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Today, more than 10M metric tons of hydrogen are produced in the
U.S. annually, mainly from SMR of natural gas

Hydrogen Production

(1,000 tonne/year) = Captive Gas - Refineries
O < 200 1 Captive Gas - Ammf:mia.
O 201 - 400 @ Merchant Gas - Refineries
© Merchant Gas - Other
O 401 - 600 * Merchant Liquid
O > 601 4 By-product Gas - Chlor-alkali
4 By-product Gas - Steam Crackers
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H2@Scale: a DOE initiative for a hydrogen economy
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The GREET® (Greenhouse gases, Regulated Emissions,

and Energy use in Technologies) model

= With DOE support, Argonne has been developing the GREET life-cycle
analysis (LCA) model since 1995 with annual updates and expansions

= |t is available for free download and use at greet.es.anl.gov

= >50,000 registered users globally including automotive/energy industries
and government agencies

GREET 1 model:
Fuel-cycle (or well-to-wheels) modeling of vehicle/fuel systems
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GREET includes a suite of
models and tools

» GREET coverage

v

v

GREET1: fuel cycle (or WTW) model of vehicle
technologies and transportation fuels

GREET?2: vehicle manufacturing cycle model of
vehicle technologies

= Modeling platform

v
v

Excel
.net

= GREET derivatives

v

v
v
v

<

ICAO-GREET by ANL, based on GREET1
China-GREET by ANL, with support of Aramco
CA-GREET by CARB, based on GREET1

AFLEET by ANL: alternative-fuel vehicles
energy, emissions, and cost estimation

EverBatt by ANL: energy, emissions, and cost
modeling of remanufacturing and recycling of
EV batteries

GREET applications by agencies

Calfornia Envronmenta Protection Agency - CA-GREET3.0 built based on and uses data from ANL

©= Air Resources Board

GREET

mmie=  Oregon Dept of Environ. Quality Clean Fuel Program

%392"’ EPA RFS2 used GREET and other tools for LCA of fuel pathways;
GHG regulations

CHNHTSA National Highway Traffic Safety Administration (NHTSA) fuel
economy regulation

{©) FAA and ICAO AFTF using GREET to evaluate aviation fuel

US@W@E GREET was used for the US DRIVE Fuels Working Group Well-

VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

S | CA of renewable marine fuel options to meet IMO 2020 sulfur
regulations for the DOT MARAD

% US Dept of Agriculture: ARS for carbon intensity of farming
practices and management; ERS for food environmental footprints; Office

of Chief Economist for bioenergy LCA

t . . .
Bl Soismment Environment and Climate Change Canada for its Clean

Fuel Standard Argonne® 5
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GREET sustainability metrics include energy use,
criteria air pollutants, GHG, and water consumption

Greenhouse Water
gases consumption

Energy use Air pollutants

* Total energy: fossil
energy and renewable

energy « VOC, CO, NOx, PM,,, .|co,, CH,, N,0|

- Fossil energy: PM, 5, and SOx black carbon, and - Addressing water
petroleum, natural gas, - Estimated separately albedo supply and demand
and coal for total and urban (a - CO,, of the five (energy-water

- Renewable energy: subset of the total) (with their global nexus)
biomass, nuclear energy, emissions warming potentials)

hydro-power, wind
power, and solar energy

» GREET LCA functional units
— Per service unit (e.g., mile driven, ton-mile, passenger-mile)
— Per unit of output (e.g., million Btu, MJ, gasoline gallon equivalent)
— Per units of resource (e.g., per ton of biomass)

aaaaaaaaaaaaaaa




GREET covers 100s of pathways, including H, production

Natural Gas Sector: * NG end use in electric, « Com
« Conventional NG industrial, and residential « Sorghum
« Shale gas sectors Renewable « Soybeans
« Transportation sector: Energy/Fuels: « Rapeseeds
CNG, LNG « Ethanol * Sugarcane
* Alternative fuels: LPG, « Biodiesel €——— * Palm

methanol, DME, FT
diesel, FT jet

Gasoline Electric Systems: Natural gas
Petroleum Sector: Diesel » Electricity generation at Coal .
« Conventional oil 5| Jet fuel US plant level Residual oil
« Shale oil Liquefied petroleum gas * Aggregate to national, Biomass
» Oil Sands Naphtha NERC, and state level Nuclear
Residual oil « With CCS, if applicable \|;|Vy.d;0
in

Solar

1st Gen Feedstocks:

2"d Gen Feedstocks:
* Dedi. energy crops
* Crop residues
* Forest residues

* Renewable diesel

* Renewable gasoline

* Renewable jet fuel

* Renewable natural gas

I Cfirr:ven(;[lor)f\r]l ar:dC Eesn. Natural gas | o et vEEEs
with and withou P

I Hydr.oge.n Electrolysis with electricity I g

| Applications: ¢ Electrolysis with Nuclear energy

* Gaseous hydrogen Biomass I Electro-Fuels

I * Liquid hydrogen Byproduct of chlorine and crackers - el CO, Sources
Coal I « Diesel * Ethanol plants

I Petroleum coke I « Jet fuel * NG SMR plants

I Coke oven gas « Methanol » Cement plants

I * Nuclear * Etc.

The users are also capable of creating their own pathway with existing
feedstocks and technoloagies in the GREET database

* Ammonia




Well-to-gate (WTG) GHG emissions of hydrogen production pathways
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Publication forthcoming




Well-to-Wheels (WTW) GHG emissions of H, pathways for fuel cell buses
vs. diesel buses

WTW GHG Emissions [gCO, / km]
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Publication forthcoming
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Cradle-to-grave (C2G) analysis of fuel/vehicle systems,
including H, FCEVs

: ; - -150 50 so 150 250 350 50
Vehicle Production GHG Emissions
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FCEV {500 NG / 50% Renawabla) 1
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(DOE EERE Record 21003, Sept. 2021) Argonne &
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https://www.hydrogen.energy.gov/pdfs/21003-life-cycle-ghg-emissions-small-suvs.pdf

Ammonia as H, carrier

= Ammonia production process modeling

» Techno-economic analysis

Primary/Secondary SMR Water-Gas Shift |{ CO,Removal CO, Compressor. [ €O, Transport Costs 14
CH, +H,0 & CO+ 3H, Stearn CO+H,0 (Cansolv) St e mmmm H, Feedstock Costs =
dB5alind
CO+H,0 > CO,+H; 2CO+H, 1 [ [ ’ mmmm NG Feedstock Costs E" 1.2
.| Black box N | 5
NG Fuel model ‘r - === Other Variable Costs - 1.055
Flue _T 4 i . g 1
Purge & Gas Steam e j Water [ Fixed O&M S 0.918
F'ii"bgﬁé ;rsocr: T comouston i mmm Capital Costs S 038
el AT CO, Removal [aMDE‘A] _ <
Process Comhustion . > EJS 1N1 45Q €O, Tax Credits g P R I
Steam Heet Byproduct Credits (0,) h 0.475
[} | o
Fiﬁ ! . | = == Maximum NH, Spot Price £ 04 T
» » a ‘ . S a 0.3722
Process co, Average NH, Spot Price ; 0.229 gi;zb 0.289b 0.270
Air Boiler Minimum NH, Spot Price & 02
[]
. Feed Steam S
Electric Water @ Baseline LCOA (no Tax Credits) 3 0
o Baseline LCOA (with Tax Credits) T T
0.2
NG-based C-capturing C-capturing Renewable Nuclear-powered DOE 2020 Long-term
. . NH; NH; vl NH; v2 NH; using NH; using target target
SOA LTE SOA HTE ($2/kgH,)  ($1/kgH,)
= \Well-to-gate emissions Gasign) asohar) 2
3.0 2.60
u H,, N, Production Upstream Emissions for NG Use
- T ] ]
I 2.0 ® H,, N, Production Upstream Emissions for Electricity Use
0w = .
S [ ® H,, N, Production Onsite Emissions
25 10 1.16
“w : 0.77 HB Loop Upstream Emissions for Electricity Use
w 2 * u Boiler Flue Gas Onsite Emissions
® o 0.0 o [
T O NG-based C-capturing C-capturing Nuclear-powered Renewable CO, Capture and Compression Upstream Emissions
. . for Electricity Use
© E -1.0 NH, NH, v1 NH, v2 NH; using NH, using v
- I -
~ Ref | SOA HTE SOA LTE CO, Transport Upstream Emissions for Electricity Use
2.0 eformer only Captured Onsite CO, Emissions

Reformer and
combustion
CO, capture

CO, capture
® Net WTG GHG Emissions
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https://pubs.rsc.org/en/content/articlelanding/2022/gc/d2gc00843b/unauth

Methanol as H, carrier

_ _ = Conversion process modeling
« Methanol can be synthesized by using CO, and H,

via RWGS and methanol reaction
CO, + H,~» syngas—> methanol

=
Upstream nutrient, electricity, and fuel supply-chain | |

!
Raw material extraction Feedstock transportation Fuel production Fuel delivery : =] |

‘ Nutrient ‘ Electricity ‘ Fuel

CO2 Al Hz and CO2 compression A2 RWGS reaction Methanol-synthesis; A4 Heat supply

T recycle
E COy, CO2 recycle
COz2 supply v

Ethanol/Ammonia/Market COz2 compressors

1.0

4

‘ Co o _‘ SNV TG AGH G emizisons (CO2N0XC)

WTW GHG emisisons (CO2, N20, CH4)

mmmm Capital costs mmm Fixed O&M Feedstock costs-H»
B Feedstock costs-CO. = Byproduct credits e Other variable costs
e Total e Nethanol price-min === Methanol price-max

H Syngas| )

Water

| H2 compressor a
Electricity A5 Utility RWGS
| Electricity | Cooling]| separato
Energy balance 2nddring|

A= = ——
ater ice

Electrolysis Water
Solar/wind/nuclear

08 F

H, price ($1.00/tonne)

co.cedits0rome) @ [€@CNNO-€conomic analysis

06 |

P === = == = = = = — —

0.52 0.52 — — — _ B Byproduct (ethanoland DG orammonnia) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Metha __
. 0.51
Foeldeivery] dispersing) Al yetitIo epplicaion
0.45 0.45

0.44

04 9 0.38

Methanol ($/kg)

= \Well-to-gate GHG emissions

Ammonia- NG

Methanol- NG

Diesel- petroleum

Gasoline BOB- petroleum

Gasoline E10- petroleum

E-methanol- nuclear H> and ammonia COz
E-methanol- solar/wind H: and ammonia CO-
thanol- renewable electricity and ammonia COz
Ethanol- corn grain dry milling

Methanol Methanol Methanol Methanol Methanol Methanol Methanol Methanol | .methanol- market allocation and ammonia CO»
without Hz with Hz without H: with H» without H: with H: without H: with Hz E-methanol- nuclear Hz and ethanol CO»
recycle recycle recycle recycle recycle recycle recycle recycle E-methanol- solar/wind H. and ethanol COz
aethanol- renewable electricity and ethanol CO:
CO: high purity byproduct CO: capture MIN CO: market price CO:z capture MAX E-methanol- market allocation and ethanol CO»
($0/tonne) ($33.6/tonne) ($38.6/tonne) ($76.2/tonne) E-methanol- nuclear H> and market CO-
E-methanol- solar/wind H> and market CO:
E-methanol- renewable electricity and market CO-

136.3

02 f 0.25

0.0

38.8
37.9
35.0

I Reference

Methanol products
[ Methanol-ethanol co-products
[ Methanol-ammonia co-products

. . . 0 20 40 60 80 l(I)O 12I() 1:10 160
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.0c08237 &ref=pdf Cradle-to-grave GHG emissions (g CO,-eq./MJ)



https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.0c08237&ref=pdf

Fischer-Tropsch (FT) Fuels

» FT fuels can be synthesized by using CO, and H,

via RWGS and FT reaction
« CO, + H,> syngas—> FT fuels

= Techno-economic analysis

8.0

70 r

6.0

MFSP* of FT fuel (S/gal)

10
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50
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20

™ Fixed operating cost

W Byproduct credits

3.83 (20-year untaxed highest

Feedstock costs-Hz

m Other variable costs

B Feedstock costs-CO;

Total Operating Cost

price for comparable conventional fuels)

2.30 (15-year untaxed median

price for comparable conventional fuels) 3

o
e

g

High
Hydrogen

H: cost (3.00 $/kg) H, cost (1.15 $/kg)

*MSFP=minimum fuel selling price

Market Proce of Fossil

N
N

_

DOE Target

Nuclear HTE

H, cost (1.00 $/kg) H: cost (1.63 $/kg)

https://www.osti.gov/biblio/1868524

= Conversion process modeling

Electrolysis

H: and CO2 sources FT fuel production process simulated in Aspen Plus
Al Hz and CO2 compression A2 RWGS reaction A5 Heat supply and CO: recycle
CO2/H20 Z 3 =
CO2 CO2
02 CO2
COz2 compressors
Industrial/power p! RWGS
Water i Hz compressor COM/CO2
NE electricity aettlity ) | I S B=r B NN (] CoCa
Cooling
Energy balance
C1-C5 Selexol = §
2
Water balance Distillation

& separators

‘Wastewater H A4 Hydro-processing

= \Well-to-gate emissions
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I H, I 1 }» 0.8 g-CO, eq
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1 . > —_— 70.1g-CO, e
= Air . I T&D — Vehicle —r'Emrssmns g-CO, eq
Lo e e o 1 I

Numbers in per MJ FT Fuel


https://www.osti.gov/biblio/1868524

Synthetic natural gas (SNG)

« Synthetic NG can be synthesized by using CO,
and H, via Sabatier reaction.

. CO,+H,> NG

= Conversion process modeling
OnsTeHz

Heat energy
Pipeline l ]

[o{e]
2 Heater Regulator

CO, Compression

co,
Pipeline CO, <— (i)l s« ‘m‘

Pipeline Transport
(100-1000 miles)

Steam

SYNTHESIS

L

E—

HX Isothermal

reactor

Onsite -~
—T H, (I e N P N G B el = 6], Cooling Isothermal
Compressor . reactor
Cooling
Cooling
FEED WWTP

UPGRADING &
CONDITIONING

D = SNG
product

.

1 L
b + Emissions

WWTP

Levelized Cost of SNG
(20165/MMBtu-HHV)

» Techno-economic analysis

W
iy
o
o

$80
$60
$40

Publication forthcoming

-$55.48

-$48.81
-$27.30
—e— -$17.34
H
H, price H, price H, price H, price
(54.83/kg) (54.16/kg) (52.00/kg) (51.00/kg)
m Capital Costs H Fixed O&M B H2 Feedstock Costs
CO?2 Feedstock Costs B CO2 Transport Costs B Other Variable Costs

B Byproduct Credits e Total
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Low-carbon H, cost is key for cost-effective steel decarbonization

2,500 600 r
¥ Iron ore mining m Pelletizing m DRI production Q‘
2 1,977 EAF (Scrap)  m EAF (DRI) 2 500 -
% 2,000 &
- g
2 =
E; 1,471 2 400
E 1,500 g 319
o . — B
2 999 991 g 300
‘E 1,000 708 . 3
754 O
& . l = 200 |
Z S0 . 8 114 Breakeven
166 148 o 100 r 67 H, cost
i sl | m !
0 - -_ B O | 1
------ N
= B £ T T 9 zT -3 $2.0/kg ‘ $5.0/kg | $2.6/kg | 1$1.2/ke!
© c LY =8 £ EZ S§ £= R y
O O s - = O
2 8 X B3 <32 gy £ MIDREX_EAF_H:
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®) L > o™ = L
el < 00 =
L w — )
a8 x BF-BOF=blast furnace-basic oxygen furnace

EAF=electric arc furnace
DRI=direct reduction of iron
RNG=renewable natural gas

Publication forthcoming WTG=well-to-gate
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GREET demonstration for selected H, pathways

c2 v fx 100
L) =} C u} | E_ | F G H | il K L
2 I Target Year for Simulation = T |SMR 100 1SMR Fil Results S¢... ==
3 [ 2021 ] Matural Gas 166432 Ib Hydrogen 44363 |b
4 02z | Electricity 13 Mwh Steam 437 MME
Scope 2
5 co.ccs o
B | % Snierfrosss et
7
2 Hydrogen Production CentraliOnsite == T,
9 Calculate Process Efficencies
10 Central ]
n Distributed
12
1z | Hedrogen Feedstock Sources E=E 4
14 Biomass Gassification
i Ey-Product from Chlorine Plants
16
7 Ey-Product from MGL Steam Cracker Plants
12 Cioal Gazsification
13 High Temperature Electralysis with SOEC
:lﬂ Low Temperature Electrolysis PEM
al ) c2 ~ i fx'| 100
24 =
- SMR Feedstock i= M M o
28 | Bio-gas from A0 of Animal Waste
27 = S5MR Scope 1, 2and 3
25 Elio-gas from AD of MEW
29 | | Bio-gas from A0 of Wastewater Shudge IEmissiuns: grams/mmBtu of fuel throughput Scope 1 Scope 2
20
29 | | Banventional MG ] vocC 1.3 0.0
32| | Landfill Gas co 2z 0.1
= NOx 6.0 0.2
ez} PM1O 1.5 0.0
® PM2.5 25 0.0
38 S0 0.1 0.2
28
a0 BC 0.2 0.0
H oC 0.6 0.0
L .
45 CH4: combustion 0.5 0.0
4 N2 0.3 0.0
45
A co2 82,467 450
» Overview H2_GHG Inputs - Petroleum Co_processing NG Me!| €02 [w CinVOC & CO) 82,477 450
GHGs 82,577 453

v User friendly interface

v Results include scope 1, 2 and 3 emissions
v Process inputs and outputs by user in various units

S

Formula Bar

Emissions: grams/mmBtu of |

voC
co
N0
PM10
PM2.5
S0
BC
oc
CH4&: combustion
N20
Coz2
CO2 [w/ CinVOC & CO)
GHGs
F o R g
Scope 3 Credits Total SMR
14.3 -3.4 12.8
43.5 -14.2 36
50.5 -18.3 37.4
0.6 -1.0 1.1
0.5 -1.0 2.0
15.5 -3.0 12.8
0.1 0.2 0.2
0.2 0.4 0.4
301.4 -57.8 2440
2.0 0.6 1.7
8,551 -17,424 74,045
2,664 -17,457 74,134
18,184 -15,337 81,877 gC02e per mmBtuof H2
5.3 kg CO2e per kgofH2

Argonne &

HATIORAL LABDRATORY
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Thank You!
aelgowainy@anl.qgov

GREET tutorials:
https://youtu.be/BrqRhJ3gRml

Our models and publications are
available at:

https://qgreet.es.anl.gov/publications
https://hdsam.es.anl.qov/
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