

DOE Office of Electricity TRAC Peer Review

SSPS 1.0: Hardware Development

Smart Universal Power Electronics Regulators (SUPERs) & Intelligent Power Stages (IPSs) for SSPS 1.0

PRINCIPAL INVESTIGATOR

Dr. Madhu Chinthavali,

Leader – Power Electronics Systems Integration (PESI) Group, Distinguished R&D Staff Professional, ORNL

PROJECT SUMMARY

Demonstration of advanced and standardized power electronics interfaces (SUPER & IPS) for the grid

- □ Universal design for grid interfaces Interfaces that can be tied to assets or loads with changes only to the software layer
- □ Grid interfaces with advanced & intelligent features Autonomous operation, online health monitoring & decision-making capability
- Scalable and interoperable design with standardized interfaces
- □ IPSs with advanced sensing techniques, algorithms capable of estimating the health of at least 2 components

The Numbers

DOE PROGRAM OFFICE: **OE** – Transformer Resilience and **Advanced Components (TRAC)**

FUNDING OPPORTUNITY: AOP

LOCATION: **Knoxville**, **Tennessee**

PROJECT TERM: 07/01/2020 to 09/30/2022

PROJECT STATUS: Ongoing

AWARD AMOUNT (DOE CONTRIBUTION): \$9,000,000

AWARDEE CONTRIBUTION (COST SHARE): **\$0**

PARTNERS: **Consortium of University Partners**

Team - ORNL

ORNL - SUPER architecture, functionalities & advanced algorithms, IPS (developed by ORNL), integration of IPSs from partners

Madhu Chinthavali **Power Electronics System** Architecture

Brian Rowden Hardware design and prototyping

Steven Campbell System Integration & Testing

Jonathan Harter Hardware development

Radha Sree Krishna Moorthy Project Lead & Software framework development

Aswad Adib SUPER and IPS simulation

Rafal Wojda Magnetics Design

Jang Euk **Fiber Optic Interface Development**

University Partners – Library of IPSs

- The Ohio State University, Columbus, Ohio: Dr. Jin Wang
- Virginia Polytechnic Institute and State University (Vtech), Blacksburg, Virginia: Dr. Rolando Burgos
- Florida State University (FSU), Tallahassee, Florida: Dr. Helen Li
- The University of Texas at Austin, Texas: Dr. Alex Huang
- The University of Arkansas (UARK), Fayetteville, Arkansas: Dr. Yue Zhao
- The State University of New York (SUNY) at Stony Brook, New York: Dr. Fang Luo
- The University of North Carolina at Charlotte (UNCC), North Carolina: Dr. Babak Parkhideh

14 Professors/PIs, 6 Postdocs, 26 Students

UNCCHARLOTTE

Innovation: SSPS 1.0 Implementation

- □ SSPS Hubs & Nodes An autonomous grid entity capable of power and information exchange serving as an interface between the grid and end user.
- □ SSPS concept will enable hierarchical control, communication, optimization, protection and intelligence
- Architecture realized by fundamental building blocks – modular, interoperable, scalable, autonomous & intelligent grid tied systems

** "Solid state power substation Technology Roadmap", U. S DOE Office of Electricity, Transformer Resilience and Advanced Components (TRAC) Program, Jun. 2020.

Innovation: SUPER

State of the Art

SUPER

SUPER

System level impact

- Easy integration & reduction in BOS costs
- Improved voltage profile at the point of connection (POC)
- De-rated/continuous operation during failure events
- Allows maintenances to be pre- planned
- Can prevent the loss of the inverter from affecting the overall system
- Increases lifetime
- Data for offline learning algorithms
- Improved protection against cyber threats
- Decouples parasitics and noise loops
- Additional sensing & processor can be utilized for internal health monitoring of IPS

8

Innovation: Fundamental Building Blocks - SUPER

Smart Universal Power Electronics Regulators (SUPERs) – Modular, interoperable entities that are for fundamental blocks of SSPS

Innovation – Fundamental Building Blocks – IPS

Controller: More powerful computation and communication capability to handle data processing to enable diagnostics and prognostics

Auxiliary power supply:

Self-maintained power supply provides safe shut-down during system crash and minimize the Interconnection between SUPER and IPS

Integrated passives:

Ensure safe and reliable performance with the minimum required parameters, so the

Device: Advantage packaging to shrink overall SUPER and IPS form factor

IPS Critical Features Desired by SUPER:

- Interoperable plug-and-play power stage
- Provide sufficient component-level status information to enable accurate SUPER-level diagnostics and prognostics

Sensors: Several sensors can be integrated into gate drivers to improve the overall form factor and mitigate noise interference

Interconnectors between components within IPS: More optical interconnections involved to improve the noise immunity capability, especially at higher switching frequency of utilized WBG devices

Gate driver: Integrated and intelligent gate driver (i2GD) enables integrated sensing (e.g., dc link voltage, device or phase current), active gate driving, and initially enable diagnostics and prognostics features for SUPER

Innovation Update #1: Communication Validation

- Validation of SUPER & IPS control architecture with a high-speed communication link (6.25 Mbps)
- The communication architecture was validated by all partners

CHIL Setup for SUPER validation in Grid-C

Innovation Update #2: Baseline IPS Validation

Components of the baseline IPS including contactors, gate drivers, IPS controller, communication expansion board were tested extensively during integration

open loop configuration

Sync Src: 🖪 Element 6 U6 1000V |6 5A Sync_Src:16

2021/05/24 13:38:21

Innovation Update #3: Overall Architecture Validation

Validation of SUPER & IPS architecture with high-speed communication links, controls, protection and standardized interfaces for grid functions

Innovation Update #2: Overall Architecture Validation

□ Vdc regulation (GI): The SUPER maintained the dc-link at 1-kV & real power P (up to 15 kW), was injected/absorbed using battery test system

□ P/Q Compensation (DCSI): SUPER injected/absorbed P/Q from/to the grid (Tested up to 10 kW & -5 kVAR)

24 JUNE 2021) U2 U3 U4 U5 U6) 12 13 14 15 16		Update	18771 (50ms)	SP Integ:	Time	::	2021/07/01 12:21:45 CF:3	24 JUNE 2021	Peak U1U2U3U4U5U Over I1I2I3I4I5I		Update	51288(50ms)S	P Int
		-	_	Element 4	Element 5	Element 6	Element 7	ΣA (3P3₩)		Elements Options 1 U1			Element 4	Element 5	Element 6	Eleme
Udc [V]			0.99785k	0.252	1.231	0.922	1.076	1	1 U1 600V Setup I1 200mA	Udc [V]		1.00002k	0.091	1.059	1.
Urms [V]			0.99811k	479.290	479.140	478.759	478.950	⊢	LF 100kHz Sync II	Urms [V]		1.00005k	479.561	479.536	478.
Idc [A]			-13.681	0.004	9.659	-10.541	-0.441	•	FF OFF Sc Hrm 1 2 U2 600V Display	Idc [A]		8.688	-0.003	2.642	1.
Irms [A]			14.520	0.000	22.284	21.919	22.102	1.	12 200mA	Irms [A]		10.425	0.000	10.756	10.
P [₩]			-13.676k	0.000k	-7.590k	-7.217k	-14.807k		LF 100kHz Sync 12 FF 0FF Sc Hrm 1	P [\]		8.689k	-0.000k	2.957k	4.
fU [Hz]			Error	60.001	59.998	59.962		•		fU [Hz]		Error	60.001	60.062	59.
Q [var	r]			-4.796k	0.000k	7.510k	-7.618k	-0.108k	1 _	13 200mA	Q [var]		-5.762k	0.000k	-4.227k	1.
72 [%] E	rror							9	LF 100kHz Sync IE FF 0FF Sc Hrm 1 UpdateRate	72 [%]	Error				
73 [%] E	rror							-	4 U4 1000V	73 [%]	Error				
T3 P£A 30 T6 Udc4 1.	0.00kW .500kV		· · · · · · · · · · · · · · · · · · ·					Gr	oup	I 14 200mA LF 100kHz Sync IZ FF OFF Sc Hrm 1 5 U5 600V Filter	U5 1.800kV 15 120.0 A U6 1.800kV 16 1220.0 A U7 1.800kV 17 120.0 A	· · · · · · · · · · · · · · · · · · ·				
										LF 3kHz Sync IS FF 100Hz SC Hrm 1 Data Save		\mathcal{A}			\square	\sum
			<u></u>							UG 600V 16 200mA 16 200mA 16 200mA 11 Integration 11 Integration	17 -120.0 Å	\int	1	D		
T6 Udc4 -1. T3 ΡΣΑ -30	.500k¥	Ν	lode -	1: Vdc ı	egulati	ion				U7 600V ↓ ↓ 17 200mA ↓ LF 3kHz Sync 10 Misc	17 -1.200 H 17 -1.200 K 16120.0 A 15 -120.0 A 15 -120.0 A 15 -120.0 A 15 -1.800 K 0.000s	Μ	ode -2:	P/Q Co	ompens	atic

Innovation Update #3: Standardized Interconnects & Enclosure

- Modular test cell configuration to show interoperability between IPSs from university partners
- Test cell designed to operate at 1kV, 480 V & 150 kVA and be agnostic to IPS design and non-idealities & support parallel operation. Fiber Optic

2	Parameters	
	POF Diameter (core)	
	Protective Covering Diameter	
	Insertion Loss	< 3dB dep
	Mating cycles	Į
	Parameters	AC Terminals
	Rated voltage	600 V ac
	Rated current/contact	150 A
	No. of poles	2
	Contact diameter	8 mm
	Contact resistance	< 150 μΩ
	Mating cycles	100,000
	Type of termination	Screw

Innovation Update #4: Standardized SUPER Test Cell

□ Modular test cell configuration to show interoperability between IPSs from university partners

Power Routing

- DC Bus, Intermediate DC Bus, Precharge circuits
- DC Fusing, and DC Main Interconnects
- AC Routing, Filters, to LCL Interface

SUPER Auxiliary Supply Routing

- 480Vac to 24V Supply and Battery backup
- SUPER 15V and 5V Supply
- Wide range DC input to 24V supply
- Interconnect Switch

LCL Interface

- LCL (configurable for 1 or 2 IPS test positions) and Sensors
- AC Bus, Fusing and Grid Interconnect

Shielded Control Cabinet

- Houses the controller & the communication interfaces
- Receives the signals through the standardized signal interfaces from IPS

Engaging & Disengaging Mechanism for the Interconnects

Innovation Update #5: IPS Library & Features

Library of IPSs from university partners to validate **vendor agnostic design** of SUPER

	Торо			
IPS from University Partners	DC/DC	DC/AC		
Florida state university (FSU)	Interleaved buck boost converter with coupled inductor	3-ph 2-level voltage source inverter (VSI)	Interleaved con Input current rip applications	
Ohio State University (OSU)	Traditional boost converter	3-ph 2-level VSI with carrier frequency modulation	Capability to int the liquid metal	
University of Arkansas (UARK)	Soft-switching CLLC Bidirectional dc/dc converter	3-ph 2-level VSI	Resonant confi transfer at high soft switching	
University of New York, Stony Brook (NY-SB)	Interleaved boost converter	3-ph 2-level VSI with redundant half bridge legs & coupled ac inductors	Capitalizes on I optimize switch	
University of North Carolina, Charlotte (UNCC)	-	4-leg 3-ph 2-level VSI	4-leg configurat	
University of Texas, Austin (UT-Austin)	DC/DC stage with parallel devices	3-ph 2-level VSI with parallel devices	Parallel devices capability	
Virginia Polytechnic University (Vtech)	3-level dc/dc converter	3-ph 2-level VSI	3-level configur	

*green color text highlights IPS with discrete devices

Features

onfiguration reduces the ipple. Ideal for BES

ntegrate the inductor with al cooling

figurations for power her frequencies and with

P & N cell layout to hing speeds

ation is suitable for ring applications

es for current handling

uration reduces the EMI

Innovation Update #5: IPS Library & Features

IPS Features		University Partners
 1. Interoperability Standardized electrical ports and communication interface Enclosure scalability and standardization Compliance to standards & protocols 	•	Execution by ORNL with al university partners
 2. Embedded intelligence & decision-making capability with a flexible platform Interoperable/scalable with different embedded controllers Monitors the point of connection continuously Easy transition between control mode required by SUPER Immediate response to IPS internal faults with least impact to the SUPER 	•	Framework is developed by ORNL and will be c university partners
 3. Embedded online health monitoring system – Diagnostics/Prognostics Embeds temperature sensors in IPS to enhance thermal monitoring for prognostics Monitors the health and degradation status of critical components in IPS Captures/maps faults to their corresponding signatures Robust/retrievable events recording and reporting system 	•	In-situ on-state resistance measurement (Vtech In-situ junction temperature measurement (UAR In-situ gate leakage current measurement (FSU Estimation of passive components (UARK) DC-link capacitance health estimation (NY-SB, I
 4. Integrated minimum passive, intelligent gate driving, sensing and protection Standardized minimum integrated passives Intelligent and robust gate driving scheme Integrated sensing and protective device 	•	Intelligent gate driver (Vtech & FSU) Advanced current sensors (UNCC) Fusion algorithms for sensed signals (OSU) Digital twin for prognostics/diagnostics (NY-SB)
 5. Cyber-physical security Hardware and software mechanisms to secure power electronics systems 	-	
6. Self-contained auxiliary power supply- Draws the required power from IPS itself and power all the contained components	•	All universities

S
communicated with all
h, UT-Austin & UNCC) RK & UT-Austin) U)
, UNCC, Vtech & UARK)
3)

Milestone Update

Milestone Description (or Go/No-Go Decision Criteria)	Period	Status	Accomplishm
1.1.1 - Validation of SUPER design, operation and controls through simulation and establishing the major IPS design requirements.	BP1 – Q1	Completed	Identified the hardware, c interface requirements for considering the project of
1.2.1 - CHIL validation of the agent framework, the control modes & protection logic and strategy. 1.2.2 - 3D layout of the SUPER 1.0 with all its subcomponents.	BP1 – Q2	Completed	 The entire agent framework protection & communication CHIL. The passives for SUPER validated through simulated through simulated through simulated through simulated through subcomponents has been subcomp
1.3.1 - Preliminary results from open loop testing of SUPER 1.0	BP1 – Q3	Completed	 Magnetics prototyping an completed. Standardization details for constraints were articulate partners. Open loop testing of SUP
 1.4.1 – Experimental results of autonomous operation of SUPER functioning as G with IPS 1.0. 	BP1 – Q4	Completed	Closed loop operation of validated experimentally validated

ments/Notes

controls, communications, or SUPER & IPS objectives

vork with the control, ation were validated in

R have been designed and ations. IPER with all its <u>en developed.</u> Ind testing has been

for IPS including ated to the university

PER has been completed.

19

SUPER has been with the agent.

Milestone Update

Milestone Description (or Go/No-Go Decision Criteria)	Due	Status	Accomplishm
2.1.1 - Complete the development of testbed for experimentally validating IPS 2.0 and its subcomponents.	BP2 – Q1	Completed	The SUPER test cell deve completed
2.2.1 - Complete the performance evaluation and validation of IPS 2.0 power stage from university partners.	BP2 – Q2	In Progress	
 2.3.1 - Experimental results validating the response of IPS 2.0 for a grid function. 2.3.2 – Demonstration of advanced featured of IPS 2.0. 	BP2 – Q3	Not Started	
 2.4.1 - Demonstration of autonomous operation of SUPER 2.0 functioning as G with IPS 2.0s 2.4.2 - Demonstration of SUPER 2.0 operating as L 2.4.3 - Demonstration of scalability of SUPER 2.0 with two non-identical IPS 2.0s Complete the final report with the summary of the results. 	BP2 – Q4	Not Started	

Risks

□ Anticipated delays in validation of IPS in the SUPER test cell owing to the pandemic

□ Anticipated delays in the integration of IPS from university partners in the SUPER test cell

Future Work

- □ Validate advanced features like online health monitoring in SUPER with IPSs from partners
- □ Validate advanced algorithms in SUPER for grid support
- Demonstrate the grid support capabilities of SUPER

Impact/Commercialization

- Provides a pathway to develop power electronics interfaces with well defined hierarchy in controls, communication, protection, intelligence and optimization for scalability & modularity
- Provides a pathway to develop a library of power converters for SSPS 1.0
- Provides a pathway for interface, communication, protection standardization
- Provided a pathway to develop holistic systems with embed intelligence & advanced features systematically and strategically in fundamental blocks
- Helps emulate the different vendor scenario to access interoperability & standardization

Impact/Commercialization

Invention Disclosures Filed:

- □ M. Chinthavali and R. S. K. Moorthy, "Fundamental Building Block Concept and Architecture to Support Solid State Power Substations at the Consumer End".
- □ M. Chinthavali, M. Starke and R. S. K. Moorthy, "Solid State Power Substation (SSPS) Distribution and Consumer End Grid Infrastructure".

Publications:

□ M. Chinthavali, R. S. K. Moorthy and A. Adib, "Standard Modular Architecture for Consumer End Plug and Play Interfaces", in Proc. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Jun. 2021, Phoenix, AZ, USA.

THANK YOU

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY