

OFFICE OF

Radiation Safety Quantities, Units, and Terms

ENVIRONMENTAL MANAGEMENT SAFETY * EFFICIENCY * TRANSPARENCY

Brian Harcek Senior Health Physicist Environmental Management Los Alamos Field Office April 20, 2022

Metric

<u>PRE</u>	FIX	<u>SYMBOL</u>	MULTIPLE	DECIMAL
•	tera	т	1012	1,000,000,000,000
•	giga	G	10 ⁹	1,000,000,000
•	mega	Μ	10 ⁶	1,000,000
•	kilo	k	10 ³	1,000
•	Base Unit		10 ⁰	1
•	milli	m	10-3	0.001
•	micro	μ	10-6	0.000001
•	nano	n	10 ⁻⁹	0.00000001
•	pico	р	10-12	0.00000000001

IMENTAL

NAGEMENT

Activity

- curie (Ci)
 - The activity of 1 gram of ²²⁶Ra

OFFICE OF

NAGE

- 3.7 x 10¹⁰ disintegrations per second (dps)
- Becquerel (Bq)
 - One disintegration per second (dps)
- One dps is <u>NOT</u> synonymous with the number of particles emitted by the isotope in one second

Activity

1 Ci = 3.7 x 10¹⁰ Bq 1 Bq = 2.7027 x 10⁻¹¹ Ci

3.7 x 10¹⁰ dps x 60 sec/min = 2.22 x 10¹² dpm

1 Ci = 2.22 x 10¹² dpm 1 μCi = 2.22 10⁶ dpm 1 pCi = 2.22 dpm

Activity

• 1 dps = 1 Bq = 27 pCi = 2.7027 x 10⁻¹¹ Ci

NAGEMENT

- 1 dpm = 60 Bq = 1.622 pCi = 1.622 x 10⁻⁹ Ci
 - 1μCi = 37,000 Bq : 1 MBq = 27μCi
 - 1 mCi = 37 MBq : 1 MBq = 0.027 mCi
 - 1 GBq = 0.027 Ci : 1 Ci = 37 GBq
 - 1 TBq = 27 Ci : 1 Ci = 0.037 TBq

Decay Methods

- Alpha (α)
- Beta minus (β^{-})

- Beta positive (β^+) (positron) and Electron Capture
- Gamma (associated with other types of decay)

ICHE

U.S. DEPARTMENT OF ENERGY

Exposure

• Roentgen (R)

OFFICE OF

- The measure of the number of ion-pairs produced by X or gamma radiation in a certain volume of air
- One statcoulomb of charge per cm³ of air at 0° and 760 mm Hg
- Not a U.S. Nuclear Regulatory Commission defined term of exposure

Radiation Safety Quantities,

Units, and Terms

Dose

RAD (Radiation Absorbed Dose)

OFFICE OF

- An absorbed radiation dose of 100 ergs per gram
- Energy deposited by any ionizing radiation in a unit mass of any absorber
- Gray (Gy)
 - 1 Gy = Absorbed Dose of 1 Joule/kg
 - 1 Gy = 100 rads
 - 1 rad = 0.01 Gy or 1cGy

Dose

- Sievert (Sv)
 - 1 Sv = 100 rems
- REM (Roentgen Equivalent Man)

OFFICE OF

-THE

- The absorbed dose (RAD) multiplied by a quality factor to equalize biological consequences

<u>Radiation</u>	Quality Factor	
x-ray	1	
gamma	1	
beta	1	
alpha	20	
neutron (unknown energy)	5-20	

U.S. DEPARTMENT OF ENERGY

Internal Dose

OFFICE OF

LACE

 Dose Equivalent (H_T) - the product of the absorbed dose in tissue, quality factor, and all other necessary modifying factors at the location of interest. Expressed in rem or Sv

Radiation Safety Quantities,

Units, and Terms

• Effective Dose Equivalent (H_E) - the sum of the products of the dose equivalent to the organ or tissue (H_T) and the weighting factors (W_T) applicable to each of the body organs or tissues that are irradiated $(H_E = SW_T H_T)$

Organ Dose Weighting Factors

Organ or Tissue	WT
Gonads	0.25
Breast	0.15
Red Bone Marrow	0.12
Lung	0.12
Thyroid	0.03
Bone Surfaces	0.03
Remainder	¹ 0.30
Whole Body	1.00

AGEMEN

¹ 0.30 results from 0.06 for each of the "remainder" organs (excluding the skin and the lens of the eye) that receive the highest dose.

ENERGY

OFFICE OF

IACE

Internal Dose

- Committed Dose Equivalent (H_{T,50}) the dose equivalent to organs or tissues of reference (T) that will be received from an intake of radioactive material by an individual during the 50year period following the intake
- Committed Effective Dose Equivalent $(H_{E,50})$ {CEDE} the sum of the products of the weighting factors applicable to each of the body organs or tissues that are irradiated and the committed dose equivalent to these organs or tissues ($H_{E,50} =$ $SW_T H_{T,50}$)

DOE Dose Reporting

 Total Effective Dose Equivalent (TEDE) - the sum of the deepdose equivalent (for external exposures) and the committed effective dose equivalent (for internal exposures)
TEDE - Deep Dose + CEDE

TEDE = Deep Dose + CEDE

EBAN

 Total Effective Dose (TED) - the sum of the effective dose (for external exposures) and the committed effective dose
TED = Deep Dose + CED

Dose vs Dose Rate

OFFICE OF

- Dose generic term that means absorbed dose, dose equivalent, effective dose equivalent or total effective dose equivalent (mrem)
- Dose Rate the rate at which a dose is being delivered per a time interval (mrem per hour)

Radiation Exposure vs Radioactive Contamination

OFFICE OF

THA

- Exposure the delivery of radiation to an individual that results in the receipt of a radiation dose
- Contamination radioactive material distributed in an unwanted place or location

QUESTIONS?

