

DOE Office of Electricity TRAC

Peer Review

Intelligent Power Stages (IPSs)

PRINCIPAL INVESTIGATORS

Dr. Babak Parkhideh, Associate Professor, UNC Charlotte James Gafford, Assistant Director, EPIC, UNC Charlotte Dr. Daniel Evans, Research Engineer, EPIC UNC Charlotte

PROJECT SUMMARY

Smart Universal Power Electronic Regulators (SUPERs) & Intelligent Power Stages (IPSs)

The project focuses on developing and validating an intelligent power stage (IPS) incorporating system interoperability, diagnostics, and prognostics features.

Innovations

- Development of an interoperable inverter with a secondary controller (IPS-SUPER)
 - Operation of the IPS with an emulated SUPER with less than 1 switching cycle delay
- Development of key elements/sensors/modules to monitor and report on status of the IPS (Diagnostics and Prognostics)
 - Key feature for diagnostics: Shoot-through detection of SiC power modules
 - Key feature for prognostics: resistance change and characterization of SiC semiconductor power modules

Innovation Update: IPS-SUPER Hardware

Interoperable Intelligent Power Stage (IPS)

Innovation Update: Control Concept -1

- Interoperable Intelligent Power Stage (IPS)
 - Control Channel Communication Characterization
 - Verified the delay is within one switching cycle

Innovation Update: Control Concept-2

- Interoperable Intelligent Power Stage (IPS)
 - Closed-loop (voltage-mode) at 10kW, 480VAC, 800VDC

3ф L-L voltages

3ф phase currents

Innovation Update: Robustness

- Interoperable Intelligent Power Stage (IPS)
 - Open-loop Control through Emulated SUPER at 75kW, 480VAC, 900VDC

> 98.36% efficiency was obtained

P _{IN}	P _{OUT}	η	P _{LOSS}
77.13 kW	75.87 kW	98.36 %	1.26 kW

Waited until the equilibrium temperature point (saturation point)

Module-	Module-	Module-	Module-	Ambient
PhA	PhB	PhC	PhN	
49.7 °C	52.9 °C	46.8 °C	32.0 °C	25 °C

Innovation Update: Shoot-Through Sensor

- Diagnostics: Shoot-Through Protection
 - Typical de-saturation technique delay is greater than 2 microseconds and highly depends on temperature.
 - Shoot-through alarm & protection in less than 400 nsec.
 - Inverter tripped at 220 Apeak.

Symbol	Description	Time
T_{comp}	Comparator Propagation Delay	76 ns
T_{GPIO}	GPIO Input – RC Pullup Time	32 ns
T _{MCU}	ePWM Trip Latency	20 ns
T_GD	Gate Driver Delay	53 ns
T_{SiC}	SiC Module Turn Off time (datasheet)	219 ns
T_{total}	Shoot-through protection delay	400 ns

Innovation Update: R_{ON} Sensor

- Prognostics: In-situ real-time R_{ON} Estimation
 - Developed isolated sensors and an algorithm to monitor the on-state resistance of SiC power modules,
 - Average reporting, one value/second to SUPER: two-four samples per switching cycles, > 30 A.
 - Relative parameter (value) to each device baseline value will be reported to SUPER or IPS-edge processor

Device	RON Measured (mΩ)
S1	6.88
S2	7.69
S3	7.09
S4	7.27
S5	6.81
S6	7.14

10

Innovation Update: Ron Algorithm

- Prognostics: In-situ real-time R_{ON} Estimation 2
 - Multi-sample averaging approach

Innovation Update: R_{on} Consistency

- Prognostics: In-situ real-time R_{ON} Estimation 3
 - To improve the consistency: hardened the sensing hardware and developed a data qualification algorithm

After Data Qualification

Cycle-Avrg	PhA,H S	PhA,L S	PhB,H S	PhB,L S	PhC,H S	PhC,L S
MATLAB	7.72	7.67	6.01	6.83	7.03	6.59
IPS DSP	7.71	7.67	6.02	6.82	7.02	6.58

Innovation Update: R_{ON} Accuracy

- Prognostics: In-situ real-time R_{ON} Estimation 4
 - A true (offline) on-resistance set up developed to measure the reference values for six devices
 - Observed differences from $-0.32m\Omega$ to $+0.35m\Omega$ which is equivalent to 5%-7%

Innovation Update: Future

- Calibration of the relative R_{ON} based on the current value and temperature
- Health monitoring of electrolytic DC link capacitors in IPS.
- Development of algorithm identifying the health status of the DC link capacitors.

Impact/Commercialization

• Include the impact/commercialization status here:

With our industrial partners, an LOI is submitted to DOE SBIR program under DE-FOA-0002555 to commercialize and demonstrate the developed sensors and features in a commercial inverter

IP STATUS

Provisional patent application:

Title: On-State Voltage Measurement of High-Side Power Transistors in Three-Phase Four-Leg Inverter for In-Situ

Prognostics

No.: 63/203,405

Inventor(s): Chondon Roy, Namwon Kim, James Gafford, and Babak Parkhideh

Status: Filed new provisional patent application.

THANK YOU

This project was supported by the Department of Energy (DOE) - Office of Electricity's (OE), Transformer Resilience and Advanced Components (TRAC) program led by the program manager Andre Pereira & Oak Ridge National Laboratory (ORNL)

