

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

2022 AMR Plenary Session

Dr. Sunita Satyapal, Director, Hydrogen and Fuel Cell Technologies Office and DOE Hydrogen Program Coordinator U.S. Department of Energy

June 6, 2022

Introduction – Energy, Market, and Policy Context

HZ

U.S. Energy Landscape and Key Goals

U.S. primary energy consumption by energy source, 2021

Note: Sum of components may not equal 100% because of independent rounding **Source**: Data collected from U.S. Energy Information Administration, April 2022, *Monthly Energy Review*, preliminary data

Administration Goals include:

- Net-zero emissions economy by 2050 and 50–52% reduction by 2030
- 100% carbon-pollution-free electric sector by 2035

Priorities: Ensure benefits to all Americans, focus on jobs, EJ40: 40% of benefits in disadvantaged communities

EJ: Environmental Justice

U.S. Energy Related CO₂ Emissions by Sector End-Use

Need to address all sectors with a portfolio approach

Hydrogen can provide benefits particularly in hard to decarbonize sectors: industry, heavy duty transport and to enable energy storage

Other industrial: aluminum, cement and lime, construction, agriculture, plastics, wood, electrical equipment, transportation equipment, computing and electronics equipment, paper products, glass, etc.

Note: Sum of sectors may not equal 100% due to independent rounding

Source: M. Koleva, DOE HFTO, NREL, adapted from EIA, 2020, U.S. Energy Information Administration - EIA - Independent Statistics and Analysis

Snapshot of Hydrogen and Fuel Cells in the U.S.

• 10 million metric tons produced annually • More than 1,600 miles of H₂ pipeline • World's largest H₂ storage cavern

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

PEM Electrolyzer Locations and Capacity – 2021 Snapshot

Operational and Under Construction: 172 MW Capacity

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

hydrogen.energy.gov/program records.html

PEM Electrolyzer Locations and Capacity – 2022 Snapshot

Operational and Under Construction: > 620 MW Capacity

Cumulative Installed Capacities of Wind, Solar, and Electrolyzers in the U.S.

Similar to solar and wind, electrolyzer deployments are scaling up rapidly

Global electrolyzer market estimates vary Scenarios show over 60 GW by 2030

Sources: M. Koleva, HFTO/NREL, BNEF, 2021, Global Installed Capacity, IHS Markit, 2021, Hydrogen – CEH, Arjona, V. and Buddhavarapu, P., 2021, DOE Hydrogen Program Record. Electrolyzer Capacity Installations in the United States, Arjona, V., 2022, DOE Hydrogen Program Record. PEM Electrolyzer Capacity Installations in the United States, M. Klippenstein, CHFCA, EIA

Penetration of Renewables Drives the Need for Energy Storage

For the first time in history, in May 2022, renewable power in California exceeded demand

Source: California Independent System Operator

Credit: Daniel Wood and Lauren Sommer/NPR

Other renewables include geothermal, biomass, biogas and small hydroelectric power. Large hydroelectric and nuclear power are not considered renewable by the state of California. Total supply exceeds demand because some amount of electricity is lost in transmission and some is exported to other states.

Developing Our Strategy, Sharpening Our Goals

HZ

"Water the roots, not the leaves, to grow the trees."

The U.S. DOE Hydrogen Program Spans Multiple DOE Offices

Hydrogen is a key element of a portfolio of solutions to decarbonize the economy

Hydrogen Program

Coordinated across DOE

Focuses on research, development, demonstration, and deployment (RDD&D) to address:

- The entire H₂ value chain from production through end-use
- H₂ production from <u>all</u> resources (renewables, nuclear, and fossil + CCS)

DOE Hydrogen Program Plan (2020)

www.hydrogen.energy.gov

Comprehensive DOE Strategy Across the Hydrogen Value Chain

	NEAR-TER	RM LO	ONGER-TERM
Production	Electrolysis (low-temperature, high-te Advanced fossil and biomass reform Gasification of biomass, legacy coal v		
Delivery	Distribution from on-site production Tube trailers (gaseous H2) Cryogenic trucks (liquid H2) Chemical H2 carriers		eline transmission and distribution
Storage	Pressurized tanks (gaseous H ₂) Cryogenic vessels (liquid H ₂)	Geologic H ₂ storage (e.g., caverns, depleted Cryo-compressed Chemical H ₂ carriers	l oil/gas reservoirs) Materials-based H ₂ storage
Conversion	Turbine combustion Fuel cells	Advanced combustion Next generation fuel cells	Fuel cell/combustion hybrids Reversible fuel cells
Applications	Fuel refining Space applications Portable power	Blending in natural gas pipelines Distributed stationary power Transportation Distributed CHP Industrial and chemical processes Defense, security, and logistics applications	Utility systems Integrated energy systems

Coordinated Strategy Across RDD&D

Portfolio includes:

- 1) Single project recipients & subrecipients
- 2) Consortia—leveraging national labs
- 3) Direct projects at/with labs
- 4) Small business innovation projects

Program Priorities and Key Initiatives to Address Them

DOE Hydrogen Program: Budgets & Plans

42

DOE Hydrogen Program Fiscal Year (FY) Funding across Offices

See: .www.energy.gov/sites/default/files/2022-05/doe-fy2023-budget-volume-2-crosscutting.pdf

*Final to be updated EOY; pending SC, ARPA-E, and other final allocations by end of year. ARPA-E funding is determined annually based on programs. Annual funding only, excludes BIL funding and new offices (e.g., OCED) developed through office and stakeholder priorities. FY funding 2023 is TBD.

The Hydrogen and Fuel Cell Technologies Office (HFTO)

Mission Research, development an demonstration (RD&D) of hydrogen and fuel cell technologies to advance:	 Clean Energy and Emissions Reduction Across Sectors Job Creation and a Sustainable and Equitable Energy Future
--	---

Hydrogen Technologies	Fuel Cell Technologies	Systems Development & Integration	
Hydrogen Production Hydrogen Infrastructure and Storage	Materials & Components Systems	Transportation Industrial and Chemical Applications Grid Energy Storage and Power Generation Safety, Codes and Standards	Enabling U.S. Department of Energy

Hydrogen and Fuel Cell Technologies Office Budget

Activities

- Guide and strengthen portfolio through rigorous analysis
- Validate first-of-a-kind systems across applications, de-risk technologies. Includes safety, codes, standards, workforce development
- Continue heavy-duty fuel cell R&D, including supply chain
- Increase bulk storage, liquid, and delivery focus (e.g., carriers)
- Supplement production RD&D with BIL funding (including \$1B)

The Bipartisan Infrastructure Law (BIL) a.k.a Infrastructure Investment and Jobs Act (IIJA)

Bipartisan Infrastructure Law—Hydrogen Highlights

- Includes \$9.5B for clean hydrogen:
 - \$1B for electrolysis research, development, and demonstration
 - \$500M for clean hydrogen technology manufacturing and recycling R&D
 - \$8B for at least four regional clean hydrogen hubs
- Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to \$2 per kg by 2026

President Biden Signs the Bipartisan Infrastructure Law into law on Nov. 15, 2021. Photo Credit: Kenny Holston/Getty Images

Requires developing a National Hydrogen Strategy and Roadmap

Key BIL Sec. 40314 Hydrogen Provisions—Overview

"Clean H₂ Electrolysis Program": BIL Includes research, development, demonstration and deployment (RDD&D) across multiple electrolysis technologies, compression, storage, drying, integrated systems, etc. Directly supports Hydrogen Shot

 "Clean Hydrogen Manufacturing and Recycling"

 Raw
 Processed
 Subcomponents
 End Product

 Materials
 Subcomponents
 End Product

 Focus on manufacturing and end of life/recycling RD&D

Regional Clean H₂ Hubs: At least 4 Hubs, geographic diversity, includes renewables, fossil + CCS, nuclear, for clean hydrogen production, multiple end use applications.

National Hydrogen Strategy and Roadmap: Includes working with EPA to develop an initial clean hydrogen production standard per Sec. 822: $\leq 2 \text{ kg CO}_2 \text{e per kg H}_2$

Sec. 40314 (EPACT Sec 816): Clean Hydrogen Electrolysis Program; \$1 Billion over 5 years. Goal \$2/kg by 2026

Sec. 40314 (EPACT Sec 815):Clean Hydrogen Manufacturing &Recycling\$0.5 Billion over 5 years

Sec. 40314 (EPACT Sec 813): Regional Clean Hydrogen Hubs; \$8 Billion over 5 years

Sec. 40314 (EPACT Sec 814): Strategy & Roadmap and Sec. 40315 (EPACT Sec 822): Clean Hydrogen Production Qualifications)

Broad Stakeholder Engagement included:

- Interagency: ~10 agencies
- Webinars: >1,700 participants
- Industry: >85 through industry coalitions
- 15 National Labs
- Tribal, Labor Union, EJ communities
- Environmental organizations

DOE: HFTO (lead) EERE, FECM, NE, SC, OTT, LPO, OE, OP, OCED, ED, IE, ELEP, and more (DOE Science and Energy Tech Team, "SETT")

DOE National Clean Hydrogen Strategy Development

Guiding Principles include

- Enable Deep Decarbonization
- Catalyze innovation & investment
- Spur domestic manufacturing
- Grow sustainable jobs
- Foster diversity, equity & inclusion
- Advance environmental justice
- Enable affordability and versatility
- Approach holistically

Target Strategic, High-Impact Uses of Hydrogen

U.S. Energy Related CO₂ Emissions by Sector End-Use

Note: Sum of sectors may not equal 100% due to independent rounding Source: M. Koleva, DOE HFTO, NREL, adapted from EIA, 2020, U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Hydrogen can provide benefits particularly in hard to decarbonize sectors: industry, heavy duty transport and to enable energy storage

VCLRW - Ventilation, Cooking, Lighting, Refrigeration & Washing BOM - Balance of Manufacturing

Other industrial: aluminum, cement and lime, construction, agriculture, plastics, wood, electrical equipment, transportation equipment, computing and electronics equipment, paper products, glass ,etc.

Threshold Costs for Hydrogen to be Competitive Across Sectors

Threshold cost for each application includes cost of production, delivery, storage, compression/processing/dispensing, as required, to the point of use for each application

Clean Hydrogen Demand and Costs for Market Penetration

Costs include production, delivery, dispensing to the point of use (e.g., high-pressure fueling for vehicle applications)

** Volumes dependent on multiple variables

The Opportunity for Clean Hydrogen

Clean Hydrogen Use Scenarios

- Catalyze clean H₂ use in existing industries (ammonia, refineries), initiate use for sustainable aviation fuels (SAFs), steel, potential exports
- Scale up use for heavy-duty transport, industry, and energy storage
- Market expansion across sectors for strategic, high-impact uses

Range of Potential 2050 U.S. Clean Hydrogen Demand

- Recognizes range of uncertainties
- Includes conservative and ambitious scenarios
- Core range: ~ 18–36 MMT H₂
- Maximum range: ~ 36–56 MMT H₂

Refs: 1. NREL MDHD analysis using TEMPO model; 2. Analysis of biofuel pathways from NREL; 3. Synfuels analysis based off H2@Scale ; 4. Steel and ammonia demand estimates based off DOE Industrial Decarbonization Roadmap and H2@Scale. Methanol demands based off IRENA and IEA estimates; 5. Preliminary Analysis, NREL 100% Clean Grid Study; 6. DOE Solar Futures Study; 7. Princeton Net Zero America Study

Stakeholder Reported Barriers to Hydrogen Market Adoption

- 4,900+ total registrants,
- 3,200+ participants at Plenary
- 34 countries

Hydrogen Shot Summit Speakers included:

- Secretary Granholm, DOE Leadership across offices
- Sec. John Kerry
- Bill Gates
- Industry CEOs, VPs Congressional Members, Labs, Research and Academic Experts

https://www.energy.gov/eere/fuelcells/hydrogen-shot-summit

Source: Hydrogen shot summit, Sept 2021

U.S. DEPARTMENT OF ENERGY	OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE
---------------------------	--	--

Focus on Cost-Reduction

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements—guided by application-specific targets

Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

> Launched June 7, 2021 Summit Aug 31–Sept 1, 2021
Strategy includes Hydrogen Shot

* Baseline 2020 cost: PEM \$1,500/kW, \$50/MWh, 90% capacity factor

How to reduce cost? Examples across multiple pathways

Strategies and scenarios being developed to reduce cost and emissions across pathways

H₂ from Electrolysis

- Reduce electricity cost, improve efficiency and utilization
- Reduce capital cost >80%, operating & maintenance cost >90%

Thermal Conversion

Example: Natural Gas Conversion + CCUS

 Reforming; pyrolysis; air separation; catalysts; carbon capture and storage (CCS); upstream emissions

Advanced Pathways

• Photelectrochemical (PEC), thermochemical, biological, etc.

*2020 Baseline: PEM (Polymer Electrolyte Membrane) low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Pathways to targets include capital cost <\$300/kW by 2025, < \$150/kW by 2030 (at scale). Assumes \$50/MWh in 2020, \$30/MWh in 2025, \$20/MWh in 2030

Scenario to Reduce PEM Electrolyzer Cost

Need Demonstrations & Deployments, together with Research & Development

- Increase manufacturing volume (multi-GW)
- Reduce capital cost <\$300/kW by 2025, ~150/kW by 2030
- Maintain performance and durability while addressing stack and balance-of-plant (BOP) costs

All Tools in the Toolbox Needed to Achieve Hydrogen Shot

Mechanisms for Innovation across the RDD&D Pipeline to achieve Hydrogen Shot

Hydrogen Shot Incubator Prize

FOAs, Consortia, Demos, H2 Hubs, Loan Guarantees

Feedback Requested on Industry Needs

Ramp up scale through demos and H2 Hubs

Incentivize development of **innovative off-roadmap technologies** with the potential to produce clean hydrogen at \$1/kg in one decade

Learn More: www.herox.com/HydrogenShotPrize

Focus on Regional Networks

Build Regional Networks through "Clean Hydrogen Hubs"

RFI findings: Regional clusters and geographic factors

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Resource Analysis Helps Identify Clean-Hydrogen Opportunities

Deployments are likely to vary regionally depending on availability of resources and CCS

Industrial Clusters as Basis for Potential Hydrogen Hubs

Priority deployments for hydrogen in industry include sectors where other decarbonization pathways are challenging, such as high-temperature heat generation, steelmaking, and ammonia production.

National Distribution of Industrial Sites, CO₂ Output, and CO₂ Sink Demand

Industrial Sites

Aluminum	•	Lime	٠
Ammonia	0	Magnesium	0
Carbonate Use	0	Petrochemicals	\diamond
Cement	0	Pulp and Paper	\diamond
Ethanol	0	Refining	0
Ferroalloy	0	Silicon Carbide	
Glass	0	Soda Ash	
Iron and Steel	•	Titanium Dioxide	٠
Lead	•	Zinc	٠

CO₂ Sink Demand (kt)

500

250

0.0

Mapping industrial sites to CO₂ sources and demands can help identify **industrial clusters for potential decarbonization hubs**

Adapted from Carbon Capture and Utilization in the Industrial Sector | Environmental Science & Technology (acs.org)

Example of Matching Supply and Demand: H₂ **Potential and Ammonia Production Plants**

Resource mapping helps identify regions with substantial resources of clean energy and hydrogen demand, to inform early deployments. Examples show hydrogen, ammonia, wind, and nuclear.

Product name

- Existing hydrogen plant
- Existing ammonia plant

Wind

n

Percentage of windy land area (30% gross capacity factor at 80 m)

3.33 Ammonia capacity Thousand tons/year

0–250 250-500 500-750 >750

Adapted from national lab, H2@Scale, and US Industry Hydrogen Roadmap

Ongoing Work and Accomplishments to Address Key Priorities

HZ

Program Enabled Accomplishments

Loan Programs Office (LPO) has \$40 Billion in Available Debt Capital

LPO announced loan guarantee conditional commitments for 2 clean hydrogen projects

\$1.04B for the first-ever commercial-scale project to deploy methane pyrolysis technology. Will enable 1,000 construction jobs and 75 operations jobs. (December 2021)

\$504.4M for large-scale hydrogen energy storage,
220 MW electrolysis and turbine. Will enable up to
400 construction jobs and 25 operations jobs.
(April 2022)

Let's talk about your project. Call or email for a no-cost pre-application consultation: (202) 287-5900 or LPO@hq.doe.gov

H2NEW Consortium to Accelerate Progress in Electrolyzers

Electrolyzer Stack Goals by 2025				
	LTE PEM HTE			
Capital Cost	\$100/kW	\$100/kW		
Elect. Efficiency (LHV)	70% at 3 A/cm ²	98% at 1.5 A/cm ²		
Lifetime	80,000 hr	60,000 hr		

Includes focus on durability to:

- → Improve understanding of degradation mechanisms
- → Develop and validate accelerated degradation processes to evaluate durability

Million Mile Fuel Cell Truck Consortium (M2FCT)

Released Supply Chain Report

Investigated key U.S. opportunities to enable the growth of electrolytic hydrogen and fuel cell markets

Example: PEM fuel cell & electrolyzer supply chain

Example: Scenario for U.S. electrolyzer capacity

More information: www.energy.gov/eere/fuelcells/water-electrolyzers-and-fuel-cells-supply-chain-deep-dive-assessment

DOE National Laboratories

Strategy leverages DOE National Laboratories, partnering with industry and academia

DOE National Laboratories across energy, science, and security:

- Support RD&D
- Offer User Facilities and science resources
- Help to de-risk technology adoption, accelerating progress

2021 H2@Scale CRADA Call Results

Topic 1: H2@ARIES – Integrated Hydrogen Energy System Testing/Validation

- NREL, SoCalGas, University of California Irvine: Validation of interconnection and interoperability of grid-forming inverters sourced by H₂ technologies in view of 100% renewable microgrids (TA062)
- NREL, GKN Powder Metallurgy, SoCalGas: <u>High Efficacy Validation Of HY</u>dridE <u>MEga Tanks</u> at the <u>A</u>RIES <u>L</u>ab (HEVHY METAL) (TA063)
- **NREL, EPRI:** Hydrogen Production, Grid Integration, and Scaling for the Future (TA064)
- NREL, GE Renewable Energy, Nel Hydrogen: Optimal Wind Turbine Design for H₂ Production (TA061)

Advanced Research on Integrated Energy Systems (ARIES)

Additional Projects Supporting ARIES

Topic 2: Applied Risk Assessment and Modeling for H2@Scale Applications

- PNNL, SNL, Seattle City Light, Port of Seattle: Large-Scale Hydrogen Storage – Risk Assessment Seattle City Light and Port of Seattle
- **SNL, Wabtec:** Risk Assessments of Design and Refueling for Hydrogen Locomotive and Tender (SCS033)

ARIES H₂ System at NREL Flatirons Campus

ARIES H₂ System at NREL Flatirons Campus

Topic 3: Next-Generation Sensor Technologies (wide-area H2 sensors)

 NREL, NETL, GTI, EPRI, Paulsson Inc., Renewable Innovations, Inc., Boyd Hydrogen LLC, Element One: Next Generation Hydrogen Leak Detection – Smart Distributed Monitoring for Unintended Hydrogen Releases

https://www.energy.gov/eere/articles/doe-announces-nearly-8-million-national-laboratory-h2scale-projects-help-reach

HyBlend and H-Mat Consortia—Opportunities Available

To assess and enhance compatibility of key materials with hydrogen, and to accelerate the use of hydrogen in multiple applications (including in natural gas blending)

Labs

National lab consortium to assess and improve performance and reliability of materials in hydrogen, reduce costs, and inform codes and standards

Labs

Pipeline materials compatibility R&D, technoeconomic analysis, and life-cycle analysis to assess the feasibility of hydrogen blending in the U.S. natural gas pipeline infrastructure

Cost and emissions

life-cycle analyses of

blending and RNG to

inform RDD&D

Over 30 partners

Testing pipeline materials in H₂ blends for risk analysis tool data and to inform codes and standards

Online data portal shares information with R&D community worldwide, and international MOUs enable coordination

Materials R&D aims to lower cost of components in H₂ infrastructure and enhance life by 50%

Sandia National Jaboratories

First-of-a-kind Hydrogen Business Case Prize—Links Students with Experts

Concept

Development of user-friendly computational tools that characterize regional value propositions for hydrogen in multiple applications, including colocating supply and demand

Goals

Educational opportunities through mentoring sessions and potential internships

Inform stakeholders about investment opportunities

Winners

- 1st place: Super Hydrogen Family USC, U of S. Florida, U of Central Florida (see #SA185)
- **2nd place: Bend Hydrogen** Oregon State (see #SA182)
- **3**rd place: Pure Hydrogen UC Berkeley (see #SA183)

Hydrogen Business Case Prize Mentors

Growing Connections, Strengthening Networks

HZ

The redwoods are the tallest trees on earth—growing tall and enduring long dry spells—on harsh terrain and despite shallow roots.

They are able to do this through the collective strength of their roots which are an interwoven system, where each tree supports—and is supported by—the trees around it.

Developed and Launched H2 Matchmaker to facilitate H2 Hub Partnerships

Available at: www.energy.gov/eere/fuelcells/h2-matchmaker

		SERVICES EFFICIENCY	RENEWABLES TRANSPORTAT
HYDI	ROGEN AND FUEL CELL TECHNOLO	GIES OFFICE 🗸	
	H2 Matchn	naker	
	Hydrogen and Fuel Cell Techno	logies Office	
Hydrugen and ruel Cell Technologies	Office a H2 Matchmaker		
	e information resource to assis	st hudeodao suppliare and usaa	er idantifu
	velopment toward realizing reg		is rooming
the second s	a network of hydrogen produce	그는 사람은 것이 같은 것을 많은 것이라고 말하는 것이다.	en
		a management and the	
consumers, and connective	e infrastructure located in close	e proximity.	
consumers, and connective		2 2	
consumers, and connective H2 Matchmaker will:	e infrastructure located in clos d fuel cell regional project awar	2 2	irs and
consumers, and connective H2 Matchmaker will: Increase hydrogen and suppliers. Support private secto	d fuel cell regional project awar r development of hydrogen pro	eness for technology develope	
consumers, and connective H2 Matchmaker will: Increase hydrogen and suppliers. Support private sector infrastructure and fue	d fuel cell regional project awar r development of hydrogen pro I cell deployment by region.	eness for technology develope duction, storage, and transpor	tation
consumers, and connective H2 Matchmaker will: Increase hydrogen and suppliers. Support private sector Infrastructure and fue Facilitate regional bus	d fuel cell regional project awar r development of hydrogen pro	eness for technology develope duction, storage, and transpor	tation

This link will open the H2 Matchmaker self-identification form.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Promoting Safety includes Center for Hydrogen Safety (CHS) Activities

Over 80 members from industry, government, and academia—and growing!

New Hydrogen Safety Credential!

Composed of 7 fundamental hydrogen safety e-courses, including:

- Properties & Hazards
- Safety Planning
- System Operation
- Inspection & Maintenance

www.aiche.org/CHS

Enabler: Developed Federal Regulatory Map & Identified Gaps

Interagency Working Group on Hydrogen and Fuel Cell Technologies

Partners	Examples of Collaborations & Focus Areas
DOE, DOT	Pipelines, buses, rail, marine, air, infrastructure
DOE, DOD across services	H2Rescue Truck for disaster relief, vehicles and infrastructure, Unmanned Underwater Vehicles (UUVs), microgrids and resiliency, and more
DOE, USPS	FC lift trucks and hydrogen infrastructure
DOE, NASA NSF	Cryogenic hydrogen systems, fuel cells, electrolyzers, storage (NASA), DOE consortia (NSF)
DOE, DOC, NIST	Metering, diagnostics, supply chain
DOE, EPA	Clean hydrogen standard, emissions analysis

IWG members share RDD&D information on their programs and collaborate through joint projects and gap analysis

POC: Pete Devlin, HFTO, EERE

H2 Twin Cities Initiative Launched at COP26

Connecting Communities Around the World to Deploy Clean Hydrogen Solutions

Share and learn more: www.energy.gov/eere/twincities

OFFICIAL APPLICATION GUIDELINES H2 Twin Cities 2021

Diversity, Equity, and Inclusion Environmental Justice Workforce Development

Primary Elements of DOE Justice40

E.O. 14008, s. 223 - 40% of the overall benefits of certain Federal investments must flow to disadvantaged communities. Interim Implementation Guidance for the Justice40 Initiative. <u>https://www.whitehouse.gov/wp-content/uploads/2021/07/M-21-28.pdf</u>

See Feb 2022 HFTO H2IQ Webinar

https://www.energy.gov/eere/fuelcells/2022-hydrogen-and-fuel-cell-technologies-office-webinar-archives#02242022

DOE Interim DACs Definition

Disadvantaged communities

Current Thoughts:

- Census Tract Level
- 36 Indicators

VULNERABIILITY

FOSSIL DEPENDENCE

ENERGY BURDEN

ENVIRONMENTAL HAZARDS

Can also identify non-geographic DACs – groups that share a common characteristic

See Feb 2022 HFTO H2IQ Webinar https://www.energy.gov/eere/fuelcells/2022hydrogen-and-fuel-cell-technologies-office-webinar-archives#02242022

Emphasis is on Benefits in Underserved & Disadvantaged Communities

Trucks will be demonstrated in disadvantaged community in Ontario, CA

Key Accomplishments:

- 10 trucks built with validation testing complete; 5 more in assembly
- Operations have begun in disadvantaged community out of UPS Service center in CA

Example: DOE project with CTE for UPS Fuel Cell Delivery Vans

Goal: Demonstrate 15 fuel cell trucks (up to 125-mile range)

Project impact per year: Savings of

- 285 metric tons of CO2e
- 280,000 grams of criteria pollutants
- 56,000 gallons of diesel

Engagement with Tribes included:

- Hydrogen Shot Summit
- Listening Sessions
- Engagement on potential BIL activities, such as Sec. 815 which includes direction to:
 - A. Support domestic supply chains for materials and components;
 - B. Identify and incorporate nonhazardous **alternative materials** for components and devices;
 - C. Operate in partnership with tribal energy development organizations, Indian Tribes, Tribal orgs., Native Hawaiian community-based organizations, or territories or freely associated States; or
 - D. Are located in **economically distressed areas** of the major natural gas-producing regions of the US

Collaboration with DOE Office of Indian Energy

See: www.energy.gov/indianenergy/office-indian-energy-policy-and-programs

Example: HBCU/MSI Funding Opportunity and Topic Overview

HFTO partnered with FECM and added topics to educate and train the next generation of engineers and scientists at HBCUs/MSIs, and increase investments in traditionally underrepresented and disadvantaged communities in the U.S.

		e 1.0		
APPLY FOR FUNDING	Topic Area	Expected # of Awards	and the second secon	Facilitating knowledge sharing & student training opportunities
TO TRAIN THE	Hydrogen Storage Materials Development	Up to 6	up to \$300	through cooperative research partnerships with HFTO's consortia:
NEXT GENERATION HYDROGEN	PGM-free Catalysts and Electrodes for Fuel Cells and Electrolyzers	Up to 6	up to \$300	
WORKFORCE	Hydrogen Materials Compatibility – RD&D	Up to 6	up to \$300	
ENERGY OFFICIENCY & RENERGY EFFICIENCY	Hydrogen Materials Compatibility – Gap Analysis	Up to 1	up to \$250k	
ENERGY & RENEWABLE ENERGY	Total	Up to 7	up to \$2M total	

Goals: Build the talent pipeline and expand knowledge in hydrogen with a focus on materials R&D

- Uses established HFTO consortia and provides partnership opportunities
- Offers students the opportunity to travel to national laboratories
- Provides opportunity for creative partnership models with industry and pipeline

https://www.energy.gov/eere/fuelcells/articles/apply-funding-train-next-generation-hydrogen-workforce Closed May 31, 2022

HBCU: Historically Black Colleges and Universities. MSI: Minority Serving Institutions
Promoting DEI, bridging academia, labs and industry

Pajarito Powder and LANL host Industry day Discuss research opportunities and host facility tour Building an alliance for MSI industry internships

LANL and Pajarito Powder Establish Collaboration with Minority Serving Institutions (MSIs)

Project Goals include:

- Develop a mutually beneficial relationship between LANL, Industry Partners, and MSIs through HFTO support
- Provide opportunities for MSI scholars to perform cutting-edge fuel cell research at LANL
- Encourage MSI scholars to pursue advanced degrees and enter the Hydrogen and Fuel Cell Workforce

Example: Workforce Development

Industry-led project on Hydrogen Education for a Decarbonized Global Economy (H2EDGE)

Goals:

- Develop and deliver professional training courses and university curriculum content
- Collaborate with industry and university partners to develop certifications, credentials, qualifications, and standards for training

Key Accomplishments:

• **Professional short courses** in development include:

Basic H₂ science, end uses, storage, delivery, safety, electrolyzer technology trends.

 Oregon State University: New sustainable engineering course on H₂ economy basics, challenges, barriers. Student projects with industry sponsors.

See: EPRI project (SCS028)

• University of Delaware: Developing laboratory course on PEM fabrication, gas separation, electrochemical compression.

Next Steps:

- Conduct gaps assessments of professional training activities and university curriculum requirements
- Begin delivering professional training through short courses
- Develop new courses at a third partner university
- Advance the university engagement network by adding Affiliate Universities

e n e R G Y earthshots U.S. DEPARTMENT OF ENERGY

Hydrogen

The U.S. Department of Energy (DOE) is looking for talented, bright, early career professionals to partner with DOE Hydrogen Program Managers working to achieve the Hydrogen Energy Earthshot goal of \$1 per 1 kilogram in 1 decade ("1 1 1"). Are you graduating soon or just starting your career in hydrogen?

Do you want to help make clean hydrogen affordable for all?

The Hydrogen Shot Fellowship might be the opportunity you're looking for!

Apply today at: <u>www.zintellect.com</u> Keyword: Hydrogen Shot

Chair Christine Watson (USA)

Co-Chair Regional Director of Asia, Middle East, USA Gaurav Shukla (India)

Co-Chair Kendall Parker (USA)

IPHE Early Career Network

Calling all hydrogen-enthusiast **STUDENTS** (undergrad & grad), **POST-DOCS**, and **EARLY CAREER PROFESSIONALS** worldwide!

Connect with peers, mentors, scientific researchers, industry professionals, and policymakers!

Join 230+ members from over 37 countries!

Join now & fill out our survey on YOUR career needs and interests: www.iphe.net/early-career-chapter

Education & Outreach Directors Qingwang Yuan Bikram Roy Chowdhury (USA) (USA)

Communications & Social Media Director Yangwei Liu (USA)

Special Events Director Sanskar Vaishnav (Denmark)

Regional Director of Europe Thilo Krechlak (Germany)

Regional Director of Africa Faan Du Preez (South Africa)

Community Manager IPHE Comm. Liaison Ander Martinez Alonso Ted Kwon (Belgium) (Korea)

Examples of International Collaborations

Collaborating through multiple global and bilateral partnerships—key priority is creating coordinated framework to leverage activities, identify gaps, and avoid duplication to accelerate progress

CEM Global Ports Coalition with EC Numerous Bilaterals on Hydrogen Hydrogen Council, IRENA, and more

The International Partnership for Hydrogen and Fuel Cells in the Economy Enabling the global adoption of hydrogen and fuel cells in the economy

H₂ Production Analysis (H2PA) To facilitate international trade Common analytical framework for GHG emissions footprint

Regulations, Codes, Standards, Safety and Education & Outreach Working Groups

www.iphe.net

Breakthrough Agenda in collaboration with other partnerships is mapping activities across global H₂ initiatives to identify gaps, focus areas, and prioritized workstreams

Landscape Coordination	Hydrogen Zweddinasig star partneredig ar is the Indiana								
Tong Kon Viana B Zatur, Pian	Harapa Parige Destinat (112)	Informations of Lightness to the Displayment is a set Contract must be accessed	CTs Hydrogen Alden Fold			UNIDO Citabut Recommender Citabut Franciscus Industry	Sana Bylagan Galgal		
Demont Creation S. Merecenterri	Press Possible Remaining	Feature control	AU 5 Kost and a Class Hydrogen Milliologi	CLA PROSE Milder	Independential	urten Inditatin Veitateit			
ыномін ізно в харру Галіял	Monitor Rescalator N United Interfaces United	rani sensi m nanar	Hybrid Court	Generative pro- Friend	Mailyinga T2				
Trancola Incolano (EN inconcil and Record Indoles	ACT's accretating Class Hydrogen Mildler	user messer Repairing	Indicate Courses					
Reviewal 6 Milliovation	Maxima kan sukar 'n Dean, makeen Maximi	GUI INTROFT	Constitutions Digenticity	Once hydrogra Calepel					
República Goalacte A Cod la stera	Biomacona Protecting in Fertinger & Fact Calmin for Frances	#15 Salarge TVP	General Spinoper December	BURN Askinstike Instruction Generitylege	Natar Increasion for Const Increases Materia	NUT's Acodestes Texe Healergen Interes	lai gerleng Germanik	Conno Hydrogens Undegraf I Rediccon Source	
international Mariana & Trada	international Performation for Hydrogen & Part Velta for its Transma	CERT Andreases External	Generative generative and the second	CLUS ACCOUNTS Class Hydrogen Methodar					
Encoderiges Cognitatiy X States	Biomacona Professional de Henterger & Part Calle la las Frances	Alle Designing	Builden Coll installen Fremenening Gener (gelegen)	Marco new 2001 Close Hydrogen Artiset	Meet h Evideopen Gegenheet op	OH DO CAMAR Party and the Oracle Styles years to Fiscally	Line specific and a second sec	White Applications The	

Building Momentum

HZ

Strategic RDD&D Portfolio

	Technology Readiness Level	Leveraging DOE-wide collabor coordination to advance tech achieve cost targets and data & feedback Enabling research & development • DOE Program Offices Core R&D • BIL 816 & 815 R&D: • Electrolysis & clean H2 manufacture/rec. • DOE Consortia & Collaborations inclu • HydroGEN, ElectroCat, H-Mat, X-Mat • H2-related Innovation Hubs & Centers	 bologies and data & feedback bemos, manufacturing & scaleup DOE Program Offices Core RD&D BIL 816 & 815 RD&D: Electrolysis & clean H₂ manufacture/recy DOE Consortia & Collaborations inclus H2NEW, M2FCT Consortia H2@Scale demos (nuclear H₂, etc.) Manufacturing Institutes 	lech
--	----------------------------	---	---	------

Technology Investment Stage

next-generation technologies

near-commercial technologies

established technologies

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Year in Review Highlights

Actions to Catalyze, Accelerate and Enable Scale

Target table will be provided to meet BIL deliverable on targets for 2, 7, 15 years

Regional Clean Hydrogen Hubs Notice of Intent (NOI) Released Today!

NOI (DE-FOA-0002768) available at https://oced-exchange.energy.gov/

DOE Office of Clean Energy Demonstrations (OCED) anticipates issuing a Funding Opportunity Announcement in collaboration with the Hydrogen and Fuel Cell Technologies Office (HFTO) and the DOE Hydrogen Program

DOE Issues H2 Hub NOI—June 6, 2022

Application	Application	Phase 1: Detailed Plan	Phase 2: Develop, Permit, Finance	Phase 3: Install, Integrate, Construct	Phase 4: Ramp- Up & Operate	
Decisions	Pre - DOE funding	Up to \$10M DOE Funding , Non-Federal Cost Share ≥ 50%, 12-18 Months	TBD DOE Funding, Non-Federal Cost Share ≥ 50%, 2-3 Years	TBD DOE Funding, Non-Federal Cost Share ≥ 50%, 2-4 Years	TBD DOE Funding, Non-Federal Cost Share ≥ 50%, 2-4 Years	Issued by OCED
Engineering, Procurement, Construction, Operations	 Conceptual Design Technical Readiness Project Schedule Total Project Cost Estimate 	 Engineering & Design Documents Technical Maturation Plans Integrated Project Schedules 	 Mature Engineering & Design Technical Risk Management Execution ready schedule & cost estimate, PM Tools Operations Plan 	 Ongoing execution reporting Interim Go/No-Go reviews 	 Ongoing performance Reporting Technical risk updates, tracking Final TPC accounting 	in collaboration with HFTO and DOE Hydrogen
Business Development & Management	 Business Strategy Team Description Workforce Plan Finance Plan Market potential analysis 	 Project Management Plan Risk Management Plan Financial modelling Site selection 	 Finalized project structure, management, financing Ongoing risk management Final legal, workforce, procurement agreements Feedstock & Offtake Plans 	 Ongoing execution reporting Ongoing risk management 	 Updated financial analyses Revised growth plans Updated Risk Management 	Program, all relevant offices
Permitting & Safety	 Safety history/culture description Regulatory approval timeline overview 	 Initial Hydrogen Safety Plan (HSP) & Site Safety Plan Physical, Information, Cyber Security Plans Environmental & Regulatory preparations 	 Execution ready HSP and security plans Permits & approvals in place for construction 	 Ongoing permit, environmental, safety reporting Permits & approvals in place for operations 	 Ongoing permit, safety, and security reporting 	NOI (DE-FOA-0002768) available at https://oced- exchange.energy.gov/
Community Engagement & Impacts	 Initial Equity Plan addressing community engagement, Justice40, community consent or benefits agreements, job quality, workers rights, etc. 	 Stakeholder engagement and Community Consent or Benefits Agreement drafts 	 Finalized Equity Plan, Agreements Community development targets identified, tracking plans 	 Ongoing reporting on Equity Plan activities 	 Revised community engagement plans for operations Ongoing reporting and evaluation 	
Technical Data & Analysis	 Lifecycle Analysis Techno-economic Analyses 	 Project Production Model Updated Lifecycle and Technoeconomic Analysis 	 Final Lifecycle & Technoeconomic Analyses V&V and Project Completion Testing Plans 	 Periodic analyses updates V&V data collection Project completion testing and performance ramp V&V 	 Validated performance model Finalize lifecycle and technoeconomic analyses Dissemination of analyses, lessons learned 	

H2Hub project phases, including examples of likely activities and deliverables in each phase, subject to change prior to the FOA release.

Highlights and Milestones Summary

	FY2021		FY2022		FY2023
	Awarded first-of their-kind demo projects, including: Large Scale Fuel Cell Powered		BIL signed into law		Issue BIL FOAs for Sec. 813 and 815- Electrolysis and Manufacturing &
	Data Center, Renewable H_2 Production on Refueling Barge, Two H_2 for Steel projects		Issued Request for Information for BIL sections 813, 815, and 816		Recycling Issue Annual FOAs
	Refueling barge, two fr ₂ for steer projects				
	Launched Hydrogen Shot		Held multiple workshops and webinar including on BIL H ₂ Provisions and RFIs		Select at least four H ₂ Hubs (OCED in collaboration with HFTO and DOE Hydrogen Program)
	Launched H2NEW, Million Mile Fuel Cell Truck consortium and HydroGEN 2.0		Released Hub NOI in collaboration with OCED		Select Hydrogen Shot Incubator
1	Launched H2EDGE Workforce Development Project		Selected over \$51M in new projects		Propose! Phase Winners
			Selected (3) SuperTruck III Projects Focused on M/HD H ₂ Fuel Cell Trucks		Complete milestones for current RD&D projects
	Developed H ₂ energy storage financial		on withd h ₂ ruer cell hucks		
	assessment tool		Launched Hydrogen Shot Incubator Prize		Complete coordinated, prioritized action plan with other agencies
	Launched HyBlend Project and 5 CRADA projects on HD fueling Released SuperTruck III FOA		Issue FY22 FOAs		
			Complete DOE National Clean Hydrogen Strategy and Clean Hydrogen Standard guidance		Complete coordinated workstreams and international architecture for global
					hydrogen partnerships

Acknowledging HFTO's Collaboration Network

Collaboration and coordination to accelerate progress and advance environmental justice

Project Partners

14 National Labs

190 Companies

109 Universities

Cross-Office work with Multiple DOE Offices

EERE (Solar, Wind, Vehicle Tech., Advanced Manufacturing, Bioenergy, Building Tech., Water Power); ARPA-E; Fossil Energy & Carbon Management; Nuclear Energy; Office of Science, and more

DOE Crosscutting Initiatives

Adv. Manufacturing, Adv. Transportation, AI/ML, Alt. Fuel, Cybersecurity, Critical Minerals, Decarbonization

Interagency Collaboration & Coordination

Including DOD, DOT, DHS, EPA, NASA, NSF, NIST among others

International Collaboration

IEA, IPHE, CEM, HEM, MI, IRENA, CH-JU, Bilaterals, and many more

Other External Partners

Regional and National Associations and States FCHEA, NASEO and many more

Labor groups, Tribes, and EJ Communities

Public-private partnerships 21 CTP, USDRIVE, etc.

Hydrogen and Fuel Cell Technologies

Upcoming Opportunities for Engagement

Save the date! 2023 DOE Annual Merit Review and Peer Evaluation Meeting June 5-8, 2023

1 Hydrogen

Join Monthly H2IQ Hour Webinars

Download H2IQ For Free

Visit H2tools.Org For Hydrogen Safety And Lessons Learned <u>https://h2tools.org/</u>

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

HFTO is Hiring!

If you are interested in applying to be part of our team, please submit resumes to the <u>DOE Applicant Portal</u> and email <u>hftoinquiries@ee.doe.gov</u> to let us know you have submitted your resume. Include "Clean Energy Corps Applicant" in the subject line of the email. "It is the long history of humankind (and animal kind, too) that those who learned to collaborate and improvise most effectively have prevailed." – Charles Darwin

Thank you

Dr. Sunita Satyapal Director, Hydrogen and Fuel Cell Technologies Office Coordinator, DOE Hydrogen Program <u>Sunita.Satyapal@ee.doe.gov</u> U.S. Department of Energy

www.energy.gov/fuelcells www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Additional Information

www.energy.gov/fuelcells www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

HFTO Project Partners: Labs, Universities, and Industry

3M Company	Giner ELX, Inc.	Oak Ridge Institute	Trea
Air Products and Chemicals	Greenway Energy, LLC	Oak Ridge Institute for Science & Education	U.S.
Ames Laboratory	Hornblower Energy	Oak Ridge National Laboratory	Unit
Argonne National Laboratory	Hy-Performance Materials Testing, LLC	ORAU	Univ
Army Corps Engineers	Idaho National Laboratory	Oregon State University	Univ
Brookhaven National Laboratory	Ivys, Inc.	Pacific Northwest National Laboratory	Univ
Carnegie Mellon University	Lawrence Berkeley National Laboratory Lawrence	Pennsylvania State University	Univ
Caterpillar Inc.	Livermore National Laboratory Liox Power, Inc.	Plug Power Inc.	Univ
Center for Transportation and the Environment	Los Alamos National Laboratory	Proton Energy Systems, Inc.	Univ
Clemson University	Lubrizol	Raytheon Technologies Research Center	Univ
Collaborative Composite Solutions Corporation	Massachusetts Institute of Technology	Redox Power Systems, LLC	Univ
Colorado School of Mines	Missouri University of Science & Technology	Rensselaer Polytechnic Institute	Univ
Cummins Inc.	Montana State University	Saint-Gobain Ceramics and Plastics, Inc.	Univ
C-Zero, LLC	NASA WSTF	Sandia National Laboratories	Univ
DOT National Highway Traffic Safety Administration	National Energy Technology Laboratory	Savannah River National Laboratory	Univ
Drexel University	National Institute of Standards and Technology	Shell	Univ
Electric Power Research Institute Inc	National Renewable Energy Laboratory	Skyre, Inc.	Univ
Electricore Inc.	NEL Hydrogen, Inc.	SLAC National Accelerator Laboratory	Univ
Exelon Corporation	Neograf Solutions LLC	Southern Company Services	Univ
Frontier Energy, Inc.	Nexceris, LLC	Strategic Analysis, Inc.	Univ
FuelCell Energy, Inc.	Nikola Motor Company	The Chemours Company FC, LLC	Univ
Gas Technology Institute	North Carolina State University	The University of Alabama	Van
General Motors LLC	Northbound	The University of Tennessee, Space Institute	Was
Georgia Institute of Technology	Northwestern University	The University of Toledo	Wes

readstone Technologies, Inc. .S. Naval Research Laboratory nited Technologies Research Center niversity of California, Irvine niversity of California, San Diego niversity of Colorado niversity of Colorado, Boulder niversity of Connecticut niversity of Delaware niversity of Florida niversity of Hawaii niversity of Illinois at Urbana-Champaign niversity of Kansas Center for Research, Inc. niversity of Kentucky niversity of Michigan niversity of North Texas niversity of Oregon niversity of South Carolina niversity of Southern California niversity of Tennessee-Knoxville niversity of Virginia anderbilt University *Ashington State University* lest Virginia University

U.S. DEPARTMENT OF ENERGY

Collaborative H₂ Projects between HFTO and other EERE Offices

Advanced Manufacturing (AMO)

- Manufacturing electrolyzer stacks NexTech Materials, Ltd, \$4.2M
- Electrolyzer cell and stack assembly *Cummins, Inc,* \$7.2M
- Low-cost PEM electrolysis at scale Proton Energy Systems, \$5.5M
- Integrated MEAs & scale-up Giner ELX, Inc., \$5.8M
- Advanced manufacturing for PEM electrolyzer components *3M*, \$6.1M

Bioenergy Technologies (BETO)

Upgrading bio & renewable natural gas
 Production Summit Utilities, \$5M

Solar Energy Technologies (SETO)

- Clean H₂ to jet fuel using CSP Dimensional Energy, \$3.4M
- Solar thermo-electrochemical process for H₂ Arizona State University, \$0.5M

Water Power Technologies (WPTO)

 Energy storage options for nonpowered dams, *INL*, *PNNL* \$5M

Wind Energy Technologies (WETO)

- FlexPower: PV-wind-storage hybrid energy systems including H₂ NREL, INL, SNL, NETL \$5.5M
- Wind to H₂ modeling and optimization NREL, **\$0.15M**

Offshore Wind to H₂ (SBIR)

- **Offshore wind and PEM electrolysis** *Giner Inc.*, **\$1.1M**
- Offshore wind and AEM electrolysis Alchemr, Inc., \$1.1M
- Optimizing wind technology for H₂
 production NREL, GE, Nel, \$0.5M