Close** to return to the **New Menu Attribute** dialog box. It should display the new menu attribute values.
[8] Click **OK** to create this attribute.
[9] Click **Close** to close the **New Attribute Type** dialog box.
G1.3.2 Numeric Attribute

Use a numeric attribute type to enter numeric attribute values while in the field. The minimum and maximum values help prevent incorrect entries, and a sensible default value can save time.

[1] In the New Attribute Type dialog box, select Numeric.

[2] In the New Numeric Attribute dialog box Name field, enter the numeric attribute name.

![Image of New Numeric Attribute dialog box]

[3] In the Decimal Places field, the default is 0. Change the default if the attribute values contain decimal places.

[4] The Minimum and Maximum fields limit the range of values that can be entered.

[5] In the Default field, enter a default value.

[6] Click OK to create this attribute.

[7] Click Close to close the New Attribute Type dialog box. The attribute created now appears in the Attributes field.

Note

In the field, if a value outside the range defined by the minimum and maximum values is entered, an error message appears in the TerraSync software, and the feature will not be allowed to close.

G1.3.3 Text Attribute

Text attributes are useful when the information to be stored varies for different occurrences of a feature or when a defined menu list is impractical. This attribute allows letters, numbers, and punctuation to be used for each attribute.

[2] In the Type group, select the Text option and click OK.
[3] In the **New Text Attribute** dialog box **Name** field, enter the attribute’s appropriate name.

![New Text Attribute dialog box](image)

[4] The **Length** field determines the number of characters that can be entered for the attribute. By default, the length of a text attribute is 30 characters. This can be changed as needed.

[5] Click **OK** to create this attribute.

[6] Click **Close** to close the **New Attribute Type** dialog box.

G1.3.4 Date Attribute

When a feature is created, the current date is automatically entered as the date attribute.

[1] In the **New Attribute Type** dialog box, select the **Date** option and click **OK**.

[2] In the **New Date Attribute** dialog box **Name** field, enter an appropriate name (the date).

![New Date Attribute dialog box](image)

[3] By default, the **Auto Generate on Creation** check box is selected. The **Auto Generate on Update** check box may also be selected.
[4] Click **OK** to create this attribute.

[5] Click **Close** to close the **New Attribute Type** dialog box.

G1.3.5 Required and Conditions

For all the attributes described above, the attribute can be defined as required upon creation or upon update (if the feature is reopened after it has been closed).

For all the attributes described above, the attribute can be defined under a condition. If an attribute should only appear if another attribute meets a certain criterion, change to set the condition feature inside the **Set Condition for Attribute** dialog box.

![Set Condition for Attribute dialog box](image)

G1.4 Saving a Data Dictionary

[1] Select **File/Save As**.

[2] Navigate to the proper work space, give the dictionary an appropriate name, and click **Save**.

[3] From the **Menu** bar, select **File/Exit**.

For more information about data dictionaries, refer to the GPS Pathfinder Office Help.

G1.5 Editing a Data Dictionary

If a mistake is made in a feature, highlight the feature in the **Features** dialog box, and click **Edit Feature**. Make the correction and click **OK**.

If a mistake is made in an attribute, highlight the attribute in the **Attributes** dialog box and click **Edit Attribute**. Make the correction and click **OK**.

To change the order of features or attributes, highlight an item and click the up or down arrow on the toolbar.
G1.6 Transferring a Data Dictionary to a GPS unit

G1.6.1 Method 1

[1] Switch on the GPS data collector and connect the unit to the computer via a micro USB cable. The Microsoft Mobile Device Center software will automatically establish a connection; disregard and close this. Open GPS Pathfinder Office and click Utilities/DataTransfer.

[2] From the Device list, select the device. The Data Transfer utility will show the unit is connected.

[3] Click on the Send tab.

[4] Click Add and select Data Dictionary from the drop-down menu. The Open dialog box appears.

[5] Highlight the data dictionary to be transferred to the unit and click Open.

[6] Click Transfer All. The data dictionary will be transferred to the unit.

[7] Click Close to exit the Data Transfer utility.

G1.6.2 Method 2

[1] Switch on the GPS data collector and connect the unit to the computer via a micro USB cable. The Microsoft Mobile Device Center software will automatically establish a connection; disregard and close this.

[2] In Windows Explorer, navigate to the folder containing the data dictionary file and, in a separate Windows Explorer view, navigate into the GPS unit where the data dictionary will be saved (Computer\GPS_Name\My Documents\TerraSync).

[3] Drag and drop the .ddf file into the GPS unit. Close the windows and disconnect the GPS.

G1.7 Example Data Dictionary

Multiple data dictionaries exist under the LMS contract. Below is an example of the dictionary used in the DRUM Program.

G2.0 Trimble Loading

Review the Issuetrak request for GPS services and talk to the client about its GPS needs. Consider what kind of unit the client needs (e.g., camera, submeter) and whether it needs background data, waypoints, or both. Check TRIMBLE_SCHEDULE on SharePoint to ensure a Trimble is available for the client to use.

G2.1 Find Data

Use the available tools (e.g., Document Number Lookup) to search for an existing drawing or figure that depicts the requested data. Confirm with the client that the correct data for loading have been selected.
Select the features to be loaded into the Trimble. Save shapefile(s) to an appropriate working space (e.g., U:\Uranium Initiative\DRUM\Field Data\Utah\Moab).

G2.2 Load Background Files

[2] In the **Select Project** dialog box, click **Modify…** and set the **Project Folder** to the working space noted above.

[3] Keep the remainder of the project settings to their defaults and click **OK**.

[4] From the **Utilities** menu, select **Import** to open a dialog box where spatial data can be brought into Pathfinder Office.

 [a] From the **Input Files** box, click **Browse…** and navigate to the shapefile(s) to be loaded. Click **Open**.

 [b] For **Output File**, click **Browse…** and give the .imp file(s) a sensible name like *EDG_bkgd.imp* and click **Save**.

 [c] Under **Choose an Import Setup**, define the coordinate system to be used. Click **Properties…** and navigate to the **Coordinate System** tab. Match these parameters to those of the source shapefile (check in ArcCatalog) by changing the System, Zone, Datum, and Units as necessary. Click **OK** when finished.

 [d] Confirm the **Import** completed and click **Close**.

[5] From the **Utilities** menu, select **Data Transfer…** and ensure that the device is connected.

[6] Open the **Send** tab and from the **Add** button on the right, select the kind of file to be transferred. In this case, select **Background**.

[7] When the **Load Background Files** window opens, click on the **Add…** button on the right and navigate to the .imp file just created. Select the background file and click **OK**.

[8] Click **Transfer All** to send the file to the Trimble unit.

[9] On the Trimble, open TerraSync and check the file by opening the **Data** menu, choosing the **File Manager**, and selecting **Background Files** as the file type. The .imp file should show up. Next, go to the **Map** menu and from the **Layers** menu open up **Background Files** and select the .imp file just loaded. Select **Done** to return to the **Map** and see if the background data loaded for reference.

G2.3 Load Waypoints

G2.3.1 Method 1

[1] In GPS Pathfinder Office, open the .imp background file from the previous section.

[2] From the **File** menu, choose **Waypoints** and select **New**. Navigate to the proper working space and save the waypoint file with an appropriate name. Click **OK**.

[3] A **Waypoint Properties** window will pop up. Click **Create…**.

[4] In the **Create Waypoint** window, check the box for **Pick From Map** and use the cursor to select points from the map. When doing this, the coordinates will populate, but the
name does not mean anything; assign a meaningful name to each waypoint created. Zero out the elevation if the integrity of the spatial data z coordinates is in question.

[a] The Identify tool in ArcMap may be helpful alongside the waypoint creation in GPS Pathfinder Office. This helps get the name of the point and its coordinates correct.

[5] When all of the waypoints have been entered, click **Save** and then **Close**.

[6] From the **File** menu, choose **Waypoints** and select **Close**. This closes the file and prepares it for transfer.

[7] From the **Utilities** menu, select **Data Transfer** and make sure the device is connected.

[8] Click the **Send** tab, then from the **Add...** button at right select **Waypoint**. Navigate to the .wpt file just created and select **Open**.

[9] Click **Transfer All** to send the file to the Trimble.

G2.3.2 Method 2

[1] In AutoCAD, select the point features to be exported as waypoints and type into the command line DATAEXTRACTION. Follow the props through the pop-up windows and save the resulting .csv file in a proper working area.

[2] Browse to the .csv file and open the file in Microsoft Excel. Delete the headers and everything except for the x and y coordinates. Under the **Data** drop-down menu, use the **Text to Columns** feature to remove the apostrophes in the x and y coordinates. In Column A, add a count (1, 2, 3, etc.) for each waypoint and in Column D the approximate elevation of the waypoints.

[3] Save the edited .csv file with an appropriate name.

[4] In GPS Pathfinder Office, open the .imp background file from the previous section.

[5] From the **File** menu, choose **Waypoints** and select **ASCII Import**. Navigate to the working area and select the edited .csv file from AutoCAD. The following settings should be selected:

 ![Coordinates System settings](image)

 ![Waypoint Import settings](image)

 [a] Change the Coordinate Units and System to those used in AutoCAD for the mine.
Click **OK**.

GPS Pathfinder Office will create the waypoint file (.wpt). Close GPS Pathfinder Office, rename the .wpt file, and move the file to an appropriate location.

G3.0 Trimble Field Reference

G3.1 Start-Up

1. Turn the unit and screen on by pressing the green **Power** button.

2. Activate TerraSync, the data collection software.
 - On the Juno 3B and Juno 5, this is accessed from the **Windows Start** menu, and on the GeoXT, GeoXH, and Geo7X, this is on the landing screen and labeled as **GNSS Application Launcher**.
 - On the mobile PC, start up Windows normally and open TerraSync. Make sure the GNSS Unit is on and connected via Bluetooth under system options.

3. Enable GNSS (i.e., connect to receiver or antenna).
 - Select **Setup** from the top left drop-down menu. Enable GNSS by selecting the **GNSS** button on the top right.
 - Select **Status** from the top left drop-down menu to watch the unit gather satellite signals.

4. Set the coordinate system and datum.
 - From the top left drop-down menu, select **Setup**. Open the **Coordinate System** settings from the lower left corner of the screen. Change the following:
 - System: Latitude/Longitude
 - Datum: NAD 1983 (Conus)
 - Altitude Reference: Mean Sea Level (MSL)
 - Altitude Units: Feet

5. Select **Done** to return to the main **Setup** screen.

 Setting the coordinate system and datum only affects what the GPS unit displays. This mapping-grade GPS unit collects all spatial data in geographic coordinates using the World Geodetic System 1984 datum. The unit will project the data on the fly to what the coordinate system specifies. Thus, only set the coordinate system and datum if the coordinates need to be displayed a particular way on the screen.

G3.2 Load Background Files

1. From the top left drop-down menu, select **Map**.

2. From the **Layers** submenu, select **Background Files**...
[3] Check the box next to the background file to turn on the background files for the area.

[4] Select Done at the bottom of the screen. This will navigate back to the base map where the GPS location will be mapped relative to the area background files. From this screen, the Zoom, Pan, Measure, and other tools can be accessed via the drop-down menu next to the arrow in the upper left.

*If the GPS unit sends an error message about coordinate systems, ignore it and select Yes.

G3.3 Utilize Waypoints

[1] From the top left drop-down menu, select Navigation.

[3] Select the waypoint file (.wpt) and click Open on the file name from the bottom of the screen.

[4] On the next screen, target locations will be listed. Make sure all the check boxes are empty.

[5] Highlight the first target and under the Options submenu select Set Nav Target. This tells the GPS unit which location to find.

[6] From the Waypoints submenu, go back to Navigate and note the compass with navigation information that will navigate to that first waypoint. Walk toward the target, and the unit will alert upon arrival within a set distance.

[7] Upon arrival at a waypoint, go under the Options submenu and select Go to Next Unvisited Waypoint, and the unit will navigate to the next one. The next destination can be selected manually by going back to the waypoint menu and Set Nav Target to visit the waypoints in a particular order.

G3.4 Collect Data Using a Data Dictionary

[1] From the top left drop-down menu, select Data. Leave the file type as Rover and the location as Default and give the data file a meaningful name. Under Dictionary Name, make sure to select the proper dictionary.

[2] Select Create. In the Confirming Antenna Height window, make sure the height is listed at 3 or 4 ft and the type is Internal. The resulting screen depicts all the different feature types that have been preloaded into the Trimble for data collection. There are generic feature types for use when an unanticipated feature type is encountered.

[3] To collect data for a feature, select the feature type most appropriate (e.g., mud pit) and select Create. Note that each feature type will show a slightly different screen asking for details. Some will enable the camera and require a photo; others will ask for details, such as size or color, to be manually entered. There should also be a Comment field where notes can be taken as needed.

[4] Populate the fields for that feature type; when satisfied, click Done. If a feature needs to be abandoned or restarted, or to correct a mistake, select Cancel.
G3.5 Collect Data Using Generic Features

[1] From the top left drop-down menu, select Data. Leave the file type as Rover and the location as Default and give the data file a meaningful name. Under Dictionary Name, select Generic and then select Create.

[2] In the Confirming Antenna Height window, make sure the height is listed at 3 or 4 ft and the type is Internal. The resulting screen depicts generic feature types for use in collecting data for a feature type not anticipated or otherwise planned for.

[3] To collect data for a feature, select the feature type most appropriate (e.g., line_generic) and select Create. The collection screen that follows contains only a Comment field, so any relevant notes and descriptions will need to be added here. When satisfied with the feature data, click Done. If a feature needs to be abandoned or restarted or to correct a mistake, select Cancel.

G4.0 Trimble Data Processing

G4.1 Configure Pathfinder Office

[1] From the Options menu, select Units.

[a] The Precisions field should be in US Survey Feet unless otherwise specified by state or federal standards.

[b] Confidence should be set to 95% Precisions.

[c] Configure Units (under drop-down menu Options) as follows:

![Units Configuration](image)

After processing, check the output to ensure precision values make sense. For example, horizontal precision of 2.1 means we can say that our data are accurate to within 2.1 ft with 95% confidence.
G4.2 Download Data

1. Connect the Trimble unit to the computer via USB.
2. Launch GPS Pathfinder Office and ignore Windows Mobile Device Center at this time.
3. In the Select Project dialog box, click Modify… and set the Project Folder to the working space noted below:
 \Lm\gis\Data\Sites\DRUM\RoverFiles\2018\20180104_UFO_FT3
4. Keep the remainder of the project settings to their defaults and click OK.
5. From the Utilities menu, select Data Transfer… and ensure that the device is connected.

 ![Image of Data Transfer window]

 [a] If transferring data from a mobile PC, the raw files from the unit’s TerraSync folder must be transferred via USB and placed in the new project folder. Under devices, click New and choose GIS Folder; link this to the raw file location.

6. From the Receive tab, click the Add button on the right and select the kind of file to be transferred. In this case, select Data File.

 \Note Data files that have not previously been downloaded from the unit will highlight automatically.\n
7. Select the file(s) needing to be processed and click Open. Select Transfer All when ready for downloading.

 \Note Files will be downloaded to the Backup folder in the working space noted above, though the destination can be set manually.\n
G4.3 Process Data

[1] From the **Utilities** menu, select **Differential Correction**.

[2] Within the **Differential Correction** wizard, click the + icon at right to **Select SSF files to correct**.

[3] Navigate to the downloaded data (.SSF) and select **Open**. Click **Next**.

[4] Select **Automatic Carrier** and **Code Processing** and click **Next** again.

[5] Leave default settings of **Output corrected positions only**, **Smart automatic rover filtering**, and **Re-correct real-time positions** and click **Next**.

[6] To correct the data, select a Base Provider to provide base data allowing the correction. Ensure the option button next to Base Provider Search is selected and click **Select** to the right.

![Differential Correction Wizard](image1)

[7] In the **Select Base Provider** window, click **Update List** and choose the UNAVCO or CORS provider with the highest listed Integrity Index. Select **OK**.

![Select Base Provider](image2)

[8] When choosing an output folder, select **Use the project folder**. To select an output filename, select **Create a unique file name based on the input filename**. Click **Start** to begin the correction.
When the differential correction is complete, a .COR file will be generated with the same name as the original, raw .SSF file. This corrected data file will be compared to the raw .SSF file, and the more accurate file will be exported and used in the final GIS data.

A text file can also be found in the work space that reports on the success and estimated accuracy of the correction. Retain this file for reference later.

G4.3.1 Exporting to ESRI Geodatabase

From the Utilities menu, select Export…
[2] Verify that the correct data files from above are selected as the input. If not, select Browse… and navigate to the appropriate file from the previous steps.

[3] Make sure the output folder is set to Export within the designated work space.

[4] Specify the Export Setup. From the drop-down menu, select Sample ESRI File Geodatabase Setup and then click the Properties… button in the lower right.

[5] In the Data tab of the Export Setup Properties window, select Features–Positions and Attributes as the Type of Data to Export, and select Export All Features from the drop-down menu.
[6] In the **Output** tab of the **Export Setup Properties** window, select **Combine all input files and output to the project export folder**.

[7] In the **Attributes** tab of the **Export Setup Properties** window, select **Attribute Value** under **Export Menu Attributes As**. Select all attributes under **Generated Attributes**.
[8] In the **Units** tab of the **Export Setup Properties** window, select **Use Export Units** under **Units**.

![Image of Export Setup Properties window with Units tab selected]

[9] In the **Position Filter** tab of the **Export Setup Properties** window, select **Filter by GNSS Position Info** under **Position Filter Criteria**.

![Image of Export Setup Properties window with Position Filter tab selected]
In the Coordinate System tab of the Export Setup Properties window, select Use Export Coordinate System. Make sure the System is Lat/Long with the Datum set to NAD 1983 (Conus) and the Export Coordinates As set to XYZ.

In the ESRI File Geodatabase tab of the Export Setup Properties window, unselect Use Alias Names. Copy and paste the following text string into the Spatial Reference XML area:

```xml
<SpatialReference
  xsi:type='esri:GeographicCoordinateSystem'>
  <WKT>
    GEOGCS['GCS_North_American_1983',
      DATUM['D_North_American_1983',
        SPHEROID['GRS_1980',6378137.0,298.257222101],
        PRIMEM['Greenwich',0.0],
        UNIT['Degree',0.0174532925199433],
        AUTHORITY['EPSG','4269'],
        VERTCS['NAVD_1988_Foot_US',
          VDATUM['North_American_Vertical_Datum_1988',
            PARAMETER['Vertical_Shift',0.0],
            PARAMETER['Direction',1.0],
            UNIT['Foot_US',0.3048006096012192],
            AUTHORITY['ESRI','105703']]}]/WKT
    XOrigin=-400</XOrigin>
    <YOrigin>-400</YOrigin>
    <XYScale>999999999.99999988</XYScale>
    <ZOrigin>-100000</ZOrigin>
    <ZScale>3048.0060960121918</ZScale>
    <XScale>1</XScale>
    <MScale>1</MScale>
    <XYTolerance>0.000328083333333333</XYTolerance>
    <ZTolerance>0.001</ZTolerance>
    <MTolerance>0.001</MTolerance>
    <HighPrecision>true</HighPrecision>
    <LeftLongitude>-180</LeftLongitude>
    <WKID>4269</WKID>
  </WKT>
</SpatialReference>
```
G5.0 Versioning in ArcGIS

Once all the current data are ready to upload into the enterprise geodatabase, the data will be uploaded for editing. Enterprise geodatabases are structured query language server databases, but within the ArcGIS environment, they will look and feel like file geodatabases. All edits will be completed on a version of this enterprise geodatabase, which is to say that edits are not necessarily being completed in a copy of the data but are being tracked in a series of (add/delete) tables.

G5.1 Introduction

[1] To add features from the enterprise geodatabase, change the ArcMap view to List By Source.

[2] In the ArcCatalog window, use Add Database Connection to establish a connection to the enterprise geodatabase.

[3] Select SQL Server as the Database Platform, GDB01 as the Instance, Operating system authentication as the Authentication Type, and DRUM_GIS as the Database. Click OK.
[4] Once the connection is made, **Toggle Contents Panel** will show the contents of the enterprise geodatabase. Each .SDE feature class is pulled from the schema, with DRUM_GIS.DBO. as a sort of prefix (e.g., DRUM_GIS.DBO.Artifact). The database connection can be renamed for quick reference.

[5] If an .SDE feature class needs to be added to the map, the layer is listed by source and should fall under **dbo.DEFAULT** (GDB01). This means the layer is coming from the default version of the enterprise geodatabase.

[6] To change this and call the data from the working version, the **Versioning** toolbar from **Customize: Toolbars** needs to be added to the **ArcGIS** toolbar.

[7] Once the toolbar has been installed, select **Create New Version**. If a current edit version exists, continue to step 9.
The Parent Version will be **dbo.DEFAULT**, and the new edit version will need to be assigned a name (e.g., SRD_DataLoad_Spinelli). Click the **Public** option under **Permission** and describe the version in a meaningful manner. Click **OK**.

Look at the database connection for the .SDE feature class that was added to the map, right click, and select **Change Version**.

Select the edit version established above and click **OK**.
The database connection should update accordingly.

The default version of the map can be kept as a sort of reference or as a reminder of what has already been done. Default is protected and requires administrator rights to change.

G5.2 Workflow

Data to be added to the enterprise geodatabase will go through versioning. An administrator will reconcile and post the changes to Default and will delete the current edit version after all changes have been completed and approved. A new edit version will be created for future editing.

1. Right click the target (.SDE) feature and select **Edit Features** and **Start Editing**.

2. In the **Editor** toolbar, select **Load Objects**...
[3] In the **Object Loader** wizard, browse to the source of **Input data** and select **Add**. Multiple sources of data can be selected at once for loading. Click **Next** when all sources have been selected.

![Object Loader Wizard](image1.png)

[4] On the following screen, choose the appropriate target layer from **LM_GIS.DBO**. Click **Next**.

![Object Loader Target Layer](image2.png)
[5] Next, transfer attributes from the source field to a corresponding target field. The field Type (e.g., string, double) must match for the transfer of attributes to process without error. If the source data contain a field (e.g., Layer) whose attributes should carry over to the target data, use the drop-down menu on the right to assign that transfer. After making appropriate assignments, select **Next**.

![Object Loader](image1.png)

[6] The decision whether to load all source data into the target feature class or to load only those features that satisfy certain criteria by means of a query will need to be made. Once the type of data load has been established, select **Next**.

![Object Loader](image2.png)

Note Source data can be parsed out into several target feature classes. Target feature classes can be populated by data from several sources. One source can also populate one target in its entirety.
[7] The following screen will ask about snapping input features and establishing validation rules. Typically, the default values of **No** will be appropriate for loading. Only change the default values if the features are intended to snap or move the input features or if the intended features are to validate new features. Click **Next**.

![Object Loader dialog box](image)

[8] The final screen in the **Object Loader** wizard serves as a summary for the data load operation that has been set up. If all settings are correct, select **Finish**. If not, select **<Back** and make any necessary corrections. (On occasion, fields will not import due to incorrect entries. These will need to be edited in the file before loading data. When the error message pops up, it will state the specific fields that did not import correctly. Undo, fix these first, and then load the data again.)

![Object Loader summary](image)

[9] Right click on the target layer and select **Open Attributes**. Scroll through the records until those with empty attributes are located. The features just loaded should be revealed by the absence of **Name Mnemonic** content. Select these and confirm they are indeed within the mine or map extent. With the mine’s newest features selected, select **Show selected records** to add or edit attribute data.

![Open Attributes](image)
When these data have been edited, return to the Editor toolbar and select Validate Features. This tool provides additional QC and will check the new data against the geodatabase configuration to ensure proper values have been entered and the data fit without error.

If there is a validation error, make the necessary correction as described. If all features are valid, click OK, then Save Edits and Stop Editing. When done loading data for the mine, inform the administrator so the edits can be reviewed. The administrator will examine the version and, when satisfied, will reconcile and post the edits so they become part of Default.
Appendix H

DRUM Surface Water Sampling Procedure
H1.0 Scope

This procedure describes general protocols for obtaining screening level surface water samples and measurements for the DRUM Program. The methods and procedures described in this procedure are adapted from the *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351).

Surface water will be noted by the field team if it is within the disturbed area or within 300 ft of the disturbed area of a mine. A water sample will be collected when surface water which may be safely accessed is being impacted by the mine (e.g., sediment is migrating into the water body, water draining from or across the mine area is confluent with receiving water resources, water is discharging from an adit, water is in direct contact with waste rock). By contrast, ephemeral water bodies that form due to precipitation and are likely to persist for less than approximately 2 weeks will not be sampled.

The protocols outlined below are considered a screening level effort. Surface water samples are collected for the purpose of providing a “snapshot in time” indication of the quality of the water sampled. The analytic results of the sample are not compared to any water quality standards but are provided for use by land management agencies as they quantify the risks presented by any one particular mine.

There is a possibility the surface water encountered at a mine may be flowing. Generally, these flows will be observed as mine adit discharges or discharges from springs and seeps emanating from slopes within the disturbed area. Discharge measurements will be made from these features when possible, given potentially very small flow rates.

H2.0 Roles and Responsibilities

Personnel participating in surface water monitoring activities will be proficient in the procedures, equipment, and instrumentation used for the work they perform. Individual qualification worksheets for LMS V&V field team members will be used as an initial qualification process to document completion of training.

H3.0 Equipment and Supplies

Refer to the *Water Sampling Field Data* (LMS 1805) form for the list of equipment and supplies that may be required for collection of surface water samples.

H4.0 Instructions

H4.1 Field Measurement and Calibration

Calibrate field instruments before a sampling event begins. Operation, inspection, maintenance, and calibration associated with using field instruments will be conducted according to
manufacturers’ instructions. Calibration and operational check requirements for field instruments are shown in Table H1. Record the instrument’s response. If the acceptance criteria are not met during the operational check, then conduct a primary calibration of the affected probes and instruments. Equipment failing calibration or malfunctioning shall immediately be removed from service and have a “Defective” or “Do Not Use” tag attached to it.

Collect field measurements of pH, specific conductance, temperature, and turbidity, which are indicative of physical and chemical conditions at the time of sampling, at all sample locations. Collect these measurements using a YSI Pro1030 (or equivalent) for pH, specific conductance, and temperature and a Hach 2100Q (or equivalent) for turbidity.

Table H1. Field Parameter Calibration Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Frequency</th>
<th>Operational Check Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3-point calibration</td>
<td>Before start of sampling event</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>1-point check with pH 4, 7, or 10 buffer</td>
<td>Daily</td>
<td>±0.2 pH units</td>
</tr>
<tr>
<td>Specific conductance</td>
<td>1-point calibration</td>
<td>Before start of sampling event</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>1-point operational check</td>
<td>Daily</td>
<td>±10% of standard</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operational check</td>
<td>Before start of sampling event</td>
<td>±1.5 °C compared to NIST-traceable thermometer</td>
</tr>
<tr>
<td>Turbidity</td>
<td>4-point calibration</td>
<td>Every 3 months</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>3-point operational check</td>
<td>Daily</td>
<td>±10% of standard</td>
</tr>
</tbody>
</table>

Abbreviations:
NA = not applicable
NIST = National Institute of Standards and Technology

H4.2 Sample Collection

If the field team lead determines that a surface water sample is necessary, collect the sample as follows:

- Before sampling the surface water feature, measure the following field parameter data from the same location where the surface water is to be collected:
 - pH
 - specific conductance
 - temperature
 - turbidity
- For surface water features less than 6 ft wide, collect the sample from the middle of the feature.
- For surface water features greater than 6 ft wide, collect the sample 1 to 3 ft from the water’s edge.
• Sample flowing surface water features greater than 6 ft wide (e.g., rivers, streams, ditches) within the main current and not in stagnant or eddy areas.

• If stagnant or eddy areas extend more than 3 ft from the water’s edge, collect samples at the nearest downstream location where the main current is within 3 ft of the water’s edge.

• Collect surface water samples using a stainless steel weight attached to the intake tubing of a peristaltic pump by directly immersing the sample container or by using a dip sampler. If the surface water is flowing, approach the sampling location from downstream and point the sample container or dip sampler upstream.

• Filter all samples through a 0.45-micrometer filter, regardless of turbidity.

• Log sample location, sample collection date and time, and field parameter data using a GPS unit and download into the database. If a GPS unit is not available at the time of sampling, record the required information in a field logbook or sample data sheet and transfer the information to the database.

Note
Duplicate surface water samples are not required to be collected as assessment of field and analytical precision is not required of screening level samples.

H4.3 Sample Preservation

• Field preserve the sample by adding an appropriate amount of acid to the sample in the container. Use a pH strip to determine that the pH is less than 2.
 — Review chemical Safety Data Sheets.
 — Use nitrile gloves and safety glasses when dispensing sample preservatives (acids and bases) or using calibration solutions and field test reagents.
 — Spills of chemicals should be cleaned up as soon as possible, and Environmental Compliance must be notified.
 — Acids must be transported in quantities no greater than 500 milliliters per container; containers must be leak proof and must be secured during transportation to limit spill potential and to qualify as U.S. Department of Transportation (DOT) materials of trade.

• Store filled sample containers in a cooler with bagged ice. Analytical parameters, container type, sample volume, analytical method, preservative, and holding times are listed in Table H2.
Table H2. Water Sample Collection Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analytical Method</th>
<th>Sample Container</th>
<th>Preservative</th>
<th>Holding Time</th>
<th>Detection Limits (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>6010</td>
<td>500 mL HDPE(^a)</td>
<td>Nitric acid, pH <2</td>
<td>180 days</td>
<td>200</td>
</tr>
<tr>
<td>Antimony</td>
<td>6010</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Arsenic</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>0.1</td>
</tr>
<tr>
<td>Barium</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>20</td>
</tr>
<tr>
<td>Beryllium</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>1</td>
</tr>
<tr>
<td>Cadmium</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>1</td>
</tr>
<tr>
<td>Chromium</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>2</td>
</tr>
<tr>
<td>Cobalt</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>50</td>
</tr>
<tr>
<td>Copper</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>8</td>
</tr>
<tr>
<td>Iron</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>100</td>
</tr>
<tr>
<td>Lead</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>2</td>
</tr>
<tr>
<td>Manganese</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>5</td>
</tr>
<tr>
<td>Mercury</td>
<td>7470</td>
<td></td>
<td></td>
<td>28 days</td>
<td>0.1</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>3</td>
</tr>
<tr>
<td>Nickel</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>10</td>
</tr>
<tr>
<td>Selenium</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>0.1</td>
</tr>
<tr>
<td>Silver</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>1</td>
</tr>
<tr>
<td>Thallium</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>4</td>
</tr>
<tr>
<td>Uranium</td>
<td>6020</td>
<td></td>
<td></td>
<td>180 days</td>
<td>0.1</td>
</tr>
<tr>
<td>Vanadium</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>20</td>
</tr>
<tr>
<td>Zinc</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>15</td>
</tr>
<tr>
<td>Radionuclide</td>
<td></td>
<td></td>
<td>Nitric acid, pH <2</td>
<td>180 days</td>
<td>1 pCi/L</td>
</tr>
<tr>
<td>Radium-226</td>
<td>903.1</td>
<td>1 L HDPE</td>
<td></td>
<td>180 days</td>
<td></td>
</tr>
<tr>
<td>Major Ions</td>
<td></td>
<td></td>
<td>Nitric acid, pH <2</td>
<td>180 days</td>
<td>5000</td>
</tr>
<tr>
<td>Sodium</td>
<td>6010</td>
<td>500 mL HDPE(^a)</td>
<td></td>
<td>180 days</td>
<td>5000</td>
</tr>
<tr>
<td>Potassium</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>5000</td>
</tr>
<tr>
<td>Calcium</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>5000</td>
</tr>
<tr>
<td>Magnesium</td>
<td>6010</td>
<td></td>
<td></td>
<td>180 days</td>
<td>5000</td>
</tr>
<tr>
<td>Chloride</td>
<td>9056</td>
<td>125 mL HDPE(^b)</td>
<td>4 °C</td>
<td>28 days</td>
<td>500</td>
</tr>
<tr>
<td>Sulfate</td>
<td>9056</td>
<td></td>
<td></td>
<td>180 days</td>
<td>500</td>
</tr>
<tr>
<td>Nitrate</td>
<td>353.2</td>
<td>125 mL HDPE</td>
<td>4 °C, sulfuric acid, pH <2</td>
<td>28 days</td>
<td>50</td>
</tr>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following parameters will be measured in the field: pH, specific conductance, turbidity, and temperature dissolved oxygen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

\(^a\) One 500 mL HDPE bottle needed for Method 6010/6020/7470 analytes.

\(^b\) One 125 mL HDPE bottle needed for Method 9056 analytes.

Abbreviations:

HDPE = high-density polyethylene

L = liters

µg/L = micrograms per liter

mL = milliliters

pCi/L = picocuries per liter
H4.4 Sample Documentation

- Firmly tighten the lid of the sample container and wipe the container surface.
- With a permanent marker, write the mine name, sample ID, analyte, preservative, sampler name, and date and time the sample was collected on the sample container.
- Place the sample container in a plastic bag and return to transport vehicle.
- Place samples in a cooler with ice for transport back to the LM Field Support Center (LMFSC) at Grand Junction, Colorado.

H5.0 Sample Transfer

- Transfer samples from the transport vehicle to the designated sample storage refrigerator in Building 32 at the LMFSC. Samples must remain in the designated area until they have been surveyed, packaged, and approved for shipment to the analytical lab.
- Before packaging the samples for shipment:
 — Apply a label to the side of the sample container and label samples in sequential order (by the sequence in which the samples were collected). Place the initials of the person(s) collecting the sample on the sampler(s) line and document the date and time the sample was collected.
 — Complete the following on the COC form: print name(s) in the sampler(s) line and fill in the date and time on the line that corresponds to the label placed on the sample container. Include the mine identification number.
 — Keep the COC forms with the samples.

Acids used for water sample preservation are considered materials of trade and will be transported in accordance with Section 2.5 of the Environmental Instructions Manual. All drivers will receive HM100, “DOT Hazmat Transportation General Awareness,” training before transporting acids.

Acid containers must be clearly marked with the common name or proper shipping name of the acid and must be leak-tight and securely closed, secured against movement, and protected from damage. Acid will be packaged in containers in the manufacturer’s original packaging or in a package of equal or greater strength and integrity.
H6.0 Sample Shipment

- Prepare the individual sample container so that the required sample identification, COC form, and security seal (as deemed necessary by the receiving laboratory or LMS sample custody protocol) are in place. Combine all sample containers (4) from each sample set into individual sample bags.

 Note All ice in the sample shipping container needs to be bagged. Transport companies (e.g., FedEx Corporation) will not accept packages with evidence of leakage.

- Prepare the shipping container (DRUM-specific beverage type cooler) by lining the container with two 40-gallon, 2.5-millimeter plastic bags. Place an absorbent pad inside the inner bag. Pack the sample by setting the bags into the cooler and surround them with bagged ice so that they are secure in the container and will not move freely. Tie the inner bag closed and then tie the outer bag closed.

- Insert the COC forms inside of a plastic bag and place them inside the cooler. Close the lid of the cooler, but do not seal it permanently. The cooler lid will be reopened before shipment.

- Perform an alpha and beta smear survey (for loose surface contamination) on the exterior of the cooler in accordance with Safety and Health Procedures Manual Procedure SH-330.01, “Contamination Surveys and Equipment and Material Release.” Record the survey results on a Radiological Survey Map form.

 Note As these samples are being transported to a laboratory for testing, they are not subject to DOT surface contamination survey limits or the requirement to survey a surface area of 300 square centimeters (cm2). Use 100 cm2 as the area to sample.

- Once the Radiological Survey Map is complete (excluding the reviewer signature), insert a copy of the completed Radiological Survey Map in the bag with the COC forms inside the cooler.

- Store samples in the radioactive materials area until authorization for shipment is received from the LMS laboratory coordinator.

- Provide the completed Radiological Survey Map to the LMS Radiological Control manager for review within 5 working days of survey completion.

- Once the LMS laboratory coordinator gives authorization for sample shipment, complete a Shipping Request form (LMS 1051) and take the shipping container(s) to Building 2, Shipping and Receiving.

- Close and seal the cooler lid in accordance with other shipping and transportation procedures. Place a custody seal on the shipment container.
H7.0 Surface Water Discharge Measurements

Discharge measurements will be made when surface water is observed to be flowing. Generally, these flows will be observed as mine adit discharges or discharges from springs and seeps emanating from slopes within the disturbed area. Install a portable, collapsible stainless steel flume according to the manufacturer’s specifications to collect flow measurements. Set the flume into the channel floor in a manner that ensures the entirety of the flow passes through the flume. Level the flume in the channel and read and record upstream and downstream staff gauges. Consult the rating curve specific to the flume throat width to determine discharge. Should flowing water be too slow, shallow, or otherwise not able to be measured using the flume, use a graduated container and timer to measure discharge. Log discharge measurement location, date and time, and results (staff gauge readings and resulting rating curve discharge) using a GPS unit and download into the database. If a GPS unit is not available at the time of measurement, record the required information in a field logbook or sample data sheet and transfer the information to the database.

If a large stream is encountered, its discharge rate can be calculated using the float method (or cross-sectional method). This method measures the amount of water passing a point on the stream channel during a given time and is a function of the velocity and cross-sectional area of the flowing water. This method should be incorporated by the field team’s geologist.

<table>
<thead>
<tr>
<th>Water Sampling Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location __________________</td>
</tr>
<tr>
<td>Sampling Event Date ________ RIN ________</td>
</tr>
</tbody>
</table>
Equipment List

Monitoring Equipment
- Current meter
- GPS unit
- Stainless steel flume
- Turbidity meter
- YSI with pH, conductivity, and temperature probes

Pumps and Accessories
- Dipper arm
- Hose barbs
- Hose reel with weight
- Inverter
- Reel of tubing
 - Small peristaltic pump and pump-head tubing, power cords

Chemicals
- Conductivity calibration solutions (1000 micromhos per centimeter [μmhos/cm])
- Deionized (DI) water
- H₂SO₄
- HNO₃
- Laboratory-grade detergent such as Alconox or equivalent
- pH buffer solutions (4, 7, 10)
- pH paper
- Primary turbidity calibration solutions

Paperwork
- Chain of custody (COC) forms
- Custody seals
- DRUM Safety Plan (DSP)
- Pens or permanent markers
- Safety Data Sheets (SDS)
- Sample labels
- Shipping requests
- Water Sampling Field Data forms

Miscellaneous
- 0.45-micrometer (µm) filters
- Absorbent pads
- Disposable nitrile gloves
- Disposable pipettes and tips
- Duct/strapping tape
- Eyewash solution
- Garbage bags
- Ice chests and ice
- Paper towels, Kimwipes
- Rain gear
- Safety eyewear
- Sample bottles (1 L, 500 mL, 125 mL)
- Scrub brush
- Sealable plastic bags (e.g., Ziploc)
- Squirt bottles
- Tape measure
- Wash and rinse container (e.g., 5-gallon bucket)
DRUM YSI Pre-Trip Calibration

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Project Location (FOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YSI No.</th>
<th>Cell Constant (should be within 4-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH Buffers

<table>
<thead>
<tr>
<th>Buffer</th>
<th>mV</th>
<th>Range</th>
<th>Pre Cal. pH Reading</th>
<th>Temp. (°C)</th>
<th>pH Cal. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 4</td>
<td></td>
<td>±180 ± 50 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 7</td>
<td></td>
<td>0 ± 50 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 10</td>
<td></td>
<td>±180 ± 50 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitric Acid

<table>
<thead>
<tr>
<th>Lot No.</th>
<th>Exp. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sulfuric Acid

<table>
<thead>
<tr>
<th>Lot No.</th>
<th>Exp. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific Conductance Calibration

<table>
<thead>
<tr>
<th>Standard used:</th>
<th>µS/cm</th>
<th>Pre Cal. Reading:</th>
<th>µS/cm</th>
<th>Exp. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH 3 Point Calibration

<table>
<thead>
<tr>
<th>Buffer</th>
<th>mV</th>
<th>Range</th>
<th>Pre Cal. pH Reading</th>
<th>Temp. (°C)</th>
<th>pH Cal. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 4</td>
<td></td>
<td>±180 ± 50 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 7</td>
<td></td>
<td>0 ± 50 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 10</td>
<td></td>
<td>±180 ± 50 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HACH 2100Q Turbidity Meter

<table>
<thead>
<tr>
<th>Instrument Number:</th>
<th>Primary Calibration Standards Expiration Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of Primary Calibration (within 3 mths of sampling event):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Temperature Check

(Compare YSI temperature with NIST reference thermometer.)

<table>
<thead>
<tr>
<th>NIST Temp. (±1.5 °C)</th>
<th>YSI Temp.</th>
<th>NIST Cal Due Date</th>
<th>Calibrator Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRUM Water Sampling Daily Operational Checks

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Project Location (FOP)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YSI #</th>
<th>Hach 2100Q Turbidity Meter Instrument #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operational Check

<table>
<thead>
<tr>
<th>Operational Check</th>
<th>Recalibration Required/Conducted?</th>
<th>Yes □ No □</th>
<th>Gelex Standards (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Reading</td>
<td>+/-0.2 pH units</td>
<td>Standard Reading PIF (±10%)</td>
</tr>
<tr>
<td>pH (4/7/10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp Cond (µS/cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: see YSI Pre-Trip Calibration sheet for recalibration information
Water Sampling Field Data

<table>
<thead>
<tr>
<th>Date</th>
<th>Project (FOP) Location</th>
<th>Mine Name/LMID</th>
</tr>
</thead>
</table>

Surface Water/Flow Information (Choose appropriate units)

<table>
<thead>
<tr>
<th>Water Depth</th>
<th>Cross Section Area</th>
<th>Flow Rate</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Instrument Used to Measure:</th>
<th>Flume</th>
<th>Graduated Container</th>
<th>Float</th>
<th>Other (explain)</th>
</tr>
</thead>
</table>

Sampling Equipment

- Dipper Arm
- Container Immersion
- Other: □

Measurement Equipment

- YSI No.
- Turbidimeter Type/No.
- Other:

<table>
<thead>
<tr>
<th>Op Check Time</th>
<th>Measurement(s) made:</th>
<th>Open container</th>
<th>In-situ</th>
</tr>
</thead>
</table>

Water Sampling Field Data

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Turbidity (NTU)</th>
<th>Temp. (°C)</th>
<th>Specific Conductance (µS/cm)</th>
<th>pH</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Time</th>
<th>Weather</th>
<th>Number of .45 µm filters used</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Storage</th>
<th>Ice in cooler?</th>
<th>Yes □</th>
<th>No □</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Preservation</th>
<th>1L - Nitric □</th>
<th>500 mL - Nitric □</th>
<th>125 mL - Sulfuric □</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature of Sampler</th>
<th>Date Signed</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Checked by</th>
<th>Date Checked</th>
</tr>
</thead>
</table>

Quality Assurance Sample Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Project Location</th>
<th>Location Name</th>
<th>Location Name</th>
<th>Project Location</th>
<th>Location Name</th>
<th>Location Name</th>
<th>Location Name</th>
<th>Location Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>False Identification Location</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Type</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comment:</th>
</tr>
</thead>
</table>