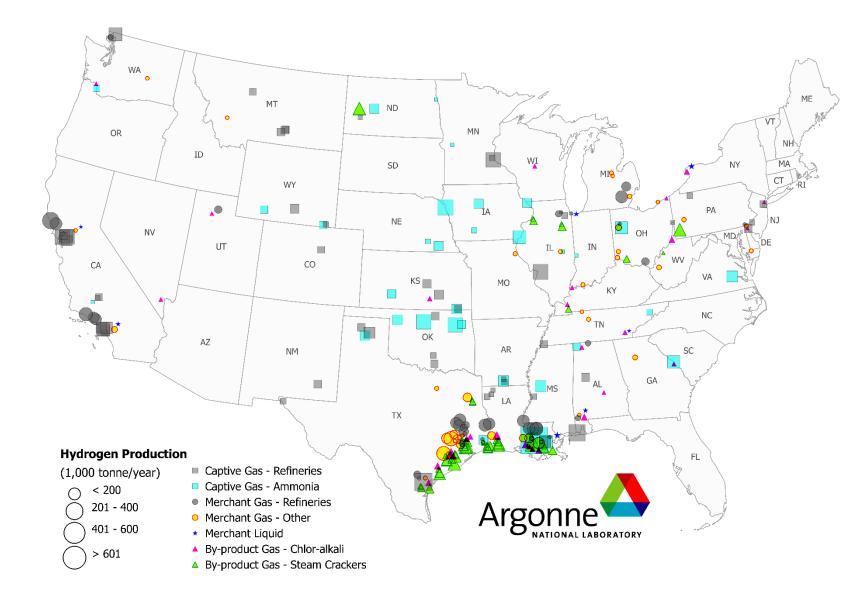
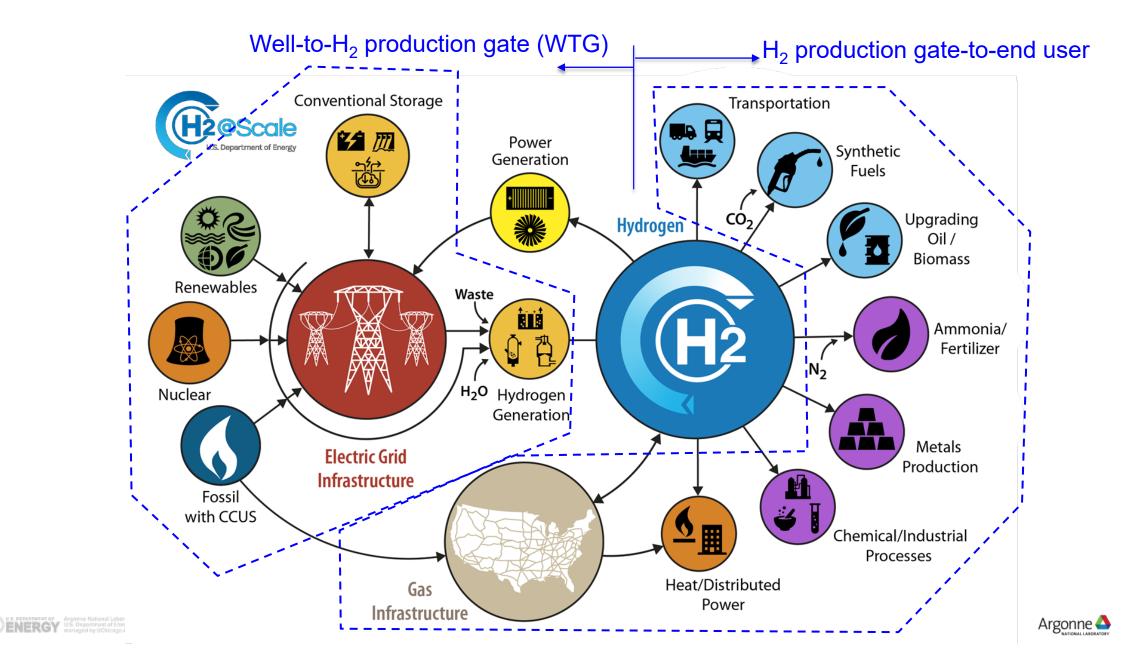


GREET[®] MODEL FOR HYDROGEN LIFE CYCLE GHG EMISSIONS


Amgad Elgowainy, PhD

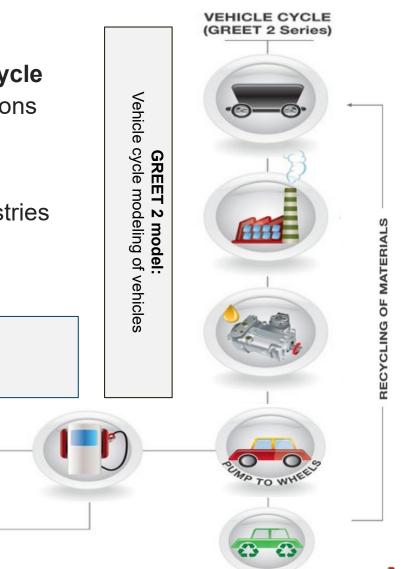
Senior Scientist and Group Leader

Argonne National Laboratory


Presentation at H2IQ webinar June 15, 2022

Today, more than 10M metric tons of hydrogen are produced in the U.S. annually, mainly from SMR of natural gas

H2@Scale: a DOE initiative for a hydrogen economy



The GREET[®] (<u>Greenhouse gases</u>, <u>Regulated Emissions</u>, and <u>Energy use in <u>T</u>echnologies) model</u>

GREET 1 model: Fuel-cycle (or well-to-wheels) modeling of vehicle/fuel systems

WELL TO PUMP

- With DOE support, Argonne has been developing the GREET life-cycle analysis (LCA) model since 1995 with annual updates and expansions
- It is available for free download and use at greet.es.anl.gov
- >50,000 registered users globally including automotive/energy industries and government agencies

FUEL CYCLE (GREET 1 Series)

Argonne 🗲

GREET includes a suite of models and tools

- **GREET** coverage
 - ✓ GREET1: fuel cycle (or WTW) model of vehicle technologies and transportation fuels
 - ✓ GREET2: vehicle manufacturing cycle model of vehicle technologies
- Modeling platform
 - ✓ Excel
 - ✓ .net
- **GREET** derivatives
 - ✓ ICAO-GREET by ANL, based on GREET1
 - ✓ China-GREET by ANL, with support of Aramco
 - ✓ CA-GREET by CARB, based on GREET1
 - ✓ AFLEET by ANL: alternative-fuel vehicles energy, emissions, and cost estimation
 - EverBatt by ANL: energy, emissions, and cost \checkmark modeling of remanufacturing and recycling of **EV** batteries

GREET applications by agencies

California Environmental Protection Agency CA-GREET3.0 built based on and uses data from ANL **Air Resources Board** GRFFT

Oregon Dept of Environ. Quality Clean Fuel Program

EPA RFS2 used GREET and other tools for LCA of fuel pathways; **GHG** regulations

NHTSA National Highway Traffic Safety Administration (NHTSA) fuel economy regulation

FAA and ICAO AFTF using GREET to evaluate aviation fuel

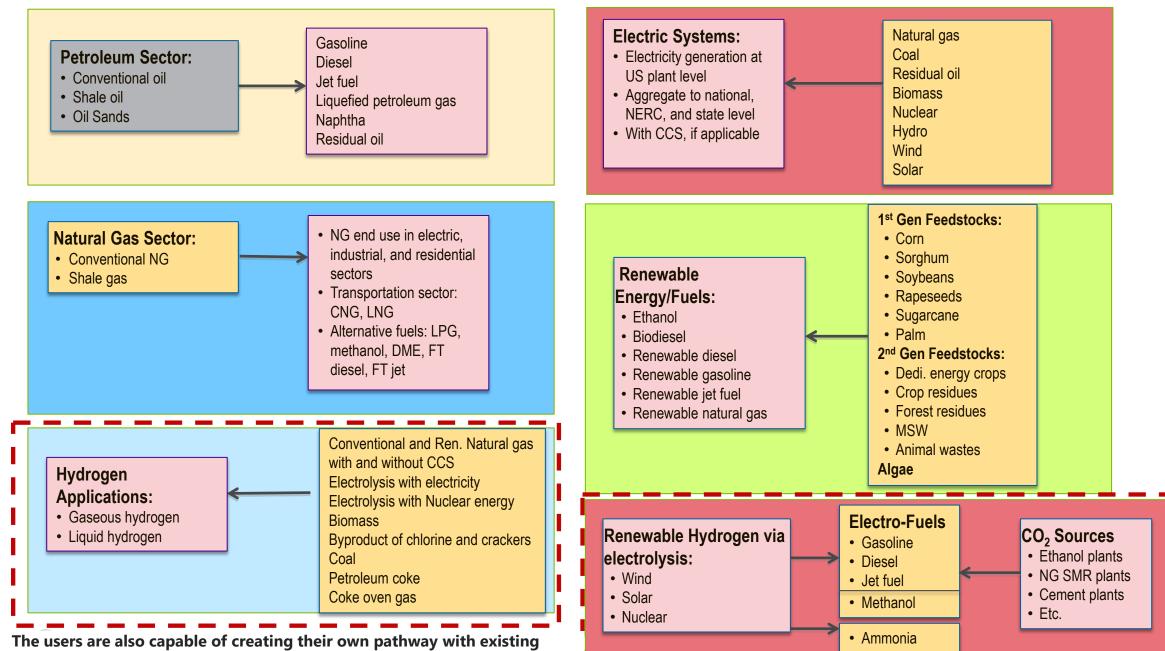
USDRIVE GREET was used for the US DRIVE Fuels Working Group Wellto-Wheels Report

LCA of renewable marine fuel options to meet IMO 2020 sulfur regulations for the DOT MARAD

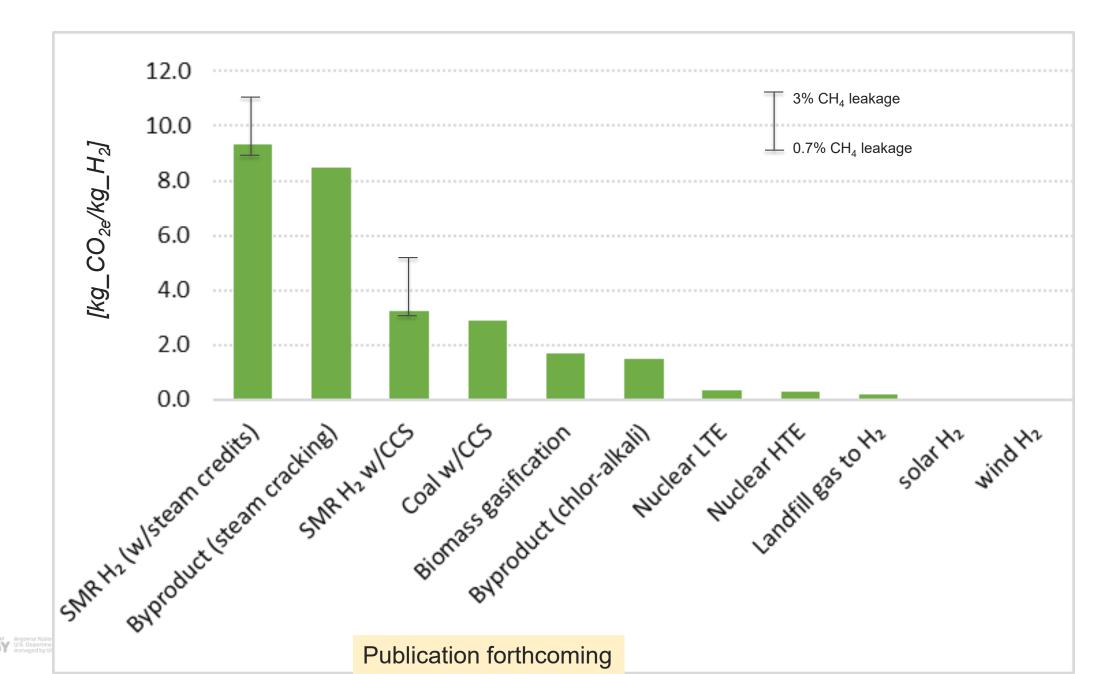
USDA US Dept of Agriculture: ARS for carbon intensity of farming practices and management; ERS for food environmental footprints; Office of Chief Economist for bioenergy LCA

Government of Canada Environment and Climate Change Canada for its Clean

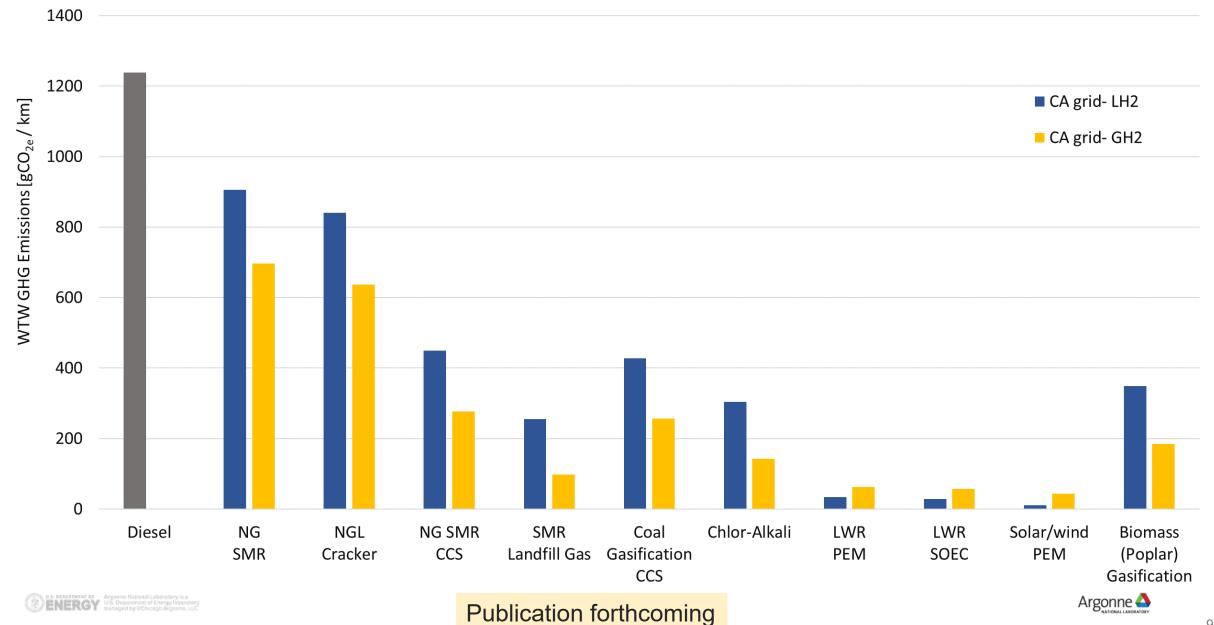
GREET sustainability metrics include energy use, criteria air pollutants, <u>GHG</u>, and water consumption


Energy use	Air pollutants	Greenhouse gases	Water consumption
 Total energy: fossil energy and renewable energy Fossil energy: petroleum, natural gas, and coal Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy 	 VOC, CO, NOx, PM₁₀, PM_{2.5}, and SOx Estimated separately for total and urban (a subset of the total) emissions 	 CO₂, CH₄, N₂O black carbon, and albedo CO_{2e} of the five (with their global warming potentials) 	 Addressing water supply and demand (energy-water nexus)

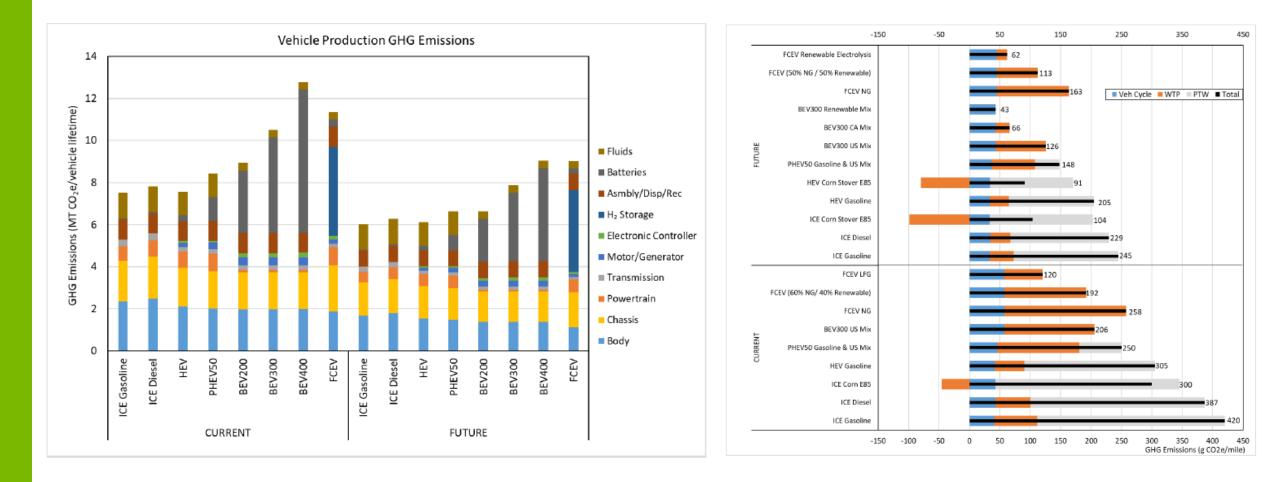
- GREET LCA functional units
 - Per service unit (e.g., mile driven, ton-mile, passenger-mile)
 - Per unit of output (e.g., million Btu, MJ, gasoline gallon equivalent)
 - Per units of resource (e.g., per ton of biomass)


GREET covers 100s of pathways, including H₂ production

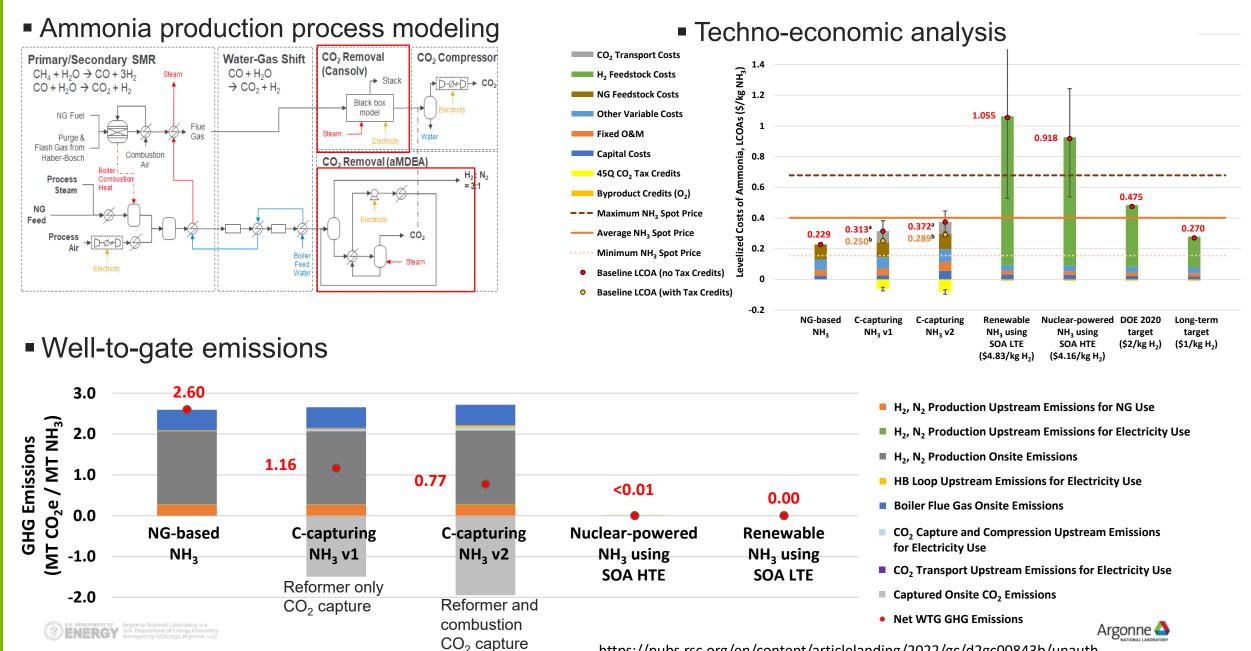
feedstocks and technologies in the GREET database



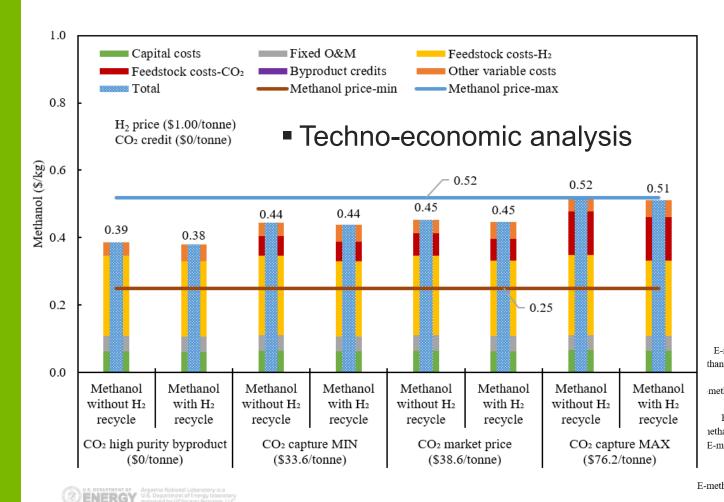
7

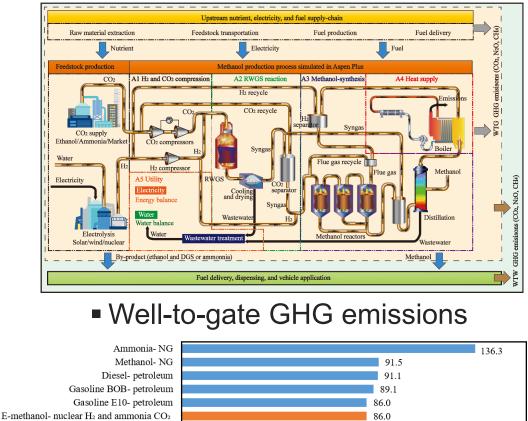

Well-to-gate (WTG) GHG emissions of hydrogen production pathways

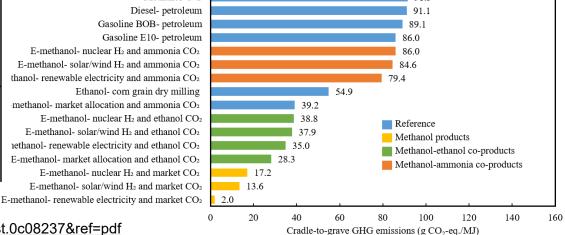
Well-to-Wheels (WTW) GHG emissions of H₂ pathways for fuel cell buses vs. diesel buses


Cradle-to-grave (C2G) analysis of fuel/vehicle systems, including H₂ FCEVs

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UCRicago Argonne, LLC. (DOE EERE Record 21003, Sept. 2021) https://www.hydrogen.energy.gov/pdfs/21003-life-cycle-ghg-emissions-small-suvs.pdf

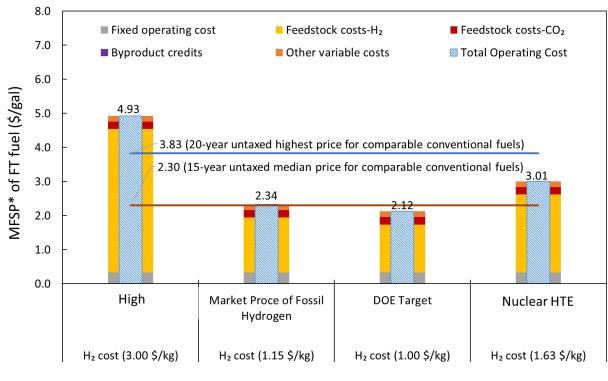

Ammonia as H₂ carrier


https://pubs.rsc.org/en/content/articlelanding/2022/gc/d2gc00843b/unauth

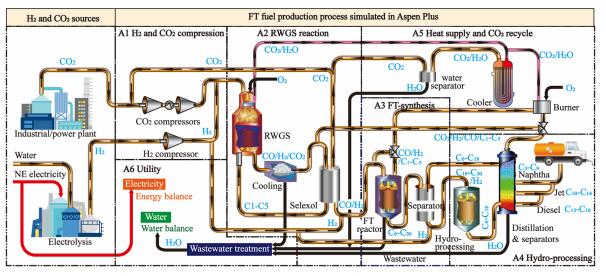

Methanol as H₂ carrier

- Methanol can be synthesized by using CO₂ and H₂ via RWGS and methanol reaction
- $CO_2 + H_2 \rightarrow syngas \rightarrow methanol$

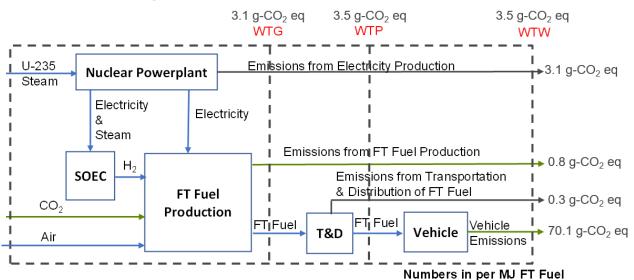
Conversion process modeling



https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.0c08237&ref=pdf


Fischer-Tropsch (FT) Fuels

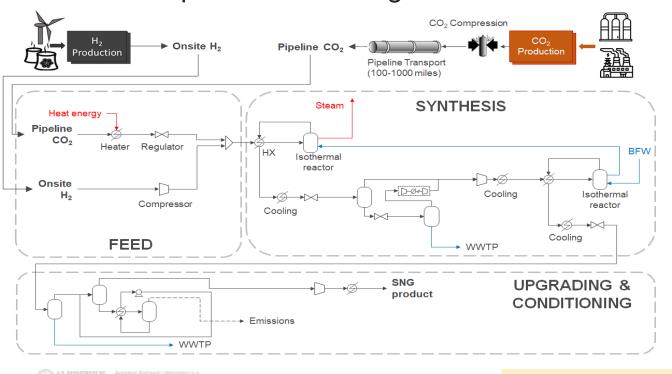
- FT fuels can be synthesized by using CO $_{\!2}$ and H $_{\!2}$ via RWGS and FT reaction
- $CO_2 + H_2 \rightarrow syngas \rightarrow FT$ fuels
- Techno-economic analysis



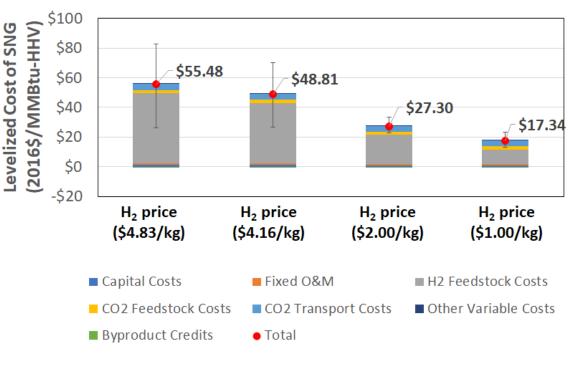
*MSFP=minimum fuel selling price

Conversion process modeling

Well-to-gate emissions

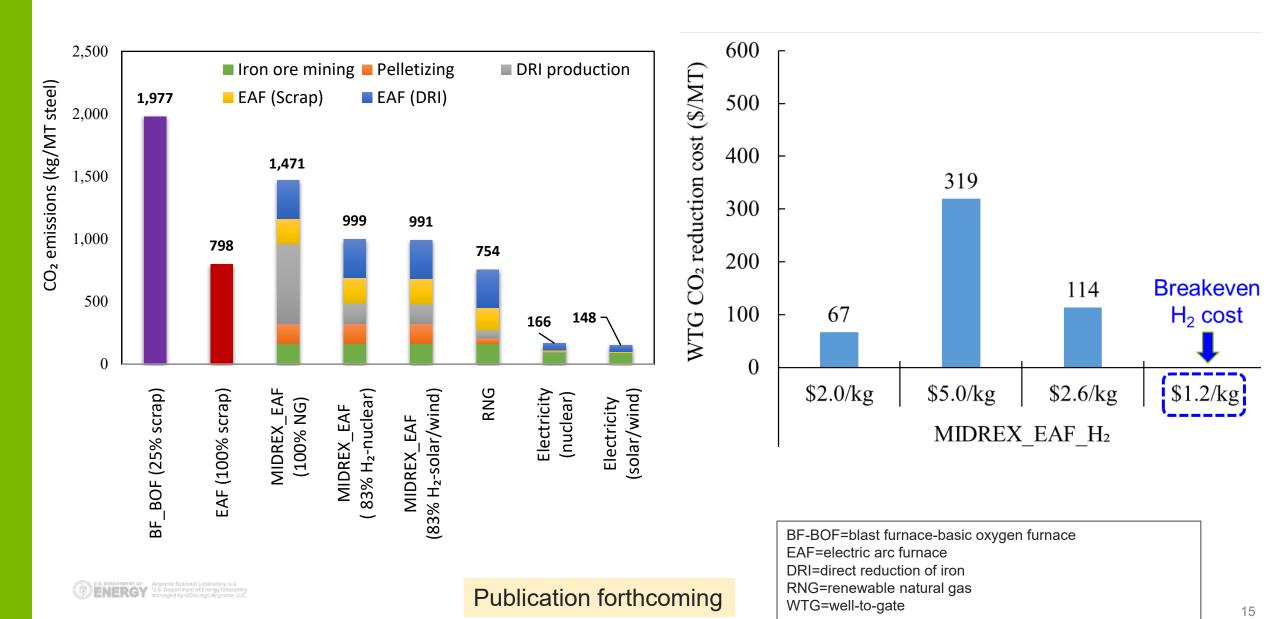

https://www.osti.gov/biblio/1868524

Synthetic natural gas (SNG)


- Synthetic NG can be synthesized by using CO_2 and H_2 via Sabatier reaction.
- $CO_2 + H_2 \rightarrow NG$

ENERGY

Conversion process modeling


Techno-economic analysis

Publication forthcoming

Low-carbon H₂ cost is key for cost-effective steel decarbonization

GREET demonstration for selected H₂ **pathways**

$2 \qquad \checkmark \qquad \vdots \qquad \times \checkmark \qquad f_x \qquad 100$	-	-			-	-					·	Form	ula Bar		
Α	B	C Share of Feedstock	D		E	F	G	Н	Units Effici	K	L	Tom			
	Hydrogen Feedstock Sources	Scources [%]	Process In	puts	Value	Units	Process Outputs	Value							
arget Year for Simulation 🛛 🚊 🏊	SMR	100	SMR						71	! !	Results Sc 📒 派	Emissions: grams/mmBtu	of		
2021			Natural Gas		156482	2 ID 3 MWh	Hydrogen	44369) /IMBtu		Scope 1	VOC CO			
2022			Electricity CO ₂ CCS		No	3 IVIWN	Steam	487 1	NIVIBRU		Scope 2	NOx			
2023		Enter Process Details	00,000		140						Scope 3	PM10			
			1									PM2.5			
								1 1				SOx			
lydrogen Production Central/Onsite 淫 🏌		GREET Default					Calculate Proc	ess Efficien	ties			BC			
Central												oc			
Distributed												CH4: combustion			
lydrogen Feedstock Sources 🛛 🚝 🍾												N2O			
												CO2			
Biomass Gassification												CO2 (w/C in VOC & CO)			
By-Product from Chlorine Plants												GHGs	_		
By-Product from NGL Steam Cracker Plants													_		
Coal Gassification													_		
High Temperature Electrolysis with SOEC															
munice operature Electronists with SLIEL.															
Low Temperature Electrolysis PEM								£							
Low Temperature Electrolysis PEM				C2	2	~) : [× ~	fx	100						
Low Temperature Electrolysis PEM				C2	2	~	• : × ✓	fx	100	N	0	Р	Q	В	S
Low Temperature Electrolysis PEM SMR					2	~		fx				P	Q	R	S
Low Temperature Electrolysis PEM SMR SMR Feedstock				C2	2	~		fx	100 SMR Sco			P	Q	R	S
Low Temperature Electrolysis PEM SMR SMR Feedstock Eio-gas from AD of Animal Waste Bio-gas from AD of MSW									SMR Sco				Q	R Total SMR	S
Low Temperature Electrolysis PEM SMR SMR Feedstock Elo-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge				E			м		SMR Sco		and 3	Scope 3			S
Low Temperature Electrolysis PEM SMR SMR Feedstock Elo-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG				E	mission VOC		м		SMR Scop t Scope 1 1.9		and 3 Scope 2 0.0	Scope 3 14.3	Credits -3.4	Total SMR 12.8	<u>S</u>
Low Temperature Electrolysis PEM SMR SMR Electrolysis PEM Bio-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO		м		SMR Scope 1 1.9 2.2		and 3 Scope 2 0.0 0.1	Scope 3 14.3 43.5	Credits -3.4 -14.2	Total SMR 12.8 31.6	S S
Low Temperature Electrolysis PEM SMR SMR Electrolysis PEM Bio-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG				E	mission VOC CO NOx		м		SMR Scope 1 1.9 2.2 6.0		and 3 Scope 2 0.0 0.1 0.2	Scope 3 14.3 43.5 50.5	Credits -3.4 -14.2 -19.3	Total SMR 12.8 31.6 37.4	<u>S</u>
Low Temperature Electrolysis PEM SMR SMR Electrolysis PEM Bio-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG				E	mission VOC CO NOx PM10		м		SMR Scop t Scope 1 1.9 2.2 6.0 1.5		and 3 Scope 2 0.0 0.1 0.2 0.0	Scope 3 14.3 43.5 50.5 0.6	Credits -3.4 -14.2 -19.3 -1.0	Total SMR 12.8 31.6 37.4 1.1	S
Low Temperature Electrolysis PEM SMR SMR SMR Feedstock Eio-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO NOx PM10 PM2.5		м		SMR Scop t Scope 1 1.9 2.2 6.0 1.5 2.5		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5	Credits -3.4 -14.2 -19.3 -1.0 -1.0	Total SMR 12.8 31.6 37.4 1.1 2.0	S
Low Temperature Electrolysis PEM SMR SMR Electrolysis PEM Bio-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO NOx PM10 PM2.5 SOx		м		SMR Scope 1 1.9 2.2 6.0 1.5 2.5 0.1		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0 0.2	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8	S
Low Temperature Electrolysis PEM SMR SMR Electrolysis PEM Bio-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO NOx PM10 PM2.5 SOx BC		м		SMR Scope 1 1.9 2.2 6.0 1.5 2.5 0.1 0.2		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0 0.2 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5 0.1	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0 -0.2	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8 0.2	S
Low Temperature Electrolysis PEM SMR MR Feedstock Elo-gas from AD of Animal Waste Elo-gas from AD of MSW Elo-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO NOx PM10 PM2.5 SOx BC OC	s: grams	M /mmBtu of fuel t		SMR Scop t Scope 1 1.9 2.2 6.0 1.5 2.5 0.1 0.2 0.6		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5 0.1 0.2	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0 -0.2 -0.4	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8 0.2 0.4	S
Low Temperature Electrolysis PEM SMR MR Feedstock Elo-gas from AD of Animal Waste Elo-gas from AD of MSW Elo-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO NOx PM10 PM2.5 SOx BC OC		M /mmBtu of fuel t		SMR Scope 1 1.9 2.2 6.0 1.5 2.5 0.1 0.2		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0 0.2 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5 0.1 0.2	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0 -0.2	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8 0.2	S
Low Temperature Electrolysis PEM SMR MR Feedstock Elo-gas from AD of Animal Waste Elo-gas from AD of MSW Elo-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO NOx PM10 PM2.5 SOx BC OC	s: grams	M /mmBtu of fuel t		SMR Scop t Scope 1 1.9 2.2 6.0 1.5 2.5 0.1 0.2 0.6		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5 0.1 0.2 301.4	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0 -0.2 -0.4	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8 0.2 0.4	S S S S S S S S S S S S S S S S S S S
Low Temperature Electrolysis PEM SMR MR Feedstock Elo-gas from AD of Animal Waste Elo-gas from AD of MSW Elo-gas from AD of Wastewater Sludge Conventional NG					mission VOC CO NOx PM10 PM2.5 SOx BC OC CH4: cc	s: grams	M /mmBtu of fuel t		SMR Scop t Scope 1 1.9 2.2 6.0 1.5 2.5 0.1 0.2 0.6 0.5 0.3		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5 0.1 0.2 301.4 2.0	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0 -0.2 -0.4 -57.8	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8 0.2 0.4 244.0 1.7	<u>S</u>
Low Temperature Electrolysis PEM SMR SMR Feedstock E Sio-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge Conventional NG Landfill Gas					mission VOC CO NOx PM10 PM2.5 SOx BC OC CH4: cc N20 CO2	s: grams	M /mmBtu of fuel t		SMR Scop t Scope 1 1.9 2.2 6.0 1.5 2.5 0.1 0.2 0.6 0.5 0.3 82,467		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5 0.1 0.2 301.4 2.0 8,551	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0 -0.2 -0.4 -57.8 -0.6 -17,424	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8 0.2 0.4 244.0 1.7 74,045	S
Low Temperature Electrolysis PEM SMR SMR Feedstock Elo-gas from AD of Animal Waste Bio-gas from AD of MSW Bio-gas from AD of Wastewater Sludge	Inputs Results Petro	oleum Co_proce	essing NG		mission VOC CO NOx PM10 PM2.5 SOx BC OC CH4: cc N20 CO2	s: grams	M /mmBtu of fuel t		SMR Scop t Scope 1 1.9 2.2 6.0 1.5 2.5 0.1 0.2 0.6 0.5 0.3		and 3 Scope 2 0.0 0.1 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0	Scope 3 14.3 43.5 50.5 0.6 0.5 15.5 0.1 0.2 301.4 2.0 8,551 8,664	Credits -3.4 -14.2 -19.3 -1.0 -1.0 -3.0 -0.2 -0.4 -57.8 -0.6	Total SMR 12.8 31.6 37.4 1.1 2.0 12.8 0.2 0.4 244.0 1.7	S S S S S S S S S S S S S

- ✓ User friendly interface
- ✓ Results include scope 1, 2 and 3 emissions
- $\checkmark\,$ Process inputs and outputs by user in various units

Acknowledgment

GREET® LCA model has been supported by DOE's Office of Energy Efficiency and Renewable Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) for over two decades

ANL Team

Ed Frank, Pingping Sun, Krishna Reddi, Pradeep Vyawahare, Adarsh Bafana, Kyuha Lee, Pallavi Bobba, Vincenzo Cappello, Hernan Delgado, Kwang Hoon Baek

Thank You! aelgowainy@anl.gov

GREET tutorials: https://youtu.be/BrqRhJ3qRml

Our models and publications are available at:

https://greet.es.anl.gov/publications

<u>https://hdsam.es.anl.gov/</u>